Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.268
Filtrar
1.
Sci Adv ; 8(37): eabn5732, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103539

RESUMO

IFNα is a key regulator of the dialogue between pancreatic ß cells and the immune system in early type 1 diabetes (T1D). IFNα up-regulates HLA class I expression in human ß cells, fostering autoantigen presentation to the immune system. We observed by bulk and single-cell RNA sequencing that exposure of human induced pluripotent-derived islet-like cells to IFNα induces expression of HLA class I and of other genes involved in antigen presentation, including the transcriptional activator NLRC5. We next evaluated the global role of NLRC5 in human insulin-producing EndoC-ßH1 and human islet cells by RNA sequencing and targeted gene/protein determination. NLRC5 regulates expression of HLA class I, antigen presentation-related genes, and chemokines. NLRC5 also mediates the effects of IFNα on alternative splicing, a generator of ß cell neoantigens, suggesting that it is a central player of the effects of IFNα on ß cells that contribute to trigger and amplify autoimmunity in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Interferon-alfa/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ilhotas Pancreáticas/metabolismo
3.
Front Immunol ; 13: 967716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990674

RESUMO

Background: The Omicron SARS-CoV-2 variant has spread quickly worldwide due to its effects on virus transmission and vaccine effectiveness. Interferon(IFN) has been shown to have a protective effect against SARS-CoV because of its broad antiviral activity. This study aimed to analyze the treatment effects of IFN α-2b spray in virus clearance of the Omicron SARS-CoV-2 variant. Methods: We examined the effectiveness and safety of IFN α-2b spray in Shanghai, China, with participants infected with the Omicron SARS-CoV-2 variant in an open, prospective cohort study from April 16th to May 5th, 2022. Results: A total of 871 confirmed patients were enrolled in this study. Four hundred and thirteen patients were allocated to the IFN α-2b spray group, and 458 patients were allocated to the control group. The viral shedding time was significantly different between experimental group and control group (11.90 vs.12.58, P <0.05). In the experimental group, the median administration time since the first positive test for SARS-CoV-2 was three days, ranging from 0 to 15 days. There was no obvious adverse effect associated with the spray of IFN α-2b. The univariate Cox regression analysis revealed that the administration time since the first positive test ≤3 days was a protective factor associated with viral shedding time (HR 0.81 95% CI 0.74-0.87, P <0.05). Subgroup analysis showed that the viral shedding time was 10.41 (4.00-16.00) days in the ≤3 days group, which was significantly less than that in the control group (12.58, 95% CI: 7.00-19.15, P <0.0001) and in the >3 days group (13.56, 95%CI: 7.00-22.25, P <0.0001). Conclusions: IFN α-2b spray shortened the viral shedding time of the Omicron SARS-CoV-2 variant when administrated within three days since the first positive test for SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/tratamento farmacológico , China , Humanos , Interferon alfa-2/farmacologia , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Estudos Prospectivos , Eliminação de Partículas Virais
4.
Viruses ; 14(8)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36016428

RESUMO

BACKGROUND AND AIMS: Sex hormones are widely recognised to act as protective factors against several viral infections. Specifically, females infected by the hepatitis C virus display higher clearance rates and reduced disease progression than those found in males. Through modulation of particle release and spread, 17ß-oestradiol controls HCV's life cycle. We investigated the mechanism(s) behind oestrogen's antiviral effect. METHODS: We used cell culture-derived hepatitis C virus in in vitro assays to evaluate the effect of 17ß-oestradiol on the innate immune response. Host immune responses were evaluated by enumerating gene transcripts via RT-qPCR in cells exposed to oestrogen in the presence or absence of viral infection. Antiviral effects were determined by focus-forming unit assay or HCV RNA quantification. RESULTS: Stimulation of 17ß-oestradiol triggers a pre-activated antiviral state in hepatocytes, which can be maintained for several hours after the hormone is removed. This induction results in the elevation of several innate immune genes, such as interferon alpha and beta, tumour necrosis factor, toll-like receptor 3 and interferon regulatory factor 5. We demonstrated that this pre-activation of immune response signalling is not affected by a viral presence, and the antiviral state can be ablated using an interferon-alpha/beta receptor alpha inhibitor. Finally, we proved that the oestrogen-induced stimulation is essential to generate an antiviral microenvironment mediated by activation of type I interferons. CONCLUSION: Resulting in viral control and suppression, 17ß-oestradiol induces an interferon-mediated antiviral state in hepatocytes. Oestrogen-stimulated cells modulate the immune response through secretion of type I interferon, which can be countered by blocking interferon-alpha/beta receptor alpha signalling.


Assuntos
Hepatite C , Interferon Tipo I , Antivirais/uso terapêutico , Estradiol/metabolismo , Estradiol/farmacologia , Estradiol/uso terapêutico , Estrogênios/metabolismo , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Feminino , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatócitos/metabolismo , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon-alfa/farmacologia , Masculino , Replicação Viral
5.
Antiviral Res ; 206: 105386, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963549

RESUMO

OBJECTIVES: Pegylated-interferon-alpha (Peg-IFNα), an injectable innate immune protein, is still used to treat chronically HBV-infected patients, despite its poor tolerability. Peg-IFNα has the advantage over nucleos(t)ide analogues (NAs) to be administrated in finite regimen and to lead to a higher HBsAg loss rate. Yet it would be interesting to improve the efficacy (i.e. while decreasing doses), or replace, this old medicine by novel small molecules/stimulators able to engage innate immune receptors in both HBV replicating hepatocytes and relevant innate immune cells. We have previously identified the Toll-Like-Receptor (TLR)-2 agonist Pam3CSK4 as such a potential novel immune stimulator. The aim of this study was to gain insights on the antiviral mechanisms of action of this agonist in in vitro cultivated human hepatocytes. DESIGN: We used in vitro models of HBV-infected cells, based on both primary human hepatocytes (PHH) and the non-transformed HepaRG cell line to investigate the MoA of Pam3SCK4 and identify relevant combinations with other approved or investigational drugs. RESULTS: We exhaustively described the inhibitory anti-HBV phenotypes induced by Pam3CSK4, which include a strong decrease in HBV RNA production (inhibition of synthesis and acceleration of decay) and cccDNA levels. We confirmed the long-lasting anti-HBV activity of this agonist, better described the kinetics of antiviral events, and demonstrated the specificity of action through the TLR1/2- NF-κB canonical-pathway. Moreover, we found that FEN-1 could be involved in the regulation and inhibitory phenotype on cccDNA levels. Finally, we identified the combination of Pam3CSK4 with IFNα or an investigational kinase inhibitor (called 1C8) as valuable strategies to reduce cccDNA levels and obtain a long-lasting anti-HBV effect in vitro. CONCLUSIONS: TLR2 agonists represent possible assets to improve the rate of HBV cure in patients. Further evaluations, including regulatory toxicity studies, are warranted to move toward clinical trials.


Assuntos
Hepatite B Crônica , Hepatite B , Lipopeptídeos/farmacologia , Receptor 2 Toll-Like/agonistas , Antivirais/uso terapêutico , DNA Viral/metabolismo , Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatócitos , Humanos , Interferon-alfa/farmacologia , Receptor 1 Toll-Like/metabolismo
6.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806255

RESUMO

Interferon (IFN) signaling resulting from external or internal inflammatory processes initiates the rapid release of cytokines and chemokines to target viral or bacterial invasion, as well as cancer and other diseases. Prolonged exposure to IFNs, or the overexpression of other cytokines, leads to immune exhaustion, enhancing inflammation and leading to the persistence of infection and promotion of disease. Hence, to control and stabilize an excessive immune response, approaches for the management of inflammation are required. The potential use of peptides as anti-inflammatory agents has been previously demonstrated. Our team discovered, and previously published, a 9-amino-acid cyclic peptide named ALOS4 which exhibits anti-cancer properties in vivo and in vitro. We suggested that the anti-cancer effect of ALOS4 arises from interaction with the immune system, possibly through the modulation of inflammatory processes. Here, we show that treatment with ALOS4 decreases basal cytokine levels in mice with chronic inflammation and prolongs the lifespan of mice with acute systemic inflammation induced by irradiation. We also show that pretreatment with ALOS4 reduces the expression of IFN alpha, IFN lambda, and selected interferon-response genes triggered by polyinosinic-polycytidylic acid (Poly I:C), a synthetic analog of viral double-stranded RNA, while upregulating the expression of other genes with antiviral activity. Hence, we conclude that ALOS4 does not prevent IFN signaling, but rather supports the antiviral response by upregulating the expression of interferon-response genes in an interferon-independent manner.


Assuntos
Interferon-alfa , Interferons , Animais , Antivirais/farmacologia , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Interferon-alfa/genética , Interferon-alfa/farmacologia , Interferons/genética , Camundongos , Poli I-C/farmacologia
7.
Molecules ; 27(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889447

RESUMO

Interferons (IFNs) play a major role in the host's antiviral innate immunity. In response to viral infection, IFNs bind their receptors and initiate a signaling cascade, leading to the accurate transcriptional regulation of hundreds of IFN-stimulated genes (ISGs). Porcine rotavirus (PoRV) belongs to genus Rotavirus of the Reoviridae family; the infection is a global epidemic disease and a major threat to the pig industry. In this study, we found that IFN-λ3 inhibited the replication of PoRV in both MA104 cells and IPEC-J2 cells, and this inhibition was dose-dependent. Furthermore, the antiviral activity of IFN-λ3 was more potent in IPEC-J2 cells than in MA104 cells. Further research showed that IFN-λ3 and IFN-α might inhibit PoRV infection by activating ISGs, i.e., MxA, OASL and ISG15, in IPEC-J2 cells. However, the co-treatment of IFN-λ3 and IFN-α did not enhance the antiviral activity. Our data demonstrated that IFN-λ3 had antiviral activity against PoRV and may serve as a useful antiviral candidate against PoRV, as well as other viruses in swine.


Assuntos
Rotavirus , Animais , Antivirais/farmacologia , Linhagem Celular , Interferon-alfa/farmacologia , Interferons/farmacologia , Suínos
8.
Antiviral Res ; 205: 105384, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863499

RESUMO

Foot-and-mouth disease (FMD) is an acute contagious disease of cloven-hoofed animals such as cows, pigs, sheep, and deer. The current emergency FMD vaccines, to induce early protection, have limited use, as their protective effect in pigs does not begin until 7 days after vaccination. Therefore, the use of antiviral agents would be required for reducing the spread of foot-and-mouth disease virus (FMDV) during outbreaks. Vesatolimod (GS-9620), a toll-like receptor 7 agonist, is an antiviral agent against various human disease-causing viruses. However, its antiviral effect against FMDV has not been reported yet. The aim of this study was to investigate the antiviral effects of GS-9620 against FMDV both in vitro and in vivo. The inhibitory effect of GS-9620 on FMDV in swine cells involved the induction of porcine interferon (IFN)-α and upregulation of interferon-simulated genes. Protective effect in mice injected with GS-9620 against FMDV was maintained for 5 days after injection, and cytokines such as IFN-γ, interleukin (IL)-12, IL-6, and IFN-γ inducible protein-10 could be detected following the treatment with GS-9620. Furthermore, the combination of GS-9620 with an FMD-inactivated vaccine was found to be highly effective for early protection in mice. Overall, we suggest GS-9620 as a novel and effective antiviral agent for controlling FMDV infection.


Assuntos
Cervos , Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Antivirais/uso terapêutico , Bovinos , Febre Aftosa/tratamento farmacológico , Febre Aftosa/prevenção & controle , Humanos , Interferon-alfa/farmacologia , Camundongos , Pteridinas , Ovinos , Suínos
9.
Antiviral Res ; 204: 105359, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35728703

RESUMO

Hepatitis E virus (HEV) infections are a leading cause of acute viral hepatitis in humans and pose a considerable threat to public health. Current standard of care treatment is limited to the off-label use of nucleoside-analog ribavirin (RBV) and PEGylated interferon-α, both of which are associated with significant side effects and provide limited efficacy. In the past few years, a promising natural product compound class of eukaryotic initiation factor 4A (eIF4A) inhibitors (translation initiation inhibitors), called rocaglates, were identified as antiviral agents against RNA virus infections. In the present study, we evaluated a total of 205 synthetic rocaglate derivatives from the BU-CMD compound library for their antiviral properties against HEV. At least eleven compounds showed inhibitory activities against the HEV genotype 3 (HEV-3) subgenomic replicon below 30 nM (EC50 value) as determined by Gaussia luciferase assay. Three amidino-rocaglates (ADRs) (CMLD012073, CMLD012118, and CMLD012612) possessed antiviral activity against HEV with EC50 values between 1 and 9 nM. In addition, these three selected compounds inhibited subgenomic replicons of different genotypes (HEV-1 [Sar55], wild boar HEV-3 [83-2] and human HEV-3 [p6]) in a dose-dependent manner and at low nanomolar concentrations. Furthermore, tested ADRs tend to be better tolerated in primary hepatocytes than hepatoma cancer cell lines and combination treatment of CMLD012118 with RBV and interferon-α (IFN-α) showed that CMLD012118 acts additive to RBV and IFN-α treatment. In conclusion, our results indicate that ADRs, especially CMLD012073, CMLD012118, and CMLD012612 may prove to be potential therapeutic candidates for the treatment of HEV infections and may contribute to the discovery of pan-genotypic inhibitors in the future.


Assuntos
Vírus da Hepatite E , Hepatite E , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite E/tratamento farmacológico , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Replicação Viral
10.
J Virol ; 96(12): e0052822, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35604219

RESUMO

Foot-and-mouth disease (FMD) is an acute contagious disease that affects cloven-hoofed animals and has severe global economic consequences. FMD is most commonly controlled by vaccination. Currently available commercial FMD vaccines contain chemically inactivated whole viruses, which are thought to be slow acting as they are effective only 4 to 7 days following vaccination. Hence, the development of a novel rapid vaccine or alternative measures, such as antiviral agents or the combination of vaccines and antiviral agents for prompt FMD virus (FMDV) outbreak containment, is desirable. Here, we constructed a recombinant baculovirus (BacMam) expressing consensus porcine interferon alpha (IFN-α) that has three additional N-glycosylation sites driven by a cytomegalovirus immediate early (CMV-IE) promoter (Bac-Con3N IFN-α) for protein expression in mammalian cells. Bac-Con3N IFN-α expressing highly glycosylated porcine IFN-α protein increased the duration of antiviral effects. We evaluated the antiviral effects of Bac-Con3N IFN-α in swine cells and mice and observed sustained antiviral effects in pig serum; additionally, Bac-Con3N IFN-α exhibited sustained antiviral effects in vivo as well as adjuvant effects in combination with an inactivated FMD vaccine. Pigs injected with a combination of Bac-Con3N IFN-α and the inactivated FMD vaccine were protected against FMDV at 1, 3, and 7 days postvaccination. Furthermore, we observed that in combination with the inactivated FMD vaccine, Bac-Con3N IFN-α increased neutralizing antibody levels in mice and pigs. Therefore, we suggest that Bac-Con3N IFN-α is a strong potential antiviral and adjuvant candidate for use in combination with inactivated FMD vaccines to protect pigs against FMDV. IMPORTANCE Early inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in pigs is highly desirable as FMDV transmission and shedding rates are higher in pigs than in cattle. However, commercial FMD vaccines require at least 4 to 7 days postvaccination (dpv) for protection, and animals are vulnerable to heterologous viruses before acquiring high antibody levels after the second vaccination. Therefore, the development of antiviral agents for use in combination with FMD vaccines is essential. We developed a novel antiviral and immunostimulant, Bac-Con3N IFN-α, which is a modified porcine IFN-α-expressing recombinant baculovirus, to improve IFN stability and allow its direct delivery to animals. We present a promising candidate for use in combination with inactivated FMD vaccines as pigs applied to the strategy had early protection against FMDV at 1 to 7 dpv, and their neutralizing antibody levels were higher than those in pigs administered the vaccine only.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Interferon-alfa , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Antivirais/farmacologia , Baculoviridae , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Interferon-alfa/farmacologia , Camundongos , Suínos , Vacinas de Produtos Inativados
11.
Viruses ; 14(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632770

RESUMO

Viruses have evolved diverse strategies to evade the antiviral response of interferons (IFNs). Exogenous IFNs were applied to eliminate the counteracting effect and possess antiviral properties. Caprine parainfluenza virus 3 (CPIV3) and bovine parainfluenza virus type 3 (BPIV3) are important pathogens associated with respiratory diseases in goat and cattle, respectively. To explore the feasibility of type I IFNs for control of CPIV3 and BPIV3 infection, the activated effects of IFN-stimulated genes (ISGs) and the immunomodulation responses of goat IFN-α were detected by transcriptomic analysis. Then, the antiviral efficacy of goat IFN-α and IFN-τ against CPIV3 and BPIV3 infection in MDBK cells was evaluated using different treatment routes at different infection times. The results showed that CPIV3 infection inhibited the production of type I IFNs, whereas exogenous goat IFN-α induced various ISGs, the IFN-τ encoding gene, and a negligible inflammatory response. Consequently, goat IFN-α prophylaxis but not treatment was found to effectively modulate CPIV3 and BPIV3 infection; the protective effect lasted for 1 week, and the antiviral activity was maintained at a concentration of 0.1 µg/mL. Furthermore, the antiviral activity of goat IFN-τ in response to CPIV3 and BPIV3 infection is comparable to that of goat IFN-α. These results corroborate that goat IFN-α and IFN-τ exhibit prophylactic activities in response to ruminant respiratory viral infection in vitro, and should be further investigated for a potential use in vivo.


Assuntos
Interferon Tipo I , Infecções por Paramyxoviridae , Animais , Antivirais/farmacologia , Bovinos , Cabras , Interferon Tipo I/genética , Interferon-alfa/farmacologia , Vírus da Parainfluenza 3 Humana/fisiologia
12.
Proc Natl Acad Sci U S A ; 119(20): e2011665119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35549556

RESUMO

APOBEC3A (A3A) is a cytidine deaminase that inactivates a variety of viruses through introduction of lethal mutations to the viral genome. Additionally, A3A can suppress HIV-1 transcription in a deaminase-independent manner by binding to the long terminal repeat of proviral HIV-1. However, it is unknown whether A3A targets additional host genomic loci for repression. In this study, we found that A3A suppresses gene expression by binding TTTC doublets that are in close proximity to each other. However, one TTTC motif is sufficient for A3A binding. Because TTTC doublets are present in interferon (IFN)-stimulated response elements (ISRE), we hypothesized that A3A may impact IFN-stimulated gene (ISG) expression. After scanning the human genome for TTTC doublet occurrences, we discovered that these motifs are enriched in the proximal promoters of genes associated with antiviral responses and type I IFN (IFN-I) signaling. As a proof of principle, we examined whether A3A can impact ISG15 expression. We found that A3A binding to the ISRE inhibits phosphorylated STAT-1 binding and suppresses ISG15 induction in response to IFN-I treatment. Consistent with these data, our RNA-sequencing analyses indicate that A3A loss results in increased IFN-I­dependent induction of several ISGs. This study revealed that A3A plays an unexpected role in ISG regulation and suggests that A3A contributes to a negative feedback loop during IFN signaling.


Assuntos
Citidina Desaminase , Citocinas , Regulação da Expressão Gênica , Interferon-alfa , Ubiquitinas , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Citocinas/genética , Humanos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Elementos de Resposta , Ubiquitinas/genética
13.
J Hepatol ; 77(4): 957-966, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35636579

RESUMO

BACKGROUND & AIMS: Besides HBV-dependent de novo infection, cell division-mediated spread contributes to HDV persistence and dampens the effect of antivirals that abrogate de novo infection. Nonetheless, the combination of these antivirals with interferons (IFNs) showed strong synergism in recent clinical trials, implying a complementary mode-of-action of IFNs. Therefore, we investigated the effect of IFN response on cell division-mediated HDV spread. METHODS: Cells infected with HDV were passaged to undergo cell division. The effect of the IFN response was evaluated by blocking HDV-induced IFN activation, by applying different IFN treatment regimens, and by adjusting HDV infection doses. RESULTS: Cell division-mediated HDV spread was highly efficient following infection of HuH7NTCP cells (defective in IFN production), but profoundly restricted in infected IFN-competent HepaRGNTCP cells. Treatment with IFN-α/-λ1 inhibited HDV spread in dividing HuH7NTCP cells, but exhibited a marginal effect on HDV replication in resting cells. Blocking the HDV-induced IFN response with the JAK1/2 inhibitor ruxolitinib or knocking down MDA5 augmented HDV spread in dividing HepaRGNTCP cells. The virus-induced IFN response also destabilized HDV RNA in dividing cells. Moreover, the effect of exogenous IFNs on cell division-mediated HDV spread was more pronounced at low multiplicities of infection with weak virus-induced IFN responses. CONCLUSIONS: Both HDV-induced IFN response and exogenous IFN treatment suppress cell division-mediated HDV spread, presumably through acceleration of HDV RNA decay. Our findings demonstrate a novel mode-of-action of IFN, explain the more pronounced effect of IFN therapy in patients with lower HDV serum RNA levels, and provide insights for the development of combination therapies. LAY SUMMARY: Chronic hepatitis D is a major health problem. The causative pathogen hepatitis D virus (HDV) can propagate through viral particle-mediated infection and the division of infected cells. Although viral particle-dependent infection can be blocked by recently developed drugs, therapies addressing the cell division route have not been reported. Taking advantage of relevant cell culture models, we demonstrate that the widely used immune modulator interferon can efficiently suppress HDV spread through cell division. This work unveils a new function of interferon and sheds light on potentially curative combination therapies.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Antivirais/farmacologia , Antivirais/uso terapêutico , Divisão Celular , Vírus da Hepatite B/genética , Hepatite D/tratamento farmacológico , Vírus Delta da Hepatite/genética , Humanos , Interferon-alfa/farmacologia , Interferons , RNA , Replicação Viral
14.
PLoS Comput Biol ; 18(4): e1010053, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35468127

RESUMO

In HIV-1-infected individuals, transmitted/founder (TF) virus contributes to establish new infection and expands during the acute phase of infection, while chronic control (CC) virus emerges during the chronic phase of infection. TF viruses are more resistant to interferon-alpha (IFN-α)-mediated antiviral effects than CC virus, however, its virological relevance in infected individuals remains unclear. Here we perform an experimental-mathematical investigation and reveal that IFN-α strongly inhibits cell-to-cell infection by CC virus but only weakly affects that by TF virus. Surprisingly, IFN-α enhances cell-free infection of HIV-1, particularly that of CC virus, in a virus-cell density-dependent manner. We further demonstrate that LY6E, an IFN-stimulated gene, can contribute to the density-dependent enhancement of cell-free HIV-1 infection. Altogether, our findings suggest that the major difference between TF and CC viruses can be explained by their resistance to IFN-α-mediated inhibition of cell-to-cell infection and their sensitivity to IFN-α-mediated enhancement of cell-free infection.


Assuntos
Infecções por HIV , HIV-1 , Antivirais , Infecções por HIV/tratamento farmacológico , Humanos , Interferon-alfa/farmacologia
15.
Cell Mol Immunol ; 19(6): 726-737, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35459855

RESUMO

BACKGROUND: The efficacy of immune checkpoint inhibitors (ICIs), such as programmed cell death protein-1 (PD-1) or its ligand 1 (PD-L1) antibody, in hepatocellular carcinoma (HCC) is limited, and it is recommended that they be combined with other therapies. We evaluated the combination of pegylated interferon-α (Peg-IFNα) with PD-1 blockade in HCC mouse models. METHODS: We analyzed the effects of Peg-IFNα on tumor-infiltrating immune cells and PD-1 expression in the HCC immune microenvironment and examined the underlying mechanism of its unique effect on the PD-1 pathway. The in vivo efficacy of anti-PD-1 and Peg-IFNα was evaluated in both subcutaneous and orthotopic mouse models of HCC. RESULTS: The combination of Peg-IFNα with PD-1 blockade dramatically enhanced T-cell infiltration, improved the efficacy of PD-1 antibody and prolonged mouse survival compared with PD-1 antibody monotherapy. Mechanistically, Peg-IFNα could recruit cytotoxic CD8+ T cells to infiltrate the HCC microenvironment by inducing tumor cells to secrete the chemokine CCL4. Nevertheless, the HCC microenvironment quickly overcame the immune responses by upregulating PD-1 expression in CD8+ T cells via the IFNα-IFNAR1-JAK1-STAT3 signaling pathway. The combination of PD-1 blockade with Peg-IFNα could restore the cytotoxic capacity of CD8+ T cells and exerted a significant synergistic effect on HCC. CONCLUSION: These results indicate that in addition to initiating the antitumor immune response itself, Peg-IFNα can also generate a microenvironment favoring PD-1 blockade. Thus, the combination of Peg-IFNα and PD-1 blockade can be a promising strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Interferon-alfa/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral
16.
J Med Life ; 15(2): 269-277, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35419098

RESUMO

Cisplatin is well known as a potent anti-cancer agent against colon cancer. However, alpha interferons are also widely used for cancer suppression. This in vitro study was designed to investigate and compare the cancer suppression function of alpha interferon in colon cancer with Cisplatin. The analysis used a human SW 480 cancer cell line with RPMI-1630 culture media. Six dilutions of interferon (2.5 µg/ml, 1.25 µg/ml, 0.562 µg/ml, 0.286 µg/ml, 0.143 µg/ml, and 0.057 µg/ml) and six dilutions of cisplatin (100 µg/ml, 50 µg/ml, 25 µg/ml, 6.25 µg/ml, and 3.125) were used at 24, 48 and 72 hours along with the presence of control groups. Following this, results were observed by ELISA plate reader, and percentage inhibition was calculated using ANOVA analysis. The interferon and cisplatin percentage of inhibition was comparable with higher inhibition rates observed with alpha interferon. The statistical analysis showed that the maximum inhibition was observed at a 0.143 µg/ml interferon concentration when exposed for 48 to 72 hours. This in vitro analysis demonstrated the anti-cancer activity of alpha interferon and its advanced inhibitory activity compared to Cisplatin.


Assuntos
Cisplatino , Neoplasias do Colo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Humanos , Interferon-alfa/farmacologia
17.
Cancer Sci ; 113(7): 2246-2257, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441749

RESUMO

Although ropeginterferon alfa-2b has recently been clinically applied to myeloproliferative neoplasms with promising results, its antitumor mechanism has not been thoroughly investigated. Using a leukemia model developed in immunocompetent mice, we evaluated the direct cytotoxic effects and indirect effects induced by ropeginterferon alfa-2b in tumor cells. Ropeginterferon alfa-2b therapy significantly prolonged the survival of mice bearing leukemia cells and led to long-term remission in some mice. Alternatively, conventional interferon-alpha treatment slightly extended the survival and all mice died. When ropeginterferon alfa-2b was administered to interferon-alpha receptor 1-knockout mice after the development of leukemia to verify the direct effect on the tumor, the survival of these mice was slightly prolonged; nevertheless, all of them died. In vivo CD4+ or CD8+ T-cell depletion resulted in a significant loss of therapeutic efficacy in mice. These results indicate that the host adoptive immunostimulatory effect of ropeginterferon alfa-2b is the dominant mechanism through which tumor cells are suppressed. Moreover, mice in long-term remission did not develop leukemia, even after tumor rechallenge. Rejection of rechallenge tumors was canceled only when both CD4+ and CD8+ T cells were removed in vivo, which indicates that each T-cell group functions independently in immunological memory. We show that ropeginterferon alfa-2b induces excellent antitumor immunomodulation in hosts. Our finding serves in devising therapeutic strategies with ropeginterferon alfa-2b.


Assuntos
Leucemia , Transtornos Mieloproliferativos , Neoplasias , Animais , Linfócitos T CD8-Positivos , Imunomodulação , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Leucemia/tratamento farmacológico , Camundongos , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
18.
Cancer Discov ; 12(7): 1718-1741, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35412588

RESUMO

The overall response rate for anti-PD-1 therapy remains modest in hepatocellular carcinoma (HCC). We found that a combination of IFNα and anti-PD-1-based immunotherapy resulted in enhanced antitumor activity in patients with unresectable HCC. In both immunocompetent orthotopic and spontaneous HCC models, IFNα therapy synergized with anti-PD-1 and the combination treatment led to significant enrichment of cytotoxic CD27+CD8+ T cells. Mechanistically, IFNα suppressed HIF1α signaling by inhibiting FosB transcription in HCC cells, resulting in reduced glucose consumption capacity and consequentially establishing a high-glucose microenvironment that fostered transcription of the T-cell costimulatory molecule Cd27 via mTOR-FOXM1 signaling in infiltrating CD8+ T cells. Together, these data reveal that IFNα reprograms glucose metabolism within the HCC tumor microenvironment, thereby liberating T-cell cytotoxic capacities and potentiating the PD-1 blockade-induced immune response. Our findings suggest that IFNα and anti-PD-1 cotreatment is an effective novel combination strategy for patients with HCC. SIGNIFICANCE: Our study supports a role of tumor glucose metabolism in IFNα-mediated antitumor immunity in HCC, and tumor-infiltrating CD27+CD8+ T cells may be a promising biomarker for stratifying patients for anti-PD-1 therapy. See related commentary by Kao et al., p. 1615. This article is highlighted in the In This Issue feature, p. 1599.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral
19.
Nat Commun ; 13(1): 1750, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365653

RESUMO

Interferons (IFNs) are key initiators and effectors of the immune response against malignant cells and also directly inhibit tumor growth. IFNα is highly effective in the treatment of myeloproliferative neoplasms (MPNs), but the mechanisms of action are unclear and it remains unknown why some patients respond to IFNα and others do not. Here, we identify and characterize a pathway involving PKCδ-dependent phosphorylation of ULK1 on serine residues 341 and 495, required for subsequent activation of p38 MAPK. We show that this pathway is essential for IFN-suppressive effects on primary malignant erythroid precursors from MPN patients, and that increased levels of ULK1 and p38 MAPK correlate with clinical response to IFNα therapy in these patients. We also demonstrate that IFNα treatment induces cleavage/activation of the ULK1-interacting ROCK1/2 proteins in vitro and in vivo, triggering a negative feedback loop that suppresses IFN responses. Overexpression of ROCK1/2 is seen in MPN patients and their genetic or pharmacological inhibition enhances IFN-anti-neoplastic responses in malignant erythroid precursors from MPN patients. These findings suggest the clinical potential of pharmacological inhibition of ROCK1/2 in combination with IFN-therapy for the treatment of MPNs.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Antivirais/uso terapêutico , Retroalimentação , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Quinases Associadas a rho/metabolismo
20.
Immunology ; 166(2): 210-221, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298836

RESUMO

Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease. Increased incidence of T1D was reported in patients receiving IFN-α treatment. However, the exact mechanisms of IFN-α that facilitate the pathogenesis of T1D are not fully understood. To explore the mechanism of IFN-α on the immune system and islets, non-obese diabetic (NOD) mice were injected with IFN-α and the progression of autoimmune insulitis was assessed by haematoxylin and eosin (HE) staining, immunohistochemical and flow cytometry analysis. Transcriptional profiling of islets treated with IFN-α was explored by RNA-seq. IFN-α induced antigen presentation was evaluated by qRT-PCR, western blot and immunofluorescence, and key transcription factors were inhibited by small interfering RNAs (siRNAs). Our data show that IFN-α contributed to the progression of autoimmune insulitis in NOD mice by promoting the proliferation of CD8+ T cells. IFN-α upregulated antigen presentation related genes MHC I, TAP1, B2M, PSMB8, NLRC5 and transcriptional regulator STAT1, STAT2, IRF7 at a time and dose-dependent manner. The silence of STAT1 or STAT2 both weakened IFN-α-induced increase of antigen presenting related molecules. IRF7 was also merely influenced by STAT1 silence. The knockdown of IRF7 decreased the IFN-α induced expressions of TAP1, PSMB8 and MHC I and prevented the expression of STAT2 but not STAT1. Our study demonstrated that STAT1-IRF7-MHC I complex axis were crucial for IFN-α signalling in islets, and created positive feedback through IRF7-STAT2 cascade amplifying signals which accelerated the process of T1D.


Assuntos
Apresentação de Antígeno , Diabetes Mellitus Tipo 1 , Interferon-alfa , Ilhotas Pancreáticas , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon-alfa/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...