Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.301
Filtrar
2.
Nat Immunol ; 21(9): 1107-1118, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32788748

RESUMO

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of 5 healthy donors and 13 patients with COVID-19, including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in patients with COVID-19 showed a strong interferon-α response and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ effector-GNLY (granulysin), CD8+ effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during disease progression.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Interferon Tipo I/metabolismo , Pneumonia Viral/imunologia , Receptores Imunológicos/metabolismo , Adolescente , Adulto , Idoso , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Estudos de Coortes , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , RNA-Seq , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Índice de Gravidade de Doença , Análise de Célula Única
4.
Nat Commun ; 11(1): 3819, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732875

RESUMO

Hormone receptor (HR)+ breast cancer (BC) causes most BC-related deaths, calling for improved therapeutic approaches. Despite expectations, immune checkpoint blockers (ICBs) are poorly active in patients with HR+ BC, in part reflecting the lack of preclinical models that recapitulate disease progression in immunocompetent hosts. We demonstrate that mammary tumors driven by medroxyprogesterone acetate (M) and 7,12-dimethylbenz[a]anthracene (D) recapitulate several key features of human luminal B HR+HER2- BC, including limited immune infiltration and poor sensitivity to ICBs. M/D-driven oncogenesis is accelerated by immune defects, demonstrating that M/D-driven tumors are under immunosurveillance. Safe nutritional measures including nicotinamide (NAM) supplementation efficiently delay M/D-driven oncogenesis by reactivating immunosurveillance. NAM also mediates immunotherapeutic effects against established M/D-driven and transplantable BC, largely reflecting increased type I interferon secretion by malignant cells and direct stimulation of immune effector cells. Our findings identify NAM as a potential strategy for the prevention and treatment of HR+ BC.


Assuntos
Neoplasias da Mama/terapia , Imunoterapia/métodos , Niacinamida/administração & dosagem , Receptor ErbB-2/imunologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Progressão da Doença , Feminino , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/prevenção & controle , Acetato de Medroxiprogesterona , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor ErbB-2/metabolismo , Análise de Sobrevida
5.
J Immunol ; 205(6): 1564-1579, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747502

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus causing severe disease and mortality. MERS-CoV infection failed to elicit robust IFN response, suggesting that the virus might have evolved strategies to evade host innate immune surveillance. In this study, we identified and characterized type I IFN antagonism of MERS-CoV open reading frame (ORF) 8b accessory protein. ORF8b was abundantly expressed in MERS-CoV-infected Huh-7 cells. When ectopically expressed, ORF8b inhibited IRF3-mediated IFN-ß expression induced by Sendai virus and poly(I:C). ORF8b was found to act at a step upstream of IRF3 to impede the interaction between IRF3 kinase IKKε and chaperone protein HSP70, which is required for the activation of IKKε and IRF3. An infection study using recombinant wild-type and ORF8b-deficient MERS-CoV further confirmed the suppressive role of ORF8b in type I IFN induction and its disruption of the colocalization of HSP70 with IKKε. Ectopic expression of HSP70 relieved suppression of IFN-ß expression by ORF8b in an IKKε-dependent manner. Enhancement of IFN-ß induction in cells infected with ORF8b-deficient virus was erased when HSP70 was depleted. Taken together, HSP70 chaperone is important for IKKε activation, and MERS-CoV ORF8b suppresses type I IFN expression by competing with IKKε for interaction with HSP70.


Assuntos
Ativação Enzimática/imunologia , Quinase I-kappa B/imunologia , Interferon Tipo I/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Proteínas Virais/imunologia , Betacoronavirus , Linhagem Celular , Infecções por Coronavirus , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Interferon Tipo I/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Pandemias , Pneumonia Viral , Proteínas Virais/metabolismo
6.
PLoS One ; 15(8): e0238202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32846428

RESUMO

The immune system of ectotherms, particularly non-avian reptiles, remains poorly characterized regarding the genes involved in immune function, and their function in wild populations. We used RNA-Seq to explore the systemic response of Mojave desert tortoise (Gopherus agassizii) gene expression to three levels of Mycoplasma infection to better understand the host response to this bacterial pathogen. We found over an order of magnitude more genes differentially expressed between male and female tortoises (1,037 genes) than differentially expressed among immune groups (40 genes). There were 8 genes differentially expressed among both variables that can be considered sex-biased immune genes in this tortoise. Among experimental immune groups we find enriched GO biological processes for cysteine catabolism, regulation of type 1 interferon production, and regulation of cytokine production involved in immune response. Sex-biased transcription involves iron ion transport, iron ion homeostasis, and regulation of interferon-beta production to be enriched. More detailed work is needed to assess the seasonal response of the candidate genes found here. How seasonal fluctuation of testosterone and corticosterone modulate the immunosuppression of males and their susceptibility to Mycoplasma infection also warrants further investigation, as well as the importance of iron in the immune function and sex-biased differences of this species. Finally, future transcriptional studies should avoid drawing blood from tortoises via subcarapacial venipuncture as the variable aspiration of lymphatic fluid will confound the differential expression of genes.


Assuntos
Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/veterinária , Mycoplasma/imunologia , Tartarugas/genética , Tartarugas/imunologia , Animais , Anticorpos Antibacterianos/sangue , California , Citocinas/genética , Citocinas/imunologia , Clima Desértico , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Transporte de Íons/genética , Ferro/metabolismo , Masculino , Infecções por Mycoplasma/microbiologia , Nevada , Fatores Sexuais
7.
Nature ; 585(7823): 96-101, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32814898

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that overlap in their clinical presentation, pathology and genetic origin. Autoimmune disorders are also overrepresented in both ALS and FTD, but this remains an unexplained epidemiologic observation1-3. Expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial ALS and FTD (C9-ALS/FTD), and lead to both repeat-containing RNA and dipeptide accumulation, coupled with decreased C9orf72 protein expression in brain and peripheral blood cells4-6. Here we show in mice that loss of C9orf72 from myeloid cells alone is sufficient to recapitulate the age-dependent lymphoid hypertrophy and autoinflammation seen in animals with a complete knockout of C9orf72. Dendritic cells isolated from C9orf72-/- mice show marked early activation of the type I interferon response, and C9orf72-/- myeloid cells are selectively hyperresponsive to activators of the stimulator of interferon genes (STING) protein-a key regulator of the innate immune response to cytosolic DNA. Degradation of STING through the autolysosomal pathway is diminished in C9orf72-/- myeloid cells, and blocking STING suppresses hyperactive type I interferon responses in C9orf72-/- immune cells as well as splenomegaly and inflammation in C9orf72-/- mice. Moreover, mice lacking one or both copies of C9orf72 are more susceptible to experimental autoimmune encephalitis, mirroring the susceptibility to autoimmune diseases seen in people with C9-ALS/FTD. Finally, blood-derived macrophages, whole blood and brain tissue from patients with C9-ALS/FTD all show an elevated type I interferon signature compared with samples from people with sporadic ALS/FTD; this increased interferon response can be suppressed with a STING inhibitor. Collectively, our results suggest that patients with C9-ALS/FTD have an altered immunophenotype because their reduced levels of C9orf72 cannot suppress the inflammation mediated by the induction of type I interferons by STING.


Assuntos
Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Inflamação/metabolismo , Inflamação/prevenção & controle , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Envelhecimento/imunologia , Esclerose Amiotrófica Lateral/genética , Animais , Proteína C9orf72/deficiência , Células Dendríticas/citologia , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Células Mieloides/imunologia , Neoplasias/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
8.
Nat Commun ; 11(1): 3363, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620750

RESUMO

Studying emerging or neglected pathogens is often challenging due to insufficient information and absence of genetic tools. Dual RNA-seq provides insights into host-pathogen interactions, and is particularly informative for intracellular organisms. Here we apply dual RNA-seq to Orientia tsutsugamushi (Ot), an obligate intracellular bacterium that causes the vector-borne human disease scrub typhus. Half the Ot genome is composed of repetitive DNA, and there is minimal collinearity in gene order between strains. Integrating RNA-seq, comparative genomics, proteomics, and machine learning to study the transcriptional architecture of Ot, we find evidence for wide-spread post-transcriptional antisense regulation. Comparing the host response to two clinical isolates, we identify distinct immune response networks for each strain, leading to predictions of relative virulence that are validated in a mouse infection model. Thus, dual RNA-seq can provide insight into the biology and host-pathogen interactions of a poorly characterized and genetically intractable organism such as Ot.


Assuntos
Regulação Bacteriana da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Doenças Negligenciadas/imunologia , Orientia tsutsugamushi/genética , Tifo por Ácaros/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Genoma Bacteriano , Células Endoteliais da Veia Umbilical Humana , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Sequências Repetitivas Dispersas/genética , Camundongos , Doenças Negligenciadas/microbiologia , Orientia tsutsugamushi/imunologia , Orientia tsutsugamushi/patogenicidade , Proteômica , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Bacteriano/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA-Seq , Tifo por Ácaros/microbiologia , Transcrição Genética , Sequenciamento Completo do Exoma
9.
J Immunother Cancer ; 8(2)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636240

RESUMO

The COVID-19 pandemic has killed over 400 000 people globally. Ecological evidence indicates that countries with national universal BCG vaccination programs for tuberculosis (TB) prevention have a much lower incidence of severe COVID-19 and mortality compared with those that do not have such programs. BCG is a century old vaccine used for TB prevention via infant/childhood vaccination in lowto middle-income countries with high infection prevalence rate and is known to reduce all-cause neonatal mortality. BCG remains the standard immunotherapy treatment for patients with high-risk non-muscle invasive bladder cancer globally for more than 44 years. Several trials are, therefore, investigating BCG as a prophylactic against COVID-19 in healthcare workers and the elderly. In this commentary, we discuss the potential mechanisms that may underlie BCG associated heterologous protection with a focus on tertiary lymphoid structure (TLS) organogenesis. Given the significance of TLSs in mucosal immunity, their association with positive prognosis and response to immune checkpoint blockade with a critical role of Type I interferon (IFN-1) in inducing these, we also discuss potentiating TLS formation as a promising approach to enhance anti-tumor immunity. We propose that lessons learned from BCG immunotherapy success could be applied to not only augment such microbe-based therapeutics but also lead to similar adjunctive IFN-1 activating approaches to improve response to immune checkpoint blockade therapy in cancer.


Assuntos
Vacina BCG/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Interferon Tipo I/imunologia , Neoplasias/terapia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Infecções por Coronavirus/imunologia , Humanos , Imunoterapia , Neoplasias/imunologia , Pneumonia Viral/imunologia
10.
Front Immunol ; 11: 1636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670298

RESUMO

The current pandemic of coronavirus disease 19 (COVID-19) has affected millions of individuals and caused thousands of deaths worldwide. The pathophysiology of the disease is complex and mostly unknown. Therefore, identifying the molecular mechanisms that promote progression of the disease is critical to overcome this pandemic. To address such issues, recent studies have reported transcriptomic profiles of cells, tissues and fluids from COVID-19 patients that mainly demonstrated activation of humoral immunity, dysregulated type I and III interferon expression, intense innate immune responses and inflammatory signaling. Here, we provide novel perspectives on the pathophysiology of COVID-19 using robust functional approaches to analyze public transcriptome datasets. In addition, we compared the transcriptional signature of COVID-19 patients with individuals infected with SARS-CoV-1 and Influenza A (IAV) viruses. We identified a core transcriptional signature induced by the respiratory viruses in peripheral leukocytes, whereas the absence of significant type I interferon/antiviral responses characterized SARS-CoV-2 infection. We also identified the higher expression of genes involved in metabolic pathways including heme biosynthesis, oxidative phosphorylation and tryptophan metabolism. A BTM-driven meta-analysis of bronchoalveolar lavage fluid (BALF) from COVID-19 patients showed significant enrichment for neutrophils and chemokines, which were also significant in data from lung tissue of one deceased COVID-19 patient. Importantly, our results indicate higher expression of genes related to oxidative phosphorylation both in peripheral mononuclear leukocytes and BALF, suggesting a critical role for mitochondrial activity during SARS-CoV-2 infection. Collectively, these data point for immunopathological features and targets that can be therapeutically exploited to control COVID-19.


Assuntos
Betacoronavirus/imunologia , Quimiocinas/sangue , Infecções por Coronavirus/imunologia , Interferon Tipo I/sangue , Neutrófilos/imunologia , Pneumonia Viral/imunologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Infecções por Coronavirus/patologia , Perfilação da Expressão Gênica , Humanos , Inflamação/virologia , Influenza Humana/imunologia , Interferon Tipo I/imunologia , Neutrófilos/citologia , Fosforilação Oxidativa , Pandemias , Pneumonia Viral/patologia , Transcriptoma/genética
11.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699094

RESUMO

The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2. In this study, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral, surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by proinflammatory cytokines and chemokine induction, including interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and CXCL8, and identified NF-κB and ATF-4 as key drivers of this proinflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III interferon (IFN) response to SARS-CoV-2 infection. However, pretreatment and posttreatment with type I and III IFNs significantly reduced virus replication in pHAE cultures that correlated with upregulation of antiviral effector genes. Combined, our findings demonstrate that SARS-CoV-2 does not trigger an IFN response but is sensitive to the effects of type I and III IFNs. Our studies demonstrate the utility of pHAE cultures to model SARS-CoV-2 infection and that both type I and III IFNs can serve as therapeutic options to treat COVID-19 patients.IMPORTANCE The current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. Our research identifies an excellent system to model SARS-CoV-2 infection of the human airways that can be used to test various treatments. Analysis of infection in this model system found that human airway epithelial cell cultures induce a strong proinflammatory cytokine response yet block the production of type I and III IFNs to SARS-CoV-2. However, treatment of airway cultures with the immune molecules type I or type III interferon (IFN) was able to inhibit SARS-CoV-2 infection. Thus, our model system identified type I or type III IFN as potential antiviral treatments for COVID-19 patients.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Células Epiteliais/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , Pneumonia Viral/imunologia , Animais , Betacoronavirus/fisiologia , Brônquios/citologia , Brônquios/imunologia , Brônquios/virologia , Linhagem Celular , Células Cultivadas , Quimiocinas/imunologia , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Citocinas/imunologia , Cães , Células Epiteliais/virologia , Humanos , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Pandemias , Pneumonia Viral/virologia , Células Vero , Replicação Viral
12.
Nat Commun ; 11(1): 3382, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636381

RESUMO

The Stimulator of Interferon Genes (STING) pathway initiates potent immune responses upon recognition of DNA. To initiate signaling, serine 365 (S365) in the C-terminal tail (CTT) of STING is phosphorylated, leading to induction of type I interferons (IFNs). Additionally, evolutionary conserved responses such as autophagy also occur downstream of STING, but their relative importance during in vivo infections remains unclear. Here we report that mice harboring a serine 365-to-alanine (S365A) mutation in STING are unexpectedly resistant to Herpes Simplex Virus (HSV)-1, despite lacking STING-induced type I IFN responses. By contrast, resistance to HSV-1 is abolished in mice lacking the STING CTT, suggesting that the STING CTT initiates protective responses against HSV-1, independently of type I IFNs. Interestingly, we find that STING-induced autophagy is a CTT- and TBK1-dependent but IRF3-independent process that is conserved in the STING S365A mice. Thus, interferon-independent functions of STING mediate STING-dependent antiviral responses in vivo.


Assuntos
Herpes Simples/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , Proteínas de Membrana/genética , Animais , Autofagia , Feminino , Herpesvirus Humano 1 , Evasão da Resposta Imune , Macrófagos/imunologia , Masculino , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Mutação Puntual , Transdução de Sinais
13.
Proc Natl Acad Sci U S A ; 117(28): 16481-16491, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601182

RESUMO

Differences between female and male immunity may contribute to variations in response to infections and predisposition to autoimmunity. We previously reported that neutrophils from reproductive-age males are more immature and less activated than their female counterparts. To further characterize the mechanisms that drive differential neutrophil phenotypes, we performed RNA sequencing on circulating neutrophils from healthy adult females and males. Female neutrophils displayed significant up-regulation of type I IFN (IFN)-stimulated genes (ISGs). Single-cell RNA-sequencing analysis indicated that these differences are neutrophil specific, driven by a distinct neutrophil subset and related to maturation status. Neutrophil hyperresponsiveness to type I IFNs promoted enhanced responses to Toll-like receptor agonists. Neutrophils from young adult males had significantly increased mitochondrial metabolism compared to those from females and this was modulated by estradiol. Assessment of ISGs and neutrophil maturation genes in Klinefelter syndrome (47, XXY) males and in prepubescent children supported that differences in neutrophil phenotype between adult male and female neutrophils are hormonally driven and not explained by X chromosome gene dosage. Our results indicate that there are distinct sex differences in neutrophil biology related to responses to type I IFNs, immunometabolism, and maturation status that may have prominent functional and pathogenic implications.


Assuntos
Interferon Tipo I/imunologia , Neutrófilos/imunologia , Adulto , Feminino , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/imunologia , Síndrome de Klinefelter/metabolismo , Masculino , Fatores Sexuais , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 117(28): 16567-16578, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32606244

RESUMO

Malaria infection induces complex and diverse immune responses. To elucidate the mechanisms underlying host-parasite interaction, we performed a genetic screen during early (24 h) Plasmodium yoelii infection in mice and identified a large number of interacting host and parasite genes/loci after transspecies expression quantitative trait locus (Ts-eQTL) analysis. We next investigated a host E3 ubiquitin ligase gene (March1) that was clustered with interferon (IFN)-stimulated genes (ISGs) based on the similarity of the genome-wide pattern of logarithm of the odds (LOD) scores (GPLS). March1 inhibits MAVS/STING/TRIF-induced type I IFN (IFN-I) signaling in vitro and in vivo. However, in malaria-infected hosts, deficiency of March1 reduces IFN-I production by activating inhibitors such as SOCS1, USP18, and TRIM24 and by altering immune cell populations. March1 deficiency increases CD86+DC (dendritic cell) populations and levels of IFN-γ and interleukin 10 (IL-10) at day 4 post infection, leading to improved host survival. T cell depletion reduces IFN-γ level and reverse the protective effects of March1 deficiency, which can also be achieved by antibody neutralization of IFN-γ. This study reveals functions of MARCH1 (membrane-associated ring-CH-type finger 1) in innate immune responses and provides potential avenues for activating antimalaria immunity and enhancing vaccine efficacy.


Assuntos
Malária/imunologia , Plasmodium yoelii/fisiologia , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Malária/enzimologia , Malária/genética , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium yoelii/imunologia , Ubiquitina-Proteína Ligases/genética
16.
Nat Commun ; 11(1): 2739, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483165

RESUMO

Synthetic biology is a powerful tool to create therapeutics which can be rationally designed to enable unique and combinatorial functionalities. Here we utilize non-pathogenic E coli Nissle as a versatile platform for the development of a living biotherapeutic for the treatment of cancer. The engineered bacterial strain, referred to as SYNB1891, targets STING-activation to phagocytic antigen-presenting cells (APCs) in the tumor and activates complementary innate immune pathways. SYNB1891 treatment results in efficacious antitumor immunity with the formation of immunological memory in murine tumor models and robust activation of human APCs. SYNB1891 is designed to meet manufacturability and regulatory requirements with built in biocontainment features which do not compromise its efficacy. This work provides a roadmap for the development of future therapeutics and demonstrates the transformative potential of synthetic biology for the treatment of human disease when drug development criteria are incorporated into the design process for a living medicine.


Assuntos
Escherichia coli/imunologia , Imunoterapia/métodos , Proteínas de Membrana/imunologia , Neoplasias/terapia , Transdução de Sinais/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linhagem Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética/métodos , Humanos , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/imunologia , Fagócitos/imunologia , Fagócitos/metabolismo , Transdução de Sinais/genética , Biologia Sintética/métodos , Biologia Sintética/tendências
17.
Viruses ; 12(6)2020 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486349

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes a porcine disease associated with swine epidemic diarrhea. The type I interferon (IFN-I or IFN α/ß) is a key mediator of innate antiviral response during virus infection. Different antagonistic strategies have been identified and determined as to how PEDV infection inhibits the host's IFN responses to escape the host innate immune pathway, but the pathogenic mechanisms of PEDV infection are not fully elucidated. Our preliminary results revealed that endogenous TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), the key components in the IFN signaling pathway were downregulated in PEDV infected IPEC-J2 cells by iTRAQ analysis. In this study, we screened nsp15 as the most important viral encoded protein involved in TBK1 and IRF3 reduction. Endoribonuclease (EndoU) activity has been well determined for coronavirus nsp15. Three residues (H226, H241, and K282) of PEDV nsp15 were identified as critical amino acids for PEDV EndoU but not D265, which was not well correlated with published results of other coronaviruses, such as severe acute respiratory syndrome virus (SARS-CoV). Moreover, PEDV nsp15 can directly degrade the RNA levels of TBK1 and IRF3 dependent on its EndoU activity to suppress IFN production and constrain the induction of IFN stimulated genes (ISGs), by which PEDV antagonizes the host innate response to facilitate its replication. Collectively, these results have confirmed that PEDV nsp15 was capable of subverting the IFN response by the RNA degradation of TBK1 and IRF3.


Assuntos
Endorribonucleases/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas não Estruturais Virais/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Regulação para Baixo , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Interferon Tipo I/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/imunologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia , Células Vero
18.
Virus Res ; 286: 198036, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32492472

RESUMO

Interferon (IFN)-stimulated gene product 15 (ISG15) is a ubiquitin-like protein critical for the control of microbial infections. ISG15 appears to serve a wide variety of functions, which regulate multiple cellular responses contributing to the development of an antiviral state. ISG15 is a versatile molecule directly modulating both host and virus protein function which regulate many signaling pathways, including its own synthesis. Here we review the various roles ISG15 plays in the antiviral immune response, and examine the mechanisms by which viruses attempt to mitigate or exploit ISG15 activity.


Assuntos
Citocinas/metabolismo , Imunidade Inata/imunologia , Ubiquitinas/metabolismo , Viroses/imunologia , Replicação Viral/imunologia , Animais , Citocinas/genética , Humanos , Interferon Tipo I/imunologia , Macrófagos/imunologia , Camundongos , Neutrófilos/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Ubiquitinas/genética , Proteínas Virais/metabolismo , Internalização do Vírus
19.
Nat Commun ; 11(1): 2856, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503977

RESUMO

Type I interferon (IFN-I) and T helper 17 (TH17) drive pathology in neuromyelitis optica spectrum disorder (NMOSD) and in TH17-induced experimental autoimmune encephalomyelitis (TH17-EAE). This is paradoxical because the prevalent theory is that IFN-I inhibits TH17 function. Here we report that a cascade involving IFN-I, IL-6 and B cells promotes TH17-mediated neuro-autoimmunity. In NMOSD, elevated IFN-I signatures, IL-6 and IL-17 are associated with severe disability. Furthermore, IL-6 and IL-17 levels are lower in patients on anti-CD20 therapy. In mice, IFN-I elevates IL-6 and exacerbates TH17-EAE. Strikingly, IL-6 blockade attenuates disease only in mice treated with IFN-I. By contrast, B-cell-deficiency attenuates TH17-EAE in the presence or absence of IFN-I treatment. Finally, IFN-I stimulates B cells to produce IL-6 to drive pathogenic TH17 differentiation in vitro. Our data thus provide an explanation for the paradox surrounding IFN-I and TH17 in neuro-autoimmunity, and may have utility in predicting therapeutic response in NMOSD.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Interferon Tipo I/imunologia , Neuromielite Óptica/imunologia , Células Th17/imunologia , Adulto , Animais , Autoimunidade , Linfócitos B/imunologia , Linfócitos B/metabolismo , Encefalomielite Autoimune Experimental/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neuromielite Óptica/genética , Proteômica
20.
J Allergy Clin Immunol ; 146(2): 315-324.e7, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32531372

RESUMO

BACKGROUND: More than 300 million people carry a diagnosis of asthma, with data to suggest that they are at a higher risk for infection or adverse outcomes from severe acute respiratory syndrome coronavirus 2. Asthma is remarkably heterogeneous, and it is currently unclear how patient-intrinsic factors may relate to coronavirus disease 2019. OBJECTIVE: We sought to identify and characterize subsets of patients with asthma at increased risk for severe acute respiratory syndrome coronavirus 2 infection. METHODS: Participants from 2 large asthma cohorts were stratified using clinically relevant parameters to identify factors related to angiotensin-converting enzyme-2 (ACE2) expression within bronchial epithelium. ACE-2-correlated gene signatures were used to interrogate publicly available databases to identify upstream signaling events and novel therapeutic targets. RESULTS: Stratifying by type 2 inflammatory biomarkers, we identified subjects who demonstrated low peripheral blood eosinophils accompanied by increased expression of the severe acute respiratory syndrome coronavirus 2 receptor ACE2 in bronchial epithelium. Genes highly correlated with ACE2 overlapped with type 1 and 2 IFN signatures, normally induced by viral infections. T-cell recruitment and activation within bronchoalveolar lavage cells of ACE2-high subjects was reciprocally increased. These patients demonstrated characteristics corresponding to risk factors for severe coronavirus disease 2019, including male sex, history of hypertension, low peripheral blood, and elevated bronchoalveolar lavage lymphocytes. CONCLUSIONS: ACE2 expression is linked to upregulation of viral response genes in a subset of type 2-low patients with asthma with characteristics resembling known risk factors for severe coronavirus disease 2019. Therapies targeting the IFN family and T-cell-activating factors may therefore be of benefit in a subset of patients.


Assuntos
Asma/epidemiologia , Asma/genética , Infecções por Coronavirus/epidemiologia , Pandemias , Peptidil Dipeptidase A/genética , Pneumonia Viral/epidemiologia , Receptores Virais/genética , Adolescente , Adulto , Asma/classificação , Asma/imunologia , Betacoronavirus/genética , Betacoronavirus/imunologia , Biomarcadores/metabolismo , Brônquios/imunologia , Brônquios/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Estudos de Coortes , Infecções por Coronavirus/virologia , Eosinófilos/imunologia , Eosinófilos/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon gama/genética , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Peptidil Dipeptidase A/imunologia , Pneumonia Viral/virologia , Mapeamento de Interação de Proteínas , Receptores Virais/imunologia , Fatores de Risco , Índice de Gravidade de Doença , Linfócitos T/classificação , Linfócitos T/imunologia , Linfócitos T/patologia , Transcriptoma , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA