Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.861
Filtrar
1.
Biosci Biotechnol Biochem ; 84(1): 76-84, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31478783

RESUMO

The circadian clock enables plants to adapt to their environment and control numerous physiological processes, including plant-pathogen interactions. However, it is unknown if the circadian clock controls nonhost resistance (NHR) in plants. To find out, we analyzed microarray data with the web-based tool DIURNAL to reveal that NHR-related genes show rhythmic expression patterns in the absence of a pathogen challenge. Our clock mutant analyses found that cca1-1 lhy-11 double mutant showed compromised NHR to Pyricularia oryzae, suggesting that two components of the circadian clock, CCA1 and LHY, are involved in regulating penetration resistance in Arabidopsis thaliana. By analyzing pen2 double mutants, we revealed that CCA1 contributes to time-of-day-dependent penetration resistance as a positive regulator and that LHY regulates post-penetration resistance as a positive regulator. Taken together, our results suggest that the circadian clock regulates the time-of-day-dependent NHR to P. oryzae and thus enables A. thaliana to counteract pathogen attacks.Abbreviations: EE: evening element; ETI: effector-triggered immunity; NHR: nonhost resistance; PAMP: pathogen-associated molecular pattern; PTI: PAMP-triggered immunity; SAR: systemic acquired resistance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/microbiologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas de Ligação a DNA/genética , Resistência à Doença/genética , Magnaporthe/fisiologia , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Interações Hospedeiro-Patógeno , Mutação , N-Glicosil Hidrolases/genética , Fotoperíodo , Folhas de Planta/microbiologia , Temperatura Ambiente
2.
Adv Exp Med Biol ; 1209: 43-54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31728864

RESUMO

Autophagy pathway is highly conserved in all eukaryotic species and responsible for targeting of cytosol components, such as protein aggregates, damaged or unnecessary organelles, and intracellular bacterial pathogens for lysosome-dependent degradation. Besides severing as a catabolic process, autophagy pathway furthermore has been discovered to function pivotally in both innate and adaptive immune responses. At present, it has been well demonstrated that certain types of bacteria could be targeted by autophagy upon their invasion. However, several bacterial pathogens have developed strategies to evade this degradation and clearance. Here, we review the role and mechanism of autophagy in the regulation of bacteria invasion, which may facilitate the designing of clinical drugs for efficient and safe cure of infection diseases caused by toxic bacteria.


Assuntos
Autofagia , Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno , Interações Hospedeiro-Patógeno/imunologia , Humanos
3.
Adv Exp Med Biol ; 1209: 55-78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31728865

RESUMO

Autophagy is an intracellular recycling process that maintains cellular homeostasis by orchestrating immunity upon viral infection. Following viral infection, autophagy is often initiated to curtail infection by delivering viral particles for lysosomal degradation and further integrating with innate pattern recognition receptor signaling to induce interferon (IFN)-mediated viral clearance. However, some viruses have evolved anti-autophagy strategies to escape host immunity and to promote viral replication. In this chapter, we illustrate how autophagy prevents viral infection to generate an optimal anti-viral milieu, and then concentrate on how viruses subvert and hijack the autophagic process to evade immunosurveillance, thereby facilitating viral replication and pathogenesis. Understanding the interplays between autophagy and viral infection is anticipated to guide the development of effective anti-viral therapeutics to fight against infectious diseases.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno , Viroses , Fenômenos Fisiológicos Virais , Autofagia/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Viroses/imunologia , Replicação Viral
4.
Adv Exp Med Biol ; 1209: 125-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31728868

RESUMO

The production of type I interferons (IFNs) is one of the hallmarks of intracellular antimicrobial program. Typical type I IFN response activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, which results in the transcription of plentiful IFN-stimulated genes (ISGs) to establish the comprehensive antiviral states. Type I IFN signaling should initiate timely to provoke innate and adaptive immune responses for effective elimination of the invading pathogens. Meanwhile, a precise control must come on the stage to restrain the persistent activation of type I IFN responses to avoid attendant toxicity. Autophagy, a conserved eukaryotic degradation system, mediated by a number of autophagy-related (ATG) proteins, plays an essential role in the clearance of invading microorganism and manipulation of type I responses. Autophagy modulates type I IFN responses through regulatory integration with innate immune signaling pathways, and by removing endogenous ligands of innate immune sensors. Moreover, selective autophagy governs the choice of innate immune factors as specific cargoes for degradation, thus tightly monitoring the type I IFN responses. This review will focus on the cross-regulation between autophagy and type I IFN signaling in host defense.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno , Interferon Tipo I , Transdução de Sinais , Animais , Autofagia/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/imunologia
5.
Adv Exp Med Biol ; 1197: 119-141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31732939

RESUMO

Oral cavity harbors a complex and highly diverse microbial community. Cross-kingdom interactions between Candida and oral bacteria are critical for their co-existence, which may also affect the course and the severity of biofilm-mediated bacterial-mediated diseases. C. albicans has been found in polymicrobial biofilms associated with denture stomatitis, oral mucositis, dental caries, periodontal diseases, peri-implantitis, and root canal infection. Thus, it is of utmost importance to unravel the mechanisms of Candida-bacterial interactions and their impact on the onset and severity of cross-kingdom biofilm-related diseases. Here, we highlight the potential role of Candida-bacterial biofilm interactions in the pathogenesis of oral diseases, especially mucosal infections and dental caries. The influence of Candida-bacterial biofilms on the mucosal host immune response is also discussed. Finally, we present some of the current and prospective therapeutic strategies for controlling these cross-kingdom interactions and their virulence properties associated with oral diseases.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Candida , Interações Hospedeiro-Patógeno , Doenças da Boca , Candida/fisiologia , Candida albicans/fisiologia , Humanos , Doenças da Boca/microbiologia , Estudos Prospectivos
6.
Science ; 366(6465): 574-575, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672884
7.
Mol Plant Microbe Interact ; 32(12): 1577-1580, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31618137

RESUMO

The Xanthomonas genus, comprises more than 30 species of gram-negative bacteria, most of which are pathogens of plants with high economic value, such as rice, common bean, and maize. Transcription activator-like effectors (TALEs), which act by regulating the host gene expression, are some of the major virulence factors of these bacteria. We present a novel tool to identify TALE genes in the genome of Xanthomonas strains and their respective targets. The analysis of the results obtained by TargeTALE in a proof-of-concept validation demonstrate that, at optimum setting, approximately 93% of the predicted target genes with available expression data were confirmed as upregulated during the infection, indicating that the tool might be useful for researchers in the field.


Assuntos
Genoma Bacteriano , Efetores Semelhantes a Ativadores de Transcrição , Xanthomonas , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno/genética , Oryza/microbiologia , Efetores Semelhantes a Ativadores de Transcrição/genética , Fatores de Virulência/genética , Xanthomonas/genética
8.
Plant Mol Biol ; 101(4-5): 343-354, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31621005

RESUMO

KEY MESSAGE: Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant cell must defend itself against invading pathogens. A typical plant defense strategy is the hypersensitive response that results in host cell death at the site of infection, a process largely regulated by the vacuole. In plant cells, the vacuole is a vital organelle that plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. It shows divergent membranous structures that are continuously transforming. Recent technical advances in visualization and live-cell imaging have significantly altered our view of the vacuolar structures and their dynamics. Understanding the active nature of the vacuolar structures and the mechanisms of vacuole-mediated defense responses is of great importance in understanding plant-pathogen interactions. In this review, we present an overview of the current knowledge about the vacuole and its internal structures, as well as their role in plant-microbe interactions. There is so far limited information on the modulation of the vacuolar structures by pathogens, but recent research has identified the vacuole as a possible target of microbial interference.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Vegetal , Plantas/ultraestrutura , Vacúolos/ultraestrutura , Biomarcadores/metabolismo , Morte Celular , Membranas Intracelulares/imunologia , Membranas Intracelulares/microbiologia , Membranas Intracelulares/ultraestrutura , Proteínas de Plantas/metabolismo , Plantas/imunologia , Plantas/microbiologia , Vacúolos/imunologia , Vacúolos/microbiologia
10.
Plant Dis ; 103(12): 3072-3082, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31596690

RESUMO

Bacterial leaf spot caused by the plant pathogenic bacterium Pseudomonas syringae pv. coriandricola (Psc) was observed on carrot, parsnip, and parsley grown on a vegetable farm in the Vojvodina Province of Serbia. Nonfluorescent bacterial colonies were isolated from diseased leaves and characterized using different molecular techniques. Repetitive element PCR fingerprinting with five oligonucleotide primers (BOX, ERIC, GTG5, REP, and SERE) and the randomly amplified polymorphic DNA-PCR with the M13 primer revealed identical fingerprint patterns for all tested strains. Multilocus sequence analysis of four housekeeping genes (gapA, gltA, gyrB, and rpoD) showed a high degree (99.8 to 100%) of homology with sequences of Psc strains deposited in the Plant-Associated Microbes Database and NCBI database. The tested strains caused bacterial leaf spot symptoms on all three host plants. Host-strain specificity was not found in cross-pathogenicity tests, but the plant response (peroxidase induction and chlorophyll bleaching) was more pronounced in carrot and parsley than in parsnip.


Assuntos
Daucus carota , Interações Hospedeiro-Patógeno , Pastinaca , Petroselinum , Pseudomonas syringae , DNA Bacteriano/genética , Daucus carota/microbiologia , Pastinaca/microbiologia , Petroselinum/microbiologia , Pseudomonas syringae/genética , Sérvia
11.
DNA Cell Biol ; 38(11): 1178-1187, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31580738

RESUMO

Mycobacterium tuberculosis proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family proteins, with >160 members, are crucial for virulence, cell wall, host cell fate, host Th1/Th2 balance, and CD8+ T cell recognition. Ca2+ signaling is involved in PE/PPE protein-mediated host-pathogen interaction. PE/PPE proteins also function in heme utilization and nitric oxide production. PE/PPE family proteins are intensively pursued as diagnosis biomarkers and vaccine components.


Assuntos
Proteínas de Bactérias/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune/genética , Mycobacterium tuberculosis/imunologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ácido Glutâmico/química , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Família Multigênica/fisiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Prolina/química , Domínios Proteicos Ricos em Prolina/genética , Domínios Proteicos Ricos em Prolina/imunologia , Virulência/genética , Virulência/imunologia
12.
Arch Virol ; 164(12): 2963-2974, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31552533

RESUMO

Cholesterol-25-hydroxylase (CH25H) is a reticulum-associated membrane protein that catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC). Recent studies have revealed that CH25H is an interferon-stimulated gene (ISG) that suppresses infection by several viruses. In the present study, we found that overexpression of both human and murine CH25H inhibited rabies virus (RABV) infection in HEK-293T (293T) cells. In contrast, silencing of CH25H enhanced RABV replication in 293T cells, and a catalytic mutant of CH25H lost its ability to inhibit RABV infection. Treatment with the oxysterol 25-hydroxycholesterol (25HC), the product of CH25H, dramatically decreased RABV replication in 293T, BSR and N2a cells by inhibiting viral membrane penetration. These data provide insights into the antiviral function of CH25H against RABV infection, which can potentially be used as a therapeutic agent for rabies.


Assuntos
Vírus da Raiva/fisiologia , Raiva/enzimologia , Esteroide Hidroxilases/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Hidroxicolesteróis/metabolismo , Camundongos , Raiva/genética , Raiva/virologia , Vírus da Raiva/genética , Esteroide Hidroxilases/genética , Replicação Viral
13.
DNA Cell Biol ; 38(11): 1257-1268, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31553224

RESUMO

Recent analyses suggest bacterial and/or mitochondrion-like ancestry for giant viruses (Megavirales sensu latu): amoeban mitochondrial gene arrangements resemble those of their candidate homologs in megaviral genomes. This presumed ancestral synteny decreases with genome size across megaviral families at large and within Poxviridae. In this study, analyses focus on Phycodnaviridae, a polyphyletic group of giant viruses infecting Haplophyta, Stramenopiles, and other algae, using syntenies between algal mitogene arrangements and chloroplast genomes and Rickettsia prowazekii as positive controls. Mitogene alignment qualities with Rickettsia are much higher than with viral genomes. Mitogenome synteny with some viruses is higher, for others lower than with Rickettsia, despite lower alignments qualities. In some algae, syntenies among cohosted chloroplast, virus, and mitochondrion are higher, in others lower than expected. This suggests gene order coevolution in cohosted genomes, different coregulations of organelle metabolisms for different algae, and viral mitogenome mimicry, to hijack organelle-committed cellular resources and/or escape cellular defenses/genetic immunity systems. This principle might explain high synteny between human mitochondria and the pathogenic endocellular alphaproteobacterium R. prowazekii beyond common ancestry. Results indicate that putative bacteria/mitochondrion-like genomic ancestors of Phycodnaviridae originated before or at the mitochondrion-bacteria split, and ulterior functional constraints on gene arrangements of cohosted genomes.


Assuntos
Cloroplastos/genética , Evolução Molecular , Mitocôndrias/genética , Mimetismo Molecular/fisiologia , Phycodnaviridae/genética , Sintenia/genética , Imunidade Adaptativa/genética , Genoma Mitocondrial/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/genética , Organelas/genética , Filogenia , Análise de Sequência de DNA
14.
Nature ; 574(7777): 259-263, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554973

RESUMO

Chikungunya virus (CHIKV) is a re-emerging alphavirus that is transmitted to humans by mosquito bites and causes musculoskeletal and joint pain1,2. Despite intensive investigations, the human cellular factors that are critical for CHIKV infection remain unknown, hampering the understanding of viral pathogenesis and the development of anti-CHIKV therapies. Here we identified the four-and-a-half LIM domain protein 1 (FHL1)3 as a host factor that is required for CHIKV permissiveness and pathogenesis in humans and mice. Ablation of FHL1 expression results in the inhibition of infection by several CHIKV strains and o'nyong-nyong virus, but not by other alphaviruses and flaviviruses. Conversely, expression of FHL1 promotes CHIKV infection in cells that do not normally express it. FHL1 interacts directly with the hypervariable domain of the nsP3 protein of CHIKV and is essential for the replication of viral RNA. FHL1 is highly expressed in CHIKV-target cells and is particularly abundant in muscles3,4. Dermal fibroblasts and muscle cells derived from patients with Emery-Dreifuss muscular dystrophy that lack functional FHL15 are resistant to CHIKV infection. Furthermore,  CHIKV infection  is undetectable in Fhl1-knockout mice. Overall, this study shows that FHL1 is a key factor expressed by the host that enables CHIKV infection and identifies the interaction between nsP3 and FHL1 as a promising target for the development of anti-CHIKV therapies.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/patogenicidade , Fatores Celulares Derivados do Hospedeiro/metabolismo , Interações Hospedeiro-Patógeno , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Animais , Células Cultivadas , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/genética , Vírus Chikungunya/crescimento & desenvolvimento , Feminino , Fibroblastos/virologia , Células HEK293 , Fatores Celulares Derivados do Hospedeiro/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/deficiência , Proteínas com Domínio LIM/genética , Masculino , Camundongos , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Mioblastos/virologia , Vírus O'nyong-nyong/crescimento & desenvolvimento , Vírus O'nyong-nyong/patogenicidade , Ligação Proteica , RNA Viral/biossíntese , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
15.
Plant Dis ; 103(12): 2996-3001, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31560615

RESUMO

Mite-vectored virus diseases of wheat are common throughout the Great Plains and cause significant economic losses to growers each year. These diseases are caused by Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus (WMoV), all of which are transmitted by the wheat curl mite (WCM), Aceria tosichella Keifer. New wheat cultivars with tolerance or resistance to WSMV have been released recently, but their widespread cultivation and potential impact on mite-transmitted virus incidence in the Texas Panhandle was unknown. A total of 648 symptomatic wheat samples were collected from 26 counties, predominately in the Texas Panhandle, and tested by enzyme-linked immunosorbent assay (ELISA) for WSMV, TriMV, and WMoV. Samples that tested negative by ELISA were subsequently tested by real-time quantitative PCR (qPCR) for each virus. Approximately 93% of the samples tested by ELISA were positive for WSMV, 43% were positive for TriMV, and 7% were positive for WMoV. Eleven samples tested positive only for TriMV, but none were positive only for WMoV. When samples that tested negative for the different viruses by ELISA were retested by real-time qPCR, detection of each virus was significantly increased. When results of the ELISA test and qPCR were combined, 100% of the 648 samples tested positive for WSMV, approximately 94% were positive for TriMV, and 23% were positive for WMoV. This demonstrated that the incidence of TriMV in the Texas High Plains is much greater than previously reported. The fact that real-time qPCR revealed over a 2-fold increase in the incidence of TriMV and a 3-fold increase in WMoV demonstrated that the ELISA test, which is commonly used by diagnostic laboratories in the Great Plains, should not be used for studies requiring a high degree of sensitivity and accuracy in virus detection. After initial virus infection status was determined, samples that tested positive for WSMV and TriMV were further observed for WCM infestation. A total of 292 samples were inspected and a total of 101 mites were collected from 40 tillers. Individual mites and the tillers from which they were recovered were tested by real-time qPCR to determine how copy numbers of WSMV and TriMV in mites and host tissue compared, and whether the WSMV/TriMV copy number ratio in individual mites was similar to that of the host tissue from which they were collected. In all mites and tillers tested, the WSMV copy number was always higher than that of TriMV and copy numbers of both viruses were always higher in plant tissue than in mites. Although there was a significant correlation between the WSMV/TriMV copy number ratio in plant tissue and in associated mites, the correlation coefficient was very low (r = 0.31, P = 0.0248). In the majority of comparisons, the WSMV/TriMV ratio was higher in individual mites than in the tiller from which they were recovered. The reason for this increase is unknown but indicates that mites may preferentially acquire WSMV from tillers coinfected with WSMV and TriMV, a finding that could have significant implications for virus transmission and disease epidemiology.


Assuntos
Interações Hospedeiro-Patógeno , Ácaros , Doenças das Plantas , Triticum , Animais , Incidência , Ácaros/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Texas , Triticum/parasitologia , Triticum/virologia
16.
Genes Dev ; 33(17-18): 1098-1116, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31481535

RESUMO

Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.


Assuntos
Evolução Biológica , Elementos de DNA Transponíveis/fisiologia , Eucariotos/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Adaptação Fisiológica/genética , Animais , Elementos de DNA Transponíveis/genética , Eucariotos/genética , Genoma/genética , Humanos
17.
Arch Virol ; 164(11): 2747-2759, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31502079

RESUMO

RNA silencing is a major antiviral mechanism in plants, which is counteracted by virus-encoded proteins with silencing suppression activity. ORFs encoding putative silencing suppressor proteins that share no structural or sequence homology have been identified in the genomes of four criniviruses. In this study, we investigated the RNA silencing suppression activity of several proteins encoded by the RNA1 (RdRp, p22) and RNA2 (CP, CPm and p26) of cucurbit chlorotic yellows virus (CCYV) using co-agroinfiltration assays on Nicotiana benthamiana plants. Our results indicate that p22 is a suppressor of local RNA silencing that does not interfere with cell-to-cell movement of the RNA silencing signal or with systemic silencing. Furthermore, comparisons of the suppression activity of CCYV p22 with that of two other well-known crinivirus suppressors (CYSDV p25 and ToCV p22) revealed that CCYV p22 is a weaker suppressor of local RNA silencing than the other two proteins. Finally, a comparative sequence analysis of the p22 genes of seven Greek CCYV isolates was performed, revealing a high level of conservation. Taken together, our research advances our knowledge about plant-virus interactions of criniviruses, an emergent group of pathogens that threatens global agriculture.


Assuntos
Crinivirus/genética , Interferência de RNA/fisiologia , RNA Viral/genética , Tabaco/virologia , Proteínas do Core Viral/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/virologia
18.
Cancer Invest ; 37(8): 393-414, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31502477

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies. In recent decades, early diagnosis and conventional therapies have resulted in a significant reduction in mortality. However, late stage metastatic disease still has very limited effective treatment options. There is a growing interest in using viruses to help target therapies to tumour sites. In recent years the evolution of immunotherapy has emphasised the importance of directing the immune system to eliminate tumour cells; we aim to give a state-of-the-art over-view of the diverse viruses that have been investigated as potential oncolytic agents for the treatment of CRC.


Assuntos
Neoplasias do Colo/terapia , Terapia Viral Oncolítica/tendências , Vírus Oncolíticos/patogenicidade , Neoplasias Retais/terapia , Animais , Neoplasias do Colo/mortalidade , Neoplasias do Colo/patologia , Neoplasias do Colo/virologia , Difusão de Inovações , Previsões , Interações Hospedeiro-Patógeno , Humanos , Terapia Viral Oncolítica/efeitos adversos , Neoplasias Retais/mortalidade , Neoplasias Retais/patologia , Neoplasias Retais/virologia , Resultado do Tratamento
19.
DNA Cell Biol ; 38(11): 1170-1177, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31502877

RESUMO

Host response to viral infection is a highly regulated process involving engagement of various host factors, cytokines, chemokines, and stimulatory signals that pave the way for an antiviral immune response. The response is manifested in terms of viral sequestration, phagocytosis, and inhibition of genome replication, and, finally, if required, lymphocyte-mediated clearance of virally infected cells. During this process, cross-talk between viral and host factors can shape disease outcomes and immunopathology. Bone marrow stromal antigen 2 (BST-2), also know as tetherin, is induced by type I interferon produced in response to viral infections, as well as in certain cancers. BST-2 has been shown to be a host restriction factor of virus multiplication through its ability to physically tether budding virions and restrict viral spread. However, BST-2 has other roles in the host antiviral response. This review focuses on the diverse functions of BST-2 and its downstream signaling pathways in regulating host immune responses.


Assuntos
Antígenos CD/fisiologia , Imunomodulação/genética , Vírion/imunologia , Vírion/metabolismo , Imunidade Adaptativa/genética , Animais , Antígenos CD/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/fisiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação/imunologia , Viroses/genética , Viroses/imunologia
20.
Sci Total Environ ; 692: 1282-1290, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539960

RESUMO

Bacillus cereus is a foodborne pathogen that causes gastrointestinal disease in hosts. The interactions between pathogenic bacteria and silkworms (Bombyx mori L.) involve complex processes. This study aimed to investigate the potential genetic traits of B. cereus SW7-1 and profile the toxicity response of silkworm intestine upon infection by the SW7-1 pathogen. Bacterial genome sequencing and polymerase chain reaction (PCR) detection indicated that B. cereus SW7-1 possesses multiple antibiotic-resistant genes and nine virulence factor genes. Then, silkworm larvae were infected with SW7-1. Comparative transcriptomic analysis revealed that 273 differentially expressed genes (DEGs) with known functions were successfully annotated to the silkworm reference genome. Specifically, 18 DEGs were up-regulated, and 255 DEGs were down-regulated. Compared with the control group, the treated group revealed down-regulated DEGs that are related to stress reactions, immunity, autophagy and apoptosis, DNA replication, ribosomal stress, and carbohydrate metabolism. Quantitative real time PCR analysis showed that many key genes in the Toll pathway, immune deficiency pathway, Janus kinase/signal transducers and activators of transcription pathway, and melanization reaction were up-regulated. Thus, B. cereus SW7-1 pathogen could damage the silkworm intestine, as confirmed by the histological section assay. In addition, SW7-1 can affect the normal physiological functions of intestinal cells. This study contributes toward an improved understanding of the toxicity response of silkworm to the B. cereus pathogen and provides new insights into the molecular mechanisms of the complex interactions between pathogenic microbes and silkworms.


Assuntos
Bacillus cereus , Bombyx , Interações Hospedeiro-Patógeno , Intestinos/microbiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA