Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.336
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638962

RESUMO

Gaining detailed knowledge about sex-related immunoregulation remains a crucial prerequisite for the development of adequate disease models and therapeutic strategies enabling personalized medicine. Here, the key parameter of the production of cytokines mediating disease resolution was investigated. Among these cytokines, STAT3-activating interleukin (IL)-22 is principally associated with recovery from tissue injury. By investigating paradigmatic acetaminophen-induced liver injury, we demonstrated that IL-22 expression is enhanced in female mice. Increased female IL-22 was confirmed at a cellular level using murine splenocytes stimulated by lipopolysaccharide or αCD3/CD28 to model innate or adaptive immunoactivation. Interestingly, testosterone or dihydrotestosterone reduced IL-22 production by female but not by male splenocytes. Mechanistic studies on PMA/PHA-stimulated T-cell-lymphoma EL-4 cells verified the capability of testosterone/dihydrotestosterone to reduce IL-22 production. Moreover, we demonstrated by chromatin immunoprecipitation that testosterone impairs binding of the aryl hydrocarbon receptor to xenobiotic responsive elements within the murine IL-22 promoter. Overall, female mice undergoing acute liver injury and cultured female splenocytes upon inflammatory activation display increased IL-22. This observation is likely related to the immunosuppressive effects of androgens in males. The data presented concur with more pronounced immunological alertness demonstrable in females, which may relate to the sex-specific course of some immunological disorders.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Expressão Gênica/efeitos dos fármacos , Interleucinas/genética , Interleucinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetaminofen/sangue , Imunidade Adaptativa/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/genética , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Feminino , Imunidade Inata/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/imunologia , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores Sexuais , Baço/citologia , Baço/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Testosterona/farmacologia
2.
Chem Biol Interact ; 348: 109637, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506765

RESUMO

Both communicable and non-communicable chronic respiratory conditions have accorded for suffering of millions of people of all ages and stated to be leading cause of death, morbidity, economic and social pressures, and disability-adjusted life-years (DALYs) worldwide. These illnesses impair patient's health and negatively impacts families and society, particularly in low and middle-income countries. Chronic respiratory diseases (CRDs) affect different organs of respiratory system, involving airways, parenchyma, and pulmonary vasculature. As the number of respiratory diseases are exponentially escalating but still the stakeholders are not paying attention towards its serious complications. Currently, the treatment being used primarily focusses only on alleviating symptoms of these illness rather delivering the therapeutic agent at target site for optimal care and/or prevention. Lately, extensive research is being conducted on airways and systemic inflammation, oxidative stress, airway, or parenchymal rehabilitation. From which macrophages, neutrophils, and T cells, as well as structural cells as fibroblasts, epithelial, endothelial, and smooth muscle cells have been found to be active participants that are involved in these chronic respiratory diseases. The pathogenesis of all these chronic respiratory diseases gets caused differently via mediators and proteins, including cytokines, chemokines, growth factors and oxidants. Presently, the target of prescription therapies is to reduce the inflammation of airways and relieve the airway contraction. In all studies, cytokines have been found to play an imperative role in fostering chronic airway inflammation and remodelling. Owing to the limitations of conventional treatments, the current review aims to summarize the current knowledge about the chronic respiratory disease and discuss further about the various conventional methods that can be used for treating this ailment. Additionally, it also highlights and discusses about the advanced drug delivery system that are being used for targeting the interleukins for the treatment of CRDs.


Assuntos
Interleucinas/metabolismo , Terapia de Alvo Molecular/métodos , Nanomedicina/métodos , Doenças Respiratórias/tratamento farmacológico , Doença Crônica , Humanos
3.
Exp Cell Res ; 407(2): 112784, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34508746

RESUMO

Inflammation is an essential factor contributing to sepsis-induced endothelial cell (EC) activation. Interleukin-35 (IL-35) is an anti-inflammatory/immunosuppressive cytokine that exerts protective effects on many inflammatory diseases. In this study, we investigated the effects of IL-35 on lipopolysaccharide (LPS)-induced EC activation and the potential underlying mechanism. Human umbilical vein endothelial cells (HUVECs) were incubated with LPS (1 µg/ml) for 24 h and then cocultured with different concentrations (0, 1, 10, or 100 ng/ml) of recombinant human IL-35 (rhIL-35) for 12 h. Flow cytometry analysis revealed that IL-35 inhibited LPS-induced HUVEC apoptosis in a dose-dependent manner. RT-qPCR and Western blot analyses showed significantly higher mRNA and protein levels of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the inflammatory factors IL-6 and IL-8 in the LPS group than in the control group. These changes were alleviated by IL-35 treatment, suggesting that IL-35 protects ECs by downregulating inflammation. Furthermore, IL-35 induced signal transducer and activator of transcription 1 (STAT1) and STAT4 activation and promoted their interaction. Blocking STAT1 or STAT4 expression by fludarabine (STAT1 inhibitor) treatment or siRNA-STAT4-interfering fragment transfection inhibited the protective effect of IL-35 on ECs. Moreover, we observed a similar protective effect of IL-35 treatment on ECs in a mouse sepsis model induced by intraperitoneal LPS injection. This study indicated that IL-35 exerts anti-inflammatory and antiapoptotic effects on LPS-induced EC activation by activating the STAT1 and STAT4 signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose , Endotélio Vascular/metabolismo , Inflamação/prevenção & controle , Interleucinas/metabolismo , Lipopolissacarídeos/toxicidade , Sepse/prevenção & controle , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Interleucinas/administração & dosagem , Interleucinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/metabolismo , Sepse/induzido quimicamente , Sepse/metabolismo , Sepse/patologia , Transdução de Sinais
4.
PLoS One ; 16(9): e0257185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34516566

RESUMO

PURPOSE: Tuberculosis (TB) is the leading cause of infectious disease related mortality, and only 10% of the infected individuals develop active disease. The likelihood of progression of latent tuberculosis infection (LTBI) to active TB disease is high in HIV infected individuals. Identification of HIV+ individuals at risk would allow treating targeted population, facilitating completion of therapy for LTBI and prevention of TB development. NK cells have an important role in T cell independent immunity against TB, but the exact role of NK cell subsets in LTBI and HIV is not well characterized. METHODS: In this study, we compared the expansion and function of memory like NK cells from HIV-LTBI+ individuals and treatment naïve HIV+LTBI+ patients in response to Mtb antigens ESAT-6 and CFP-10. RESULTS: In freshly isolated PBMCs, percentages of CD3-CD56+ NK cells were similar in HIV+LTBI+ patients and healthy HIV-LTBI+ individuals. However, percentages of CD3-CD56+CD16+ NK cells were higher in healthy HIV-LTBI+ individuals compared to HIV+LTBI+ patients. HIV infection also inhibited the expansion of memory like NK cells, production of IL-32α, IL-15 and IFN-γ in response to Mtb antigens in LTBI+ individuals. CONCLUSION: We studied phenotypic, functional subsets and activation of memory like-NK cells during HIV infection and LTBI. We observed that HIV+LTBI+ patients demonstrated suboptimal NK cell and monocyte interactions in response to Mtb, leading to reduced IL-15, IFN-γ and granzyme B and increased CCL5 production. Our study highlights the effect of HIV and LTBI on modulation of NK cell activity to understand their role in development of interventions to prevent progression to TB in high risk individuals.


Assuntos
Infecções por HIV/complicações , Infecções por HIV/imunologia , Memória Imunológica , Células Matadoras Naturais/imunologia , Tuberculose Latente/complicações , Tuberculose Latente/imunologia , Adulto , Comunicação Celular , Proliferação de Células , Quimiocinas/biossíntese , Granzimas/biossíntese , Infecções por HIV/patologia , Humanos , Interferon gama/metabolismo , Interleucina-15/biossíntese , Interleucinas/metabolismo , Tuberculose Latente/patologia , Subpopulações de Linfócitos/imunologia , Monócitos/metabolismo
5.
Cells ; 10(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572149

RESUMO

The inflammatory cytokine interleukin-26 (IL-26) is highly expressed in the serum and synovial fluid of patients with inflammatory arthritis. The effect of IL-26 on human articular chondrocytes (HACs) remains unclear. Obesity is associated with disability of patients with rheumatoid arthritis and disease activity in those with ankylosing spondylitis. The saturated free fatty acid palmitate with IL-1ß can synergistically induce catabolic effects in HACs. The aim of this study was to evaluate the effects of IL-26 and palmitate in HACs. In this study, palmitate markedly synergizes the IL-26-induced proinflammatory effects and matrix protease, including COX-2, IL-6, and MMP-1, in HACs via the toll-like receptor 4 (TLR4)-ERK1/2-c-Jun signal transduction pathway. The synergistic catabolic effects of palmitate and IL-26 were attenuated by inhibitors of TLR4 (TAK242), ERK1/2 (U0126), or c-Jun (SP600125) in HACs and cartilage matrix. In addition, metformin, a potential inhibitor of TLR4, also decreased expression of COX-2 and IL-6 induced by co-incubation with IL-26 and palmitate. IL-26 and palmitate synergistically induced expression of inflammatory and catabolic mediators, resulting in articular cartilage matrix breakdown. The present study also revealed a possible mechanism and therapeutic targets against articular cartilage degradation by increased saturated fatty acids in patients with inflammatory arthritis.


Assuntos
Condrócitos/metabolismo , Interleucinas/metabolismo , Palmitatos/metabolismo , Artrite/imunologia , Artrite/metabolismo , Artrite/fisiopatologia , Artrite Reumatoide/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/fisiologia , Genes jun/fisiologia , Humanos , Interleucinas/imunologia , Sistema de Sinalização das MAP Quinases/fisiologia , Metabolismo/fisiologia , Osteoartrite/metabolismo , Transdução de Sinais/genética , Membrana Sinovial/metabolismo , Taiwan , Receptor 4 Toll-Like/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L925-L940, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524907

RESUMO

Acute exacerbation of idiopathic pulmonary fibrosis has a poor prognosis associated with neutrophilic inflammation. Interleukin-23 is a proinflammatory cytokine involved in neutrophilic inflammation. However, little is known about its role in acute exacerbation of pulmonary fibrosis. This study was performed to determine the role of interleukin-23 in acute exacerbation of pulmonary fibrosis. For assessment of acute exacerbation of pulmonary fibrosis, mice were intratracheally administered bleomycin followed by lipopolysaccharide. Inflammatory cells, cytokine levels, and morphological morphometry of the lungs were analyzed. Cytokine levels were measured in the bronchoalveolar lavage fluid of idiopathic pulmonary fibrosis patients with or without acute exacerbation. Interleukin-23, -17A, and -22 levels were increased in the airway of mice with acute exacerbation of pulmonary fibrosis. Interleukin-23p19-deficient mice with acute exacerbation of pulmonary fibrosis had markedly reduced airway inflammation and fibrosis associated with decreased levels of interleukin-17A and -22 compared with wild-type mice. Treatment with an anti-interleukin-23 antibody attenuated airway inflammation and fibrosis and reduced interleukin-17A and -22 levels in mice with acute exacerbation of pulmonary fibrosis. T-helper type 17 cells were the predominant source of interleukin-17A in mice with acute exacerbation of pulmonary fibrosis. Interleukin-23 levels in bronchoalveolar lavage fluid tended to be higher in idiopathic pulmonary fibrosis patients with than without acute exacerbation. The data presented here suggest that interleukin-23 is essential for the development of acute exacerbation of pulmonary fibrosis and that blockade of interleukin-23 may be a new therapeutic strategy for acute exacerbation of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/imunologia , Inflamação/metabolismo , Interleucina-23/metabolismo , Doença Aguda , Animais , Fibrose Pulmonar Idiopática/metabolismo , Inflamação/patologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-23/imunologia , Interleucinas/imunologia , Interleucinas/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos , Células Th17/imunologia , Células Th17/metabolismo
7.
Molecules ; 26(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34577195

RESUMO

Acne vulgaris is a highly prevalent skin disorder requiring treatment and management by dermatologists. Antibiotics such as clindamycin are commonly used to treat acne vulgaris. However, from both medical and public health perspectives, the development of alternative remedies has become essential due to the increase in antibiotic resistance. Topical therapy is useful as a single or combined treatment for mild and moderate acne and is often employed as maintenance therapy. Thus, the current study investigated the anti-inflammatory, antibacterial, and restorative effects of sesquiterpene farnesol on acne vulgaris induced by Cutibacterium acnes (C. acnes) in vitro and in a rat model. The minimum inhibitory concentration (MIC) of farnesol against C. acnes was 0.14 mM, and the IC50 of 24 h exposure to farnesol in HaCaT keratinocytes was approximately 1.4 mM. Moreover, 0.8 mM farnesol exhibited the strongest effects in terms of the alleviation of inflammatory responses and abscesses and necrotic tissue repair in C.acnes-induced acne lesions; 0.4 mM farnesol and clindamycin gel also exerted similar actions after a two-time treatment. By contrast, nearly doubling the tissue repair scores, 0.4 mM farnesol displayed great anti-inflammatory and the strongest reparative actions after a four-time treatment, followed by 0.8 mM farnesol and a commercial gel. Approximately 2-10-fold decreases in interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, found by Western blot analysis, were predominantly consistent with the histopathological findings and tissue repair scores. The basal hydroxypropyl methylcellulose (HPMC) gel did not exert anti-inflammatory or reparative effects on rat acne lesions. Our results suggest that the topical application of a gel containing farnesol is a promising alternative remedy for acne vulgaris.


Assuntos
Antibacterianos/química , Farneseno Álcool/química , Propionibacterium acnes/metabolismo , Sesquiterpenos/química , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo , Administração Cutânea , Animais , Antibacterianos/farmacologia , Farneseno Álcool/farmacologia , Células HaCaT , Humanos , Derivados da Hipromelose/metabolismo , Interleucinas/metabolismo , Masculino , Testes de Sensibilidade Microbiana , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
8.
Mol Biol (Mosk) ; 55(4): 643-659, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34432782

RESUMO

Non-small cell lung cancer (NSCLC) is prevalent worldwide and has a high mortality rate. Even if mesenchymal stem cells (MSCs) are suggested as cancer treatment, the studies of their effects on NSCLC cells contradict each other, mainly due to utilization of two-dimensional (2D) culture system. Three-dimensional (3D) culture systems resemble tissue organization in vivo. Here we comprehensively explore the inhibitory effects of MSCs on NSCLC cells in a 3D culture system. We confirmed that the inhibitory effects of 3D-cultured MSCs (3D-MSCs) on the proliferation and migration of NSCLC cells are greater than that of the 2D-cultured MSCs. 3D-MSCs overexpress IL-24, which serve as the key factor enhancing antitumor effects of MSCs. In these cells, IL-24 affects p38 MAPK and CXCR4/AKT pathways. Overall, this study provides the support for use of MSCs in tumor.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Interleucinas , Neoplasias Pulmonares , Células-Tronco Mesenquimais , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Interleucinas/metabolismo , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores CXCR4/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
9.
Nat Commun ; 12(1): 4882, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385466

RESUMO

Genetic variants of the interferon lambda (IFNL) gene locus are strongly associated with spontaneous and IFN treatment-induced clearance of hepatitis C virus (HCV) infections. Individuals with the ancestral IFNL4-dG allele are not able to clear HCV in the acute phase and have more than a 90% probability to develop chronic hepatitis C (CHC). Paradoxically, the IFNL4-dG allele encodes a fully functional IFNλ4 protein with antiviral activity against HCV. Here we describe an effect of IFNλ4 on HCV antigen presentation. Only minor amounts of IFNλ4 are secreted, because the protein is largely retained in the endoplasmic reticulum (ER) where it induces ER stress. Stressed cells are significantly weaker activators of HCV specific CD8+ T cells than unstressed cells. This is not due to reduced MHC I surface presentation or extracellular IFNλ4 effects, since T cell responses are restored by exogenous loading of MHC with HCV antigens. Rather, IFNλ4 induced ER stress impairs HCV antigen processing and/or loading onto the MHC I complex. Our results provide a potential explanation for the IFNλ4-HCV paradox.


Assuntos
Apresentação do Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Interleucinas/imunologia , Ativação Linfocitária/imunologia , Células A549 , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Linhagem Celular Tumoral , Regulação da Expressão Gênica/imunologia , Genótipo , Células Hep G2 , Hepacivirus/genética , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucinas/genética , Interleucinas/metabolismo
10.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360569

RESUMO

Hepatocellular carcinoma (HCC) is a malignancy with a leading lethality. The etiology is quite diverse, ranging from viral infections to metabolic disorders or intoxications, and associates with specific somatic mutational patterns and specific host immunological phenotypes. Particularly, hepatitis C virus (HCV)-infected liver is featured by an activation of interferon (IFN)-stimulated genes (ISGs; IFN signature), which we suppose is driven by type III IFNL4. Taking advantage of the TCGA collection of HCC patients of various different etiologies, this study aimed at validating our previous findings on hepatic IFNL4 gene activation in HCV infection in an independent and larger cohort of patients with advanced liver disease. In a cohort of n = 377 cases, the entirety of the sequencing data was used to assess the IFNL genotypes, and the cases were stratified for etiology. The number of IFNL4 transcripts within nonmalignant and malignant tissues was found to be more abundant in patients with HCV or HCV/HBV infections when compared to other risk factors. Moreover, in patients with HCV infection as a risk factor, a close, positive relationship was found between ISG activation and the number of functional IFNL4 transcripts. Data on this independent TCGA sample support the concept of an IFNL4-dependent HCV-driven activation of hepatic ISGs. In addition to that, they add to the understanding of etiology-related host immunological phenotypes in HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Hepatite C Crônica/complicações , Interleucinas/metabolismo , Neoplasias Hepáticas/patologia , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Feminino , Hepacivirus/isolamento & purificação , Hepatite C Crônica/virologia , Humanos , Interleucinas/genética , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Células Tumorais Cultivadas
11.
Cell Mol Life Sci ; 78(17-18): 6215-6227, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34365521

RESUMO

The IL-36 family of cytokines were first identified in 2000 based on their sequence homology to IL-1 cytokines. Over subsequent years, the ability of these cytokines to either agonise or antagonise an IL-1R homologue, now known as the IL-36 Receptor (IL-36R), was identified and these cytokines went through several cycles of renaming with the current nomenclature being proposed in 2010. Despite being identified over 20 years ago, it is only during the last decade that the function of these cytokines in health and disease has really begun to be appreciated, with both homeostatic functions in wound healing and response to infection, as well as pathological functions now ascribed. In the disease context, over activation of IL-36 has now been associated with many inflammatory diseases including Psoriasis and inflammatory bowel diseases, with roles in cancer also now being investigated. This review summarises the current knowledge of IL-36 biology, its role in inflammatory diseases and focuses on an emerging role for IL-36 in cancer.


Assuntos
Doenças Inflamatórias Intestinais/patologia , Interleucina-1/metabolismo , Neoplasias/patologia , Humanos , Imunidade Inata , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-1/química , Interleucina-1/genética , Interleucinas/genética , Interleucinas/metabolismo , Artropatias/metabolismo , Artropatias/patologia , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais
12.
J Immunol ; 207(5): 1239-1249, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389623

RESUMO

HIV-1 infection substantially increases the risk of developing tuberculosis (TB). Mechanisms such as defects in the Th1 response to Mycobacterium tuberculosis in HIV-infected persons have been widely reported. However, Th1-independent mechanisms also contribute to protection against TB. To identify a broader spectrum of defects in TB immunity during HIV infection, we examined IL-17A and IL-22 production in response to mycobacterial Ags in peripheral blood of persons with latent TB infection and HIV coinfection. Upon stimulating with mycobacterial Ags, we observed a distinct CD4+ Th lineage producing IL-22 in the absence of IL-17A and IFN-γ. Mycobacteria-specific Th22 cells were present at high frequencies in blood and contributed up to 50% to the CD4+ T cell response to mycobacteria, comparable in magnitude to the IFN-γ Th1 response (median 0.91% and 0.55%, respectively). Phenotypic characterization of Th22 cells revealed that their memory differentiation was similar to M. tuberculosis-specific Th1 cells (i.e., predominantly early differentiated CD45RO+CD27+ phenotype). Moreover, CCR6 and CXCR3 expression profiles of Th22 cells were similar to Th17 cells, whereas their CCR4 and CCR10 expression patterns displayed an intermediate phenotype between Th1 and Th17 cells. Strikingly, mycobacterial IL-22 responses were 3-fold lower in HIV-infected persons compared with uninfected persons, and the magnitude of responses correlated inversely with HIV viral load. These data provide important insights into mycobacteria-specific Th subsets in humans and suggest a potential role for IL-22 in protection against TB during HIV infection. Further studies are needed to fully elucidate the role of IL-22 in protective TB immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Interleucinas/metabolismo , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/fisiologia , Subpopulações de Linfócitos T/imunologia , Adulto , Células Cultivadas , Coinfecção , Feminino , Soropositividade para HIV , Humanos , Interleucina-17/metabolismo , Masculino , África do Sul , Carga Viral , Adulto Jovem
13.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443554

RESUMO

Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease with complex pathogenesis associated with cytokine dysregulation. Macrophage migration inhibitory factor (MIF) plays a role in systemic inflammation and joint destruction in RA and could be associated with the secretion of other immune-modulatory cytokines such as IL-25, IL-31, and IL-33. For the above, our main aim was to evaluate the IL-25, IL-31, and IL-33 secretion from recombinant human MIF (rhMIF)-stimulated peripheral blood mononuclear cells (PBMC) of RA patients. The rhMIF and lipopolysaccharide (LPS) plus rhMIF stimuli promote the secretion of IL-25, IL-31, and IL-33 (p < 0.05) from PBMC of RA patients. The study groups, the different stimuli, and the interaction between both showed a statistically significant effect on the secretion of IL-25 (p < 0.05) and IL-31 (p < 0.01). The study of the effect of the RA patient treatments and their interaction with the effect of stimuli did not show an interaction between them. In conclusion, our study generates new evidence for the role of MIF in the secretion of IL-25, IL-31, and IL-33 and its immunomodulatory effect on RA.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Interleucina-17/metabolismo , Interleucina-33/metabolismo , Interleucinas/metabolismo , Oxirredutases Intramoleculares/metabolismo , Leucócitos Mononucleares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Adulto , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Oxirredutases Intramoleculares/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Fatores Inibidores da Migração de Macrófagos/farmacologia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/farmacologia
14.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360971

RESUMO

Interleukin-22 (IL-22) plays a role in epithelial barrier function and repair, and may provide benefits in conditions like inflammatory bowel disease. However, limited human data are available to assess the clinical effect of IL-22 administration. This study used a human intestinal cell line to identify an IL-22-dependent gene signature that could serve as a pharmacodynamic biomarker for IL-22 therapy. The response to IL-22Fc (UTTR1147A, an Fc-stabilized version of IL-22) was assessed in HT-29 cells by microarray, and the selected responsive genes were confirmed by qPCR. HT-29 cells demonstrated dose-dependent increases in STAT3 phosphorylation and multiple gene expression changes in response to UTTR1147A. Genes were selected that were upregulated by UTTR1147A, but to a lesser extent by IL-6, which also signals via STAT3. IL-1R1 was highly upregulated by UTTR1147A, and differential gene expression patterns were observed in response to IL-22Fc in the presence of IL-1ß. An IL-22-dependent gene signature was identified that could serve as a pharmacodynamic biomarker in intestinal biopsies to support the clinical development of an IL-22 therapeutic. The differential gene expression pattern in the presence of IL-1ß suggests that an inflammatory cytokine milieu in the disease setting could influence the clinical responses to IL-22.


Assuntos
Anti-Inflamatórios/farmacologia , Imunoglobulina G/genética , Doenças Inflamatórias Intestinais/metabolismo , Interleucinas/genética , Transcriptoma/efeitos dos fármacos , Biomarcadores/metabolismo , Células HT29 , Humanos , Imunoglobulina G/metabolismo , Interleucinas/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT3/metabolismo
15.
Nutrients ; 13(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34444811

RESUMO

Metabolic-associated fatty liver disease (MAFLD), formerly non-alcoholic fatty liver disease (NAFLD), is characterized by excessive fat accumulation in hepatocytes. It is the most common chronic liver disease worldwide and is a significant public health problem. In the absence of pharmacological therapy, other treatments such as diet, physical activity, or supplementation are sought. Non-pharmacological therapies may include curcumin supplementation, which has been shown to have many health-promoting properties, including antioxidant, anti-inflammatory, and anti-cancer effects. For this reason, we reviewed available databases to analyze publications describing the effect of curcumin supplementation on biochemical parameters in MAFLD. Nine studies (eight RCTs and one CT) based solely on supplementation of patients with curcumin were included in this review. The results from the individual trials were varied and did not allow clear conclusions. Although they suggest that curcumin shows some potential in the treatment of MAFLD, further research is needed.


Assuntos
Curcumina/uso terapêutico , Hepatopatias/tratamento farmacológico , Bases de Dados Factuais , Suplementos Nutricionais , Hepatócitos , Humanos , Interleucinas/metabolismo , Hepatopatias/imunologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
16.
Sci Rep ; 11(1): 16378, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385542

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by proliferation and insufficient apoptosis of fibroblast-like synoviocytes (FLSs).The biology and functions of interleukin (IL)-34 are only beginning to be uncovered. We previously demonstrated IL-34 could upregulate the expression of IL-17 in RA patients. In this study, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry of Annexin V and PI staining were performed to assess cell proliferation and apoptosis progression in RA-FLSs after stimulated with increasing concentrations of IL-34, respectively. Inflammatory cytokines and angiogenic factors were measured using quantitative real-time PCR, Western blotting and ELISA. We explored the association between IL-34 and RA-FLS proliferation and apoptosis in the context of RA. Stimulating RA-FLSs with different concentrations of IL-34 significantly promoted the proliferation and inhibited the apoptosis of RA-FLSs in a concentration-dependent manner. Neutralization of IL-17 with the IL-17 inhibitor plumbagin (PB) reduced the effects of IL-34. Proinflammatory cytokine (IL-17A IL-6 and tumor necrosis factor-α, TNF-α) and angiogenic factor (vascular endothelial growth factor, VEGF and hypoxia-inducible factor-1α, HIF-1α) expression was markedly upregulated in RA-FLSs stimulated by IL-34. PB-mediated inhibition of IL-17A also decreased the expression of IL-6, TNF-α, HIF-1α and VEGF in RA-FLSs. Taken together, these findings suggest that targeting IL-34 production in RA-FLSs may be a therapeutic strategy for RA.


Assuntos
Apoptose/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Interleucina-17/metabolismo , Interleucinas/metabolismo , Sinoviócitos/metabolismo , Artrite Reumatoide/metabolismo , Células Cultivadas , Citocinas/metabolismo , Expressão Gênica/fisiologia , Humanos , Mediadores da Inflamação/metabolismo , Membrana Sinovial/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
PLoS Pathog ; 17(8): e1009905, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34449811

RESUMO

B1 cells, a subset of B lymphocytes whose developmental origin, phenotype, and function differ from that of conventional B2 cells, are the main source of "natural" IgM but can also respond to infection by rapidly producing pathogen-specific IgM directed against T-independent antigens. Francisella tularensis (Ft) is a Gram-negative bacterium that causes tularemia. Infection with Ft Live Vaccine Strain activates B1 cells for production of IgM directed against the bacterial LPS in a process incompletely understood. Here we show that immunization with purified Ft LPS elicits production of LPS-specific IgM and IgG3 by B1 cells independently of TLR2 or MyD88. Immunization, but not infection, generated peritoneum-resident memory B1 cells that differentiated into LPS-specific antibody secreting cells (ASC) upon secondary challenge. IL-5 was rapidly induced by immunization with Ft LPS and was required for production of LPS-specific IgM. Antibody-mediated depletion of ILC2 indicated that these cells were the source of IL-5 and were required for IgM production. IL-25, an alarmin that strongly activates ILC2, was rapidly secreted in response to immunization or infection and its administration to mice significantly increased IgM production and B1 cell differentiation to ASC. Conversely, mice lacking IL-17RB, the IL-25 receptor, showed impaired IL-5 induction, IgM production, and B1 ASC differentiation in response to immunization. Administration of IL-5 to Il17rb-/- mice rescued these B1 cells-mediated responses. Il17rb-/- mice were more susceptible to infection with Ft LVS and failed to develop immunity upon secondary challenge suggesting that LPS-specific IgM is one of the protective adaptive immune mechanisms against tularemia. Our results indicated that immunization with Ft LPS triggers production of IL-25 that, through stimulation of IL-5 release by ILC2, promotes B1 cells activation and differentiation into IgM secreting cells. By revealing the existence of an IL-25-ILC2-IL-5 axis our results suggest novel strategies to improve vaccination against T-independent bacterial antigens.


Assuntos
Anticorpos Antibacterianos/imunologia , Subpopulações de Linfócitos B/imunologia , Francisella tularensis/imunologia , Imunoglobulina M/imunologia , Interleucina-5/metabolismo , Interleucinas/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Anticorpos Antibacterianos/metabolismo , Subpopulações de Linfócitos B/metabolismo , Imunidade Inata , Imunoglobulina M/metabolismo , Interleucina-5/genética , Interleucinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/fisiologia , Receptores de Interleucina-17/fisiologia , Receptor 2 Toll-Like/fisiologia , Tularemia/imunologia , Tularemia/microbiologia , Tularemia/patologia
18.
PLoS Biol ; 19(8): e3001348, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351905

RESUMO

Beige fat dissipates energy and functions as a defense against cold and obesity, but the mechanism for its development is unclear. We found that interleukin (IL)-25 signaling through its cognate receptor, IL-17 receptor B (IL-17RB), increased in adipose tissue after cold exposure and ß3-adrenoceptor agonist stimulation. IL-25 induced beige fat formation in white adipose tissue (WAT) by releasing IL-4 and IL-13 and promoting alternative activation of macrophages that regulate innervation and up-regulate tyrosine hydroxylase (TH) up-regulation to produce more catecholamine including norepinephrine (NE). Blockade of IL-4Rα or depletion of macrophages with clodronate-loaded liposomes in vivo significantly impaired the beige fat formation in WAT. Mice fed with a high-fat diet (HFD) were protected from obesity and related metabolic disorders when given IL-25 through a process that involved the uncoupling protein 1 (UCP1)-mediated thermogenesis. In conclusion, the activation of IL-25 signaling in WAT may have therapeutic potential for controlling obesity and its associated metabolic disorders.


Assuntos
Adipócitos Bege/fisiologia , Tecido Adiposo Bege/crescimento & desenvolvimento , Resistência à Insulina , Interleucinas/metabolismo , Macrófagos/fisiologia , Agonistas de Receptores Adrenérgicos beta 3 , Animais , Temperatura Baixa , Homeostase , Interleucina-4/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteína Desacopladora 1/fisiologia
20.
Sci Rep ; 11(1): 17057, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426634

RESUMO

Heat shock proteins contribute to diabetes-induced complications and are affected by glycemic control. Our hypothesis was that hypoglycemia-induced heat shock and related protein changes would be amplified in type 2 diabetes (T2D). This prospective, case-control study enrolled 23 T2D patients and 23 control subjects who underwent hyperinsulinemic-induced hypoglycemia (≤ 2.0 mmol/L (36 mg/dl)) with blood sampling at baseline, at hypoglycemia and after a 24-h post-hypoglycemia follow-up period. Proteomic analysis of heat shock-related and pro-inflammatory proteins was performed. At baseline, MAPKAPK5 (p = 0.02) and UBE2G2 (p = 0.003) were elevated and STUB1 decreased (p = 0.007) in T2D. At hypoglycemia: PPP3CA (p < 0.03) was increased and EPHA2 (p = 0.01) reduced in T2D; by contrast, three proteins were reduced in controls [HSPA1A (p = 0.007), HSPB1 (p < 0.02), SMAD3 (p = 0.005)] while only MAPKAPK5 was elevated (p = 0.02). In the post-hypoglycemia follow-up period, most proteins normalized to baseline by 24-h; however, STIP1 (p = 0.003), UBE2N (p = 0.004) and UBE2L3 (p < 0.04) were decreased in controls at 24-h. No protein differed from baseline at 24-h in T2D. Pro-inflammatory interleukin-6 increased at 4-h post-hypoglycemia in controls and T2D (p < 0.05 and p < 0.003, respectively) and correlated with HSPA1A; anti-inflammatory IL-10 decreased 2-h post-hypoglycemia in T2D only. Other pro-inflammatory proteins, IL-1α, IFN-γ and TNF-α, were unchanged. Heat shock and related proteins differed at baseline between T2D and controls, with an exaggerated response of heat shock and related proteins to hypoglycemia that returned to baseline, though with changes at 24-h in controls alone. An increase in pro-inflammatory IL-6, with a decrease in anti-inflammatory IL-10, suggests that the HSP system is overactivated due to underlying inflammation in T2D.Trial registration: ClinicalTrials.gov NCT03102801.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resposta ao Choque Térmico , Hipoglicemia/metabolismo , Proteoma/metabolismo , Adulto , Idoso , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/genética , Receptor EphA2/genética , Receptor EphA2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...