Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mar Drugs ; 17(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766477

RESUMO

Paralytic shellfish toxins (PSTs) are the major neurotoxic contaminants of edible bivalves in Japan. Tetrodotoxin (TTX) was recently detected in bivalve shellfish around the world, drawing widespread attention. In Japan, high levels of TTX were reported in the digestive gland of the scallop, Patinopecten yessoensis, in 1993; however, no new data have emerged since then. In this study, we simultaneously analyzed PSTs and TTX in scallops cultured in a bay of east Japan using hydrophilic interaction chromatography (HILIC)-MS/MS. These scallops were temporally collected from April to December 2017. The highest concentration of PSTs (182 µmol/kg, total congeners) in the hepatopancreas was detected in samples collected on May 23, lined to the cell density of the dinoflagellate, Alexandrium tamarense, in seawater around the scallops, whereas the highest concentration of TTX (421 nmol/kg) was detected in samples collected on August 22. Contrary to the previous report, temporal variation of the PSTs and TTX concentrations did not coincide. The highest concentration of TTX in the entire edible tissues was 7.3 µg/kg (23 nmol/kg) in samples obtained on August 22, which was lower than the European Food Safety Authority (EFSA)-proposed threshold, 44 µg TTX equivalents/kg shellfish meat. In addition, 12ß-deoxygonyautoxin 3 was firstly identified in scallops.


Assuntos
Dinoflagelados/química , Pectinidae/química , Saxitoxina/análogos & derivados , Alimentos Marinhos/análise , Tetrodotoxina/análise , Animais , Aquicultura , Baías , Cromatografia Líquida de Alta Pressão , Japão , Saxitoxina/análise , Saxitoxina/toxicidade , Estações do Ano , Água do Mar/microbiologia , Intoxicação por Frutos do Mar/etiologia , Intoxicação por Frutos do Mar/prevenção & controle , Espectrometria de Massas em Tandem , Tetrodotoxina/toxicidade , Fatores de Tempo
2.
PLoS One ; 14(6): e0218489, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220134

RESUMO

Blooms of the toxic microalga Karenia brevis occur seasonally in Florida, Texas and other portions of the Gulf of Mexico. Brevetoxins produced during Karenia blooms can cause neurotoxic shellfish poisoning in humans, massive fish kills, and the death of marine mammals and birds. Brevetoxin-containing aerosols are an additional problem, having a severe impact on beachgoers, triggering coughing, eye and throat irritation in healthy individuals, and more serious respiratory distress in those with asthma or other breathing disorders. The blooms and associated aerosol impacts are patchy in nature, often affecting one beach but having no impact on an adjacent beach. To provide timely information to visitors about which beaches are low-risk, we developed HABscope; a low cost (~$400) microscope system that can be used in the field by citizen scientists with cell phones to enumerate K. brevis cell concentrations in the water along each beach. The HABscope system operates by capturing short videos of collected water samples and uploading them to a central server for rapid enumeration of K. brevis cells using calibrated recognition software. The HABscope has a detection threshold of about 100,000 cells, which is the point when respiratory risk becomes evident. Higher concentrations are reliably estimated up to 10 million cells L-1. When deployed by volunteer citizen scientists, the HABscope consistently distinguished low, medium, and high concentrations of cells in the water. The volunteers were able to collect data on most days during a severe bloom. This indicates that the HABscope can provide an effective capability to significantly increase the sampling coverage during Karenia brevis blooms.


Assuntos
Asma/prevenção & controle , Proliferação Nociva de Algas , Toxinas Marinhas/efeitos adversos , Oxocinas/efeitos adversos , Intoxicação por Frutos do Mar/epidemiologia , Aerossóis/efeitos adversos , Asma/epidemiologia , Dinoflagelados , Florida/epidemiologia , Golfo do México/epidemiologia , Humanos , Microalgas/crescimento & desenvolvimento , Microalgas/patogenicidade , Intoxicação por Frutos do Mar/prevenção & controle , Texas/epidemiologia
3.
Toxicon ; 159: 32-37, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30659862

RESUMO

Searching for Amnesic (ASP), Paralytic (PSP) and Lipophilic (LT) toxins in seafood is of great importance for consumer protection. Studies are usually focused on the most aquacultured species, the mussel. But, there are a number of potentially commercially important shellfish species as rough cockle Acanthocardia tuberculata (Linnaeus, 1758) and smooth clam Callista chione (Linnaeus, 1758) which are common in the Croatian Adriatic Sea. Investigation of marine biotoxins accumulation in these two species of shellfish from the Adriatic Sea has not been conducted up to now. In order to detect the potential marine biotoxin profile of A. tuberculata and C. chione wild populations, samples were taken monthly during one-year survey from the estuarine area in the central Adriatic Sea. HPLC-FLD with pre-column oxidation and HPLC-UV-DAD methods were employed for PSP and ASP toxins determination, respectively, while LTs were determined by LC-MS/MS. This research had revealed the differences in the accumulation of ASP, PSP and LT toxins between the two studied species, as Acanthocardia tuberculata showed more diverse profile with higher concentrations of analysed toxins. Both investigated shellfish species had shown levels of these biotoxins under the legal limits set by the European Commission.


Assuntos
Bivalves/química , Cardiidae/química , Toxinas Marinhas/análise , Animais , Monitoramento Ambiental , Humanos , Toxinas Marinhas/química , Região do Mediterrâneo , Oceanos e Mares , Estações do Ano , Frutos do Mar , Intoxicação por Frutos do Mar/prevenção & controle
4.
Mar Drugs ; 16(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545061

RESUMO

Marine biotoxins in fish and shellfish can cause several symptoms in consumers, such as diarrhea, amnesia, or even death by paralysis. Monitoring programs are in place for testing shellfish on a regular basis. In some countries testing is performed using the so-called mouse bioassay, an assay that faces ethical concerns not only because of animal distress, but also because it lacks specificity and results in high amounts of false positives. In Europe, for lipophilic marine biotoxins (LMBs), a chemical analytical method using LC-MS/MS was developed as an alternative and is now the reference method. However, safety is often questioned when relying solely on such a method, and as a result, the mouse bioassay might still be used. In this study the use of a cell-based assay for screening, i.e., the neuro-2a assay, in combination with the official LC-MS/MS method was investigated as a new alternative strategy for the detection and quantification of LMBs. To this end, samples that had been tested previously with the mouse bioassay were analyzed in the neuro-2a bioassay and the LC-MS/MS method. The neuro-2a bioassay was able to detect all LMBs at the regulatory levels and all samples that tested positive in the mouse bioassay were also suspect in the neuro-2a bioassay. In most cases, these samples contained toxin levels (yessotoxins) that explain the outcome of the bioassay but did not exceed the established maximum permitted levels.


Assuntos
Alternativas aos Testes com Animais/métodos , Bioensaio/métodos , Toxinas Marinhas/análise , Intoxicação por Frutos do Mar/prevenção & controle , Frutos do Mar/análise , Alternativas aos Testes com Animais/instrumentação , Animais , Bioensaio/instrumentação , Bivalves , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Reações Falso-Positivas , Toxinas Marinhas/toxicidade , Camundongos , Oxocinas/análise , Oxocinas/toxicidade , Frutos do Mar/toxicidade , Intoxicação por Frutos do Mar/etiologia , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
5.
Food Chem ; 269: 166-172, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30100420

RESUMO

Although paralytic shellfish toxins (PSTs) have traditionally been analyzed by liquid chromatography with either pre- or post-column derivatization, and these methods have been validated successfully through inter-laboratory studies, mass spectrometry methods have also been described in literature for use in monitoring programs. However, methods using liquid chromatography coupled with mass spectrometry (LC-MS) need to be improved in terms of sensitivity, analyte recovery and retention time stability because of undesirable matrix effects. Furthermore, tetrodotoxin (TTX) has been found in northern European bivalves, so it is important to analyze TTX compounds alongside PSTs because characteristics of their toxicity are similar. This paper describes, for the first time, a chemical method that allows determination of PSTs, both hydrophilic and hydrophobic, alongside TTX and its analogue 4,9-anhydro tetrodotoxin (4,9-anhTTX) with LC-MS/MS using a Hypercarb® column. The method was validated for 13 hydrophilic PSTs and TTXs and was able to discriminate six hydrophobic PSTs in 20 min. The method was developed for four shellfish matrices: mussel (Mytillus galloprovincialis), clam (Ruditapes decussatus), scallop (Pecten maximus) and oyster (Ostrae edulis). Clean-up procedure used in this work allowed us to obtain good results for validation parameters for both PSTs and TTXs. No standards were available so strains of Gymnodinium catenatum (G. catenatum) were used instead.


Assuntos
Cromatografia Líquida/métodos , Toxinas Marinhas/análise , Espectrometria de Massas em Tandem/métodos , Tetrodotoxina/análise , Animais , Carbono/química , Grafite/química , Humanos , Frutos do Mar , Intoxicação por Frutos do Mar/prevenção & controle
6.
Mar Drugs ; 16(6)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844286

RESUMO

Massive phytoplankton proliferation, and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks: filter-feeding mollusks, such as shellfish, mussels, oysters or clams, can accumulate these toxins throughout the food chain and present a threat for consumers' health. Particular environmental and climatic conditions favor this natural phenomenon, called harmful algal blooms (HABs); the phytoplankton species mostly involved in these toxic events are dinoflagellates or diatoms belonging to the genera Alexandrium, Gymnodinium, Dinophysis, and Pseudo-nitzschia. Substantial economic losses ensue after HABs occurrence: the sectors mainly affected include commercial fisheries, tourism, recreational activities, and public health monitoring and management. A wide range of symptoms, from digestive to nervous, are associated to human intoxication by biotoxins, characterizing different and specific syndromes, called paralytic shellfish poisoning, amnesic shellfish poisoning, diarrhetic shellfish poisoning, and neurotoxic shellfish poisoning. This review provides a complete and updated survey of phycotoxins usually found in marine invertebrate organisms and their relevant properties, gathering information about the origin, the species where they were found, as well as their mechanism of action and main effects on humans.


Assuntos
Toxinas Marinhas/toxicidade , Fitoplâncton/química , Intoxicação por Frutos do Mar/etiologia , Frutos do Mar/toxicidade , Animais , Bivalves/parasitologia , Cadeia Alimentar , Proliferação Nociva de Algas , Humanos , Ostreidae/parasitologia , Água do Mar , Intoxicação por Frutos do Mar/epidemiologia , Intoxicação por Frutos do Mar/prevenção & controle
7.
Mar Drugs ; 16(3)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509715

RESUMO

Tetrodotoxins (TTX) are a potent group of natural neurotoxins putatively produced by symbiotic microorganisms and affecting the aquatic environment. These neurotoxins have been recently found in some species of bivalves and gastropods along the European Coasts (Greece, UK, and The Netherlands) linked to the presence of high concentrations of Vibrio, in particular Vibrio parahaemolyticus. This study is focused on the evaluation of the presence of Vibrio species and TTX in bivalves (mussels, oysters, cockles, clams, scallops, and razor clams) from Galician Rias (northwest of Spain). The detection and isolation of the major Vibrio spp. and other enterobacterial populations have been carried out with the aim of screening for the presence of the pathways genes, poliketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) possibly involved in the biosynthesis of these toxins. Samples containing Vibrio spp. were analyzed by biochemical (API20E-galery) and genetic tests (PCR-RT). These samples were then screened for TTX toxicity by a neuroblastoma cell-based assay (N2a) and the presence of TTX was further confirmed by LC-MS/MS. TTX was detected in two infaunal samples. This is the first confirmation of the presence of TTX in bivalve molluscs from the Galician Rias.


Assuntos
Bivalves/microbiologia , Intoxicação por Frutos do Mar/prevenção & controle , Frutos do Mar/análise , Tetrodotoxina/análise , Vibrio parahaemolyticus/isolamento & purificação , Animais , Proteínas de Bactérias/isolamento & purificação , Bioensaio/métodos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Peptídeo Sintases/isolamento & purificação , Frutos do Mar/microbiologia , Frutos do Mar/toxicidade , Espanha , Espectrometria de Massas em Tandem , Tetrodotoxina/biossíntese , Tetrodotoxina/toxicidade , Testes de Toxicidade/métodos , Vibrio parahaemolyticus/metabolismo
8.
Bioorg Med Chem Lett ; 27(20): 4630-4634, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28927792

RESUMO

Two new compounds heliotropiumides A (1) and B (2), phenolamides each with an uncommon carbamoyl putrescine moiety, were isolated from the seeds of a naturalized Hawaiian higher plant, Heliotropium foertherianum Diane & Hilger in the borage family, which is widely used for the treatment of ciguatera fish poisoning. The structures of compounds 1 and 2 were characterized based on MS spectroscopic and NMR analysis, and DP4+ calculations. The absolute configuration (AC) of compound 1 was determined by comparison of its optical rotation with those reported in literature. Compound 2 showed inhibition against NF-κB with an IC50 value of 36µM.


Assuntos
Amidas/farmacologia , Benzofuranos/química , Heliotropium/química , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Amidas/química , Amidas/toxicidade , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/isolamento & purificação , Antineoplásicos Alquilantes/farmacologia , Benzofuranos/farmacologia , Benzofuranos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Heliotropium/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fenóis/farmacologia , Fenóis/toxicidade , Extratos Vegetais/uso terapêutico , Putrescina/química , Intoxicação por Frutos do Mar/prevenção & controle
9.
Artigo em Alemão | MEDLINE | ID: mdl-28516259

RESUMO

This paper presents a short summary of the knowledge on marine biotoxins. As toxins are known for their acute effects, they have been classified here according to the effects they cause in acute human poisoning incidents. Toxins may thus be distinguished into those that affect the nervous system (paralytic and other neurotoxins), memory (amnesic poisons), and the digestive system (diarrhetic toxins). Furthermore, newly emerging toxins, such as ciguatoxins or shark toxins, and factors that lead to the introduction of toxins in new areas, are presented. Relevant suggestions for further reading are given.


Assuntos
Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/etiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Toxinas Marinhas/análise , Toxinas Marinhas/toxicidade , Animais , Ciguatoxinas/análise , Ciguatoxinas/toxicidade , Alemanha , Humanos , Neurotoxinas/análise , Neurotoxinas/toxicidade , Medição de Risco , Tubarões , Intoxicação por Frutos do Mar/etiologia , Intoxicação por Frutos do Mar/prevenção & controle
10.
Shokuhin Eiseigaku Zasshi ; 58(6): 281-287, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-29311448

RESUMO

Amnesic shellfish poison (ASP) is regarded as one of the shellfish poison groups in the EU, though it is not subject to regulation in Japan. We have developed an analytical method of ASP based on the report by Hatfield et al. and other methods. Validation studies were carried out with certified compositional reference materials (CRM). Performance parameters were estimated based on 17 analytical results. The estimate of trueness was 97.5%, and the estimate of intralaboratory reproducibility (RSD) was 1.5%. The HorRat(r) value was 0.16. These performance parameters meet the criteria in the Codex Procedural Manual. Furthermore, internal quality control was performed by using the CRM. The action limits were set based on the performance parameters of the method. Most of the results of the internal quality control were within the action limit range. The results confirmed that the quality of the analyses was well maintained. The purpose of the analytical method is to confirm that the level of ASP in scallop is less than 4.6 mg/kg. The applicability of the analytical method to scallops was confirmed by using spiked samples.


Assuntos
Bivalves/química , Cromatografia Líquida de Alta Pressão/métodos , Ácido Caínico/análogos & derivados , Intoxicação por Frutos do Mar/etiologia , Intoxicação por Frutos do Mar/prevenção & controle , Frutos do Mar/análise , Animais , Cromatografia Líquida de Alta Pressão/instrumentação , Monitoramento Ambiental/métodos , Ácido Caínico/análise , Ácido Caínico/química , Ácido Caínico/toxicidade , Pectinidae/química , Controle de Qualidade , Reprodutibilidade dos Testes , Raios Ultravioleta
11.
Toxicon ; 125: 110-119, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27914887

RESUMO

Blooms of the toxic dinoflagellate Alexandrium tamarense (Group 1) seriously impacted the Tasmanian shellfish industry during 2012 and 2015, necessitating product recalls and intensive paralytic shellfish toxin (PST) product testing. The performance of four commercial PST test kits, Abraxis™, Europroxima™, Scotia™ and Neogen™, was compared with the official AOAC LC-FLD method for contaminated mussels and oysters. Abraxis and Europroxima kits underestimated PST in 35-100% of samples when using standard protocols but quantification improved when concentrated extracts were further diluted (underestimation ≤18%). The Scotia kit (cut off 0.2-0.7 mg STX-diHCl eq/kg) delivered 0% false negatives, but 27% false positives. Neogen produced 5% false negatives and 13% false positives when the cut off was altered to 0.5-0.6 mg STX-diHCl eq/kg, the introduction of a conversion step eliminated false negatives. Based on their sensitivity, ease of use and performance, the Neogen kit proved the most suitable kit for use with Tasmanian mussels and oysters. Once formally validated for regulatory purposes, the Neogen kit could provide shellfish growers with a rapid tool for harvesting decisions at the farm gate. Effective rapid screening preventing compliant samples undergoing testing using the more expensive and time consuming LC-FLD method will result in significant savings in analytical costs.


Assuntos
Monitoramento Ambiental/métodos , Análise de Perigos e Pontos Críticos de Controle/métodos , Toxinas Marinhas/análise , Intoxicação por Frutos do Mar/prevenção & controle , Frutos do Mar , Dinoflagelados/metabolismo , Ensaio de Imunoadsorção Enzimática , Tasmânia
12.
Artigo em Inglês | MEDLINE | ID: mdl-27002718

RESUMO

Detecting marine biotoxins such as paralytic shellfish toxins (PSTs) is essential to ensuring the safety of seafood. The mouse bioassay is the internationally accepted method for monitoring PSTs, but technical and ethical issues have led to a search for new detection methods. The mouse neuroblastoma cell-based assay (Neuro-2a CBA) using ouabain and veratridine (O/V) has proven useful for the detection of PSTs. However, CBAs are sensitive to shellfish-associated matrix interferences. As the extraction method highly influences matrix interferences, this study compared three extraction protocols: Association of Official Analytical Chemists (AOAC) 2005.06, AOAC 2011.02 and an alternative liquid-liquid method. These methods were used to assess the matrix effect of extracts from four commercially important bivalve species (Chilean mussel, Magellan mussel, clam and Pacific oyster) in Neuro-2a CBA. Extracts from all three protocols caused a toxic effect in Neuro-2a cells (without O/V) when tested at a concentration of 25 mg of tissue-equivalent (TE) ml(-1). The greatest toxicity was obtained through the AOAC 2011.02 protocol, especially for the Chilean mussel and Pacific oyster extracts. Similar toxicity levels (less than 15%) were observed in all extracts at 3.1 mg TE ml(-1). When assessed in Neuro-2a CBA, AOAC 2005.06 extracts presented the lowest matrix interferences, while the highest interferences were observed for AOAC 2011.02 in Magellan mussel and clam extracts. Finally, the AOAC 2005.06 and alternative protocols were compared using Chilean mussel samples fortified with 40 and 80 µg STX per 100 g meat. The AOAC 2005.06 method demonstrated better results. In conclusion, the AOAC 2005.06 extracts exhibited the fewest interferences in the Neuro-2a CBA. Therefore, this extraction method should be considered for the implementation of Neuro-2a CBA as a high-throughput screening methodology for PST detection.


Assuntos
Bivalves/química , Matriz Extracelular/química , Contaminação de Alimentos , Inspeção de Alimentos/métodos , Toxinas Marinhas/análise , Neurônios/efeitos dos fármacos , Frutos do Mar/análise , Alternativas aos Testes com Animais , Animais , Bivalves/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chile , Matriz Extracelular/metabolismo , Contaminação de Alimentos/prevenção & controle , Ensaios de Triagem em Larga Escala , Extração Líquido-Líquido , Toxinas Marinhas/biossíntese , Toxinas Marinhas/toxicidade , Camundongos , Neurônios/patologia , Reprodutibilidade dos Testes , Saxitoxina/análise , Saxitoxina/biossíntese , Saxitoxina/toxicidade , Frutos do Mar/efeitos adversos , Intoxicação por Frutos do Mar/etiologia , Intoxicação por Frutos do Mar/patologia , Intoxicação por Frutos do Mar/prevenção & controle , Especificidade da Espécie , Extratos de Tecidos/análise , Extratos de Tecidos/isolamento & purificação , Extratos de Tecidos/toxicidade
13.
Toxicon ; 112: 1-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26806209

RESUMO

The effect of canning in pickled sauce and autoclaving on weight, toxin content, toxin concentration and toxicity of steamed mussels was studied. Weight decreased by 25.5%. Okadaic acid (OA) and DTX2 content of mussel meat decreased by 24.1 and 42.5%, respectively. The estimated toxicity of the mussel remained nearly unchanged (increased by 2.9%). A part of the toxins lost by the mussels was leached to the sauce but the remaining part should have been thermally degraded. DTX2 underwent more degradation than OA and, in both toxins, free forms more than conjugated ones. This process, therefore, cannot be responsible for the large increments of toxicity of processed mussels -relative to the raw ones-sometimes detected by food processing companies. The final product could be monitored in several ways, but analysing the whole can content or the mussel meat once rehydrated seems to be the most equivalents to the raw mussel controls.


Assuntos
Bivalves/química , Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos/métodos , Alimentos em Conserva/análise , Toxinas Marinhas/análise , Intoxicação por Frutos do Mar/prevenção & controle , Frutos do Mar/análise , Algoritmos , Animais , Bivalves/crescimento & desenvolvimento , Condimentos/análise , Estuários , Inspeção de Alimentos , Alimentos em Conserva/toxicidade , Proliferação Nociva de Algas , Temperatura Alta , Humanos , Toxinas Marinhas/toxicidade , Ácido Okadáico/análise , Ácido Okadáico/toxicidade , Piranos/análise , Piranos/toxicidade , Frutos do Mar/toxicidade , Intoxicação por Frutos do Mar/etiologia , Espanha/epidemiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-26811906

RESUMO

The aim of the present work was to study the response of a suite of cellular and biochemical markers in the terrestrial snail Cantareus apertus exposed to mercury in view of future use as sensitive tool suitable for mercury polluted soil monitoring and assessment. Besides standardized biomarkers (metallothionein, acetylcholinesterase, and lysosomal membrane stability) novel cellular biomarkers on haemolymph cells were analyzed, including changes in the spread cells/round cells ratio and haemocyte morphometric alterations. The animals were exposed for 14 days to Lactuca sativa soaked for 1h in HgCl2 solutions (0.5 e 1 µM). The temporal dynamics of the responses were assessed by measurements at 3, 7 and 14 days. Following exposure to HgCl2 a significant alteration in the relative frequencies of round cells and spread cells was evident, with a time and dose-dependent increase of the frequencies of round cells with respect to spread cells. These changes were accompanied by cellular morphometric alterations. Concomitantly, a high correspondence between these cellular responses and metallothionein tissutal concentration, lysosomal membrane stability and inhibition of AChE was evident. The study highlights the usefulness of the terrestrial snail C. apertus as bioindicator organism for mercury pollution biomonitoring and, in particular, the use of haemocyte alterations as a suitable biomarker of pollutant effect to be included in a multibiomarker strategy.


Assuntos
Caracois Helix/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Intoxicação por Mercúrio/veterinária , Poluentes do Solo/toxicidade , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/sangue , Forma Celular/efeitos dos fármacos , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/toxicidade , Relação Dose-Resposta a Droga , Monitoramento Ambiental/métodos , Contaminação de Alimentos/prevenção & controle , Caracois Helix/enzimologia , Caracois Helix/metabolismo , Hemócitos/patologia , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Itália , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Cloreto de Mercúrio/administração & dosagem , Intoxicação por Mercúrio/sangue , Intoxicação por Mercúrio/metabolismo , Intoxicação por Mercúrio/patologia , Metalotioneína/metabolismo , Distribuição Aleatória , Frutos do Mar/análise , Intoxicação por Frutos do Mar/prevenção & controle , Poluentes do Solo/administração & dosagem , Fatores de Tempo
15.
Toxicon ; 111: 121-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26792713

RESUMO

Four commercial rapid screening methods for Diarrhetic Shellfish Poisoning were applied to the analysis of naturally contaminated shellfish samples from GB. The performance of each kit was assessed through comparison with the reference LC-MS/MS method on a range of both positive and negative bivalve mollusc samples. A quantitative PP2A protein phosphatase assay was the only assay to show the complete absence of false negative results. It showed a fair correlation with LC-MS/MS but with an overall overestimation of sample toxicity together with some indications of interference from sample matrix, most notably within oyster species. A quantitative competitive ELISA also gave a fair correlation with LC-MS/MS, with no evidence of toxicity overestimation and with a good response to samples containing little or no DST's, although one false negative was recorded. The two qualitative lateral flow assays both provided a high percentage agreement with the LC-MS/MS results and there were no indications of false positive results, although both kits also returned one false negative result. The false negative results returned by the three assays were all associated with samples containing high proportions of DTX2, a toxin which occurs commonly in UK shellfish. The scanners provided with both lateral flow assays were easy to use and the provision of numerical results enables a semi-quantitative assessment of toxicities which would significantly benefit the end user. Whilst key differences exist between the proposed assays they are all rapid, do not require expensive equipment and the work here has provided some evidence for suitability for indicative testing for some species of bivalve shellfish from GB. Further work is required however using a larger number of test kit batches on a greater number of samples, particularly for those containing high proportions of DTX2.


Assuntos
Bivalves/química , Toxinas Marinhas/química , Kit de Reagentes para Diagnóstico , Intoxicação por Frutos do Mar/prevenção & controle , Animais , Cromatografia Líquida/métodos , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas em Tandem/métodos , Reino Unido
16.
Harmful Algae ; 57(Pt B): 2-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-28918886

RESUMO

The five most commonly recognized Harmful Algal Bloom-related illnesses are ciguatera poisoning, paralytic shellfish poisoning, neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning, and diarrhetic shellfish poisoning. Although these exposures result from exposure to different toxins or toxin congeners, these clinical syndromes have much in common. Exposure occurs through the consumption of fish, shellfish, or through exposure to aerosolized NSP toxins. Routine clinical tests are not available for the diagnosis of harmful algal bloom related illnesses, there is no known antidote for exposure, and the risk of these illnesses can negatively impact local fishing and tourism industries. The absence of exposure risk or diagnostic certainty can also precipitate a chain of events that results in considerable psychological distress for coastal populations. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, further transdisciplinary research, close communication and collaboration are needed among HAB scientists, public health researchers, and local, state and tribal health departments at academic, community outreach, and policy levels.


Assuntos
Intoxicação por Ciguatera/prevenção & controle , Doenças Transmitidas por Alimentos , Proliferação Nociva de Algas , Saúde Pública , Intoxicação por Frutos do Mar/prevenção & controle , Animais , Humanos
17.
Harmful Algae ; 53: 33-39, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-28073443

RESUMO

The development of sustainable shellfish aquaculture is highly dependent on the provision of reliable monitoring and predictive information on the occurrence of harmful algal blooms (HABs). The Portuguese HAB early warning system and shellfish closures presented here is a prototype, developed in the ASIMUTH project. It relies on weekly monitoring data composed of observations of HAB species and toxin concentrations within shellfish, and ocean circulation forecasts generated by an operational oceanographic model. The shellfish harvesting areas comprise coastal areas, estuaries+rías and coastal lagoons. The weekly bulletin characterizes the current shellfish closure situation and next week's forecasts for potentially impacted areas. The period analyzed ranged from 27 July 2013 to 17 March 2014, and describes the first skill assessment of the warning system. The forecast accuracy was evaluated, considering the number of forecasts that were verified to be correct the following week (85%) as well as the number of events not forecasted (false negatives, 12%) and those expected but did not occur (false positives, 3%). Variations were most visible in the first weeks of bulletin implementation and during autumn-winter months. The complementary use of field data, remote sensing and operational models led to more accurate predictions of blooms and range of the event.


Assuntos
Aquicultura/métodos , Aquicultura/normas , Monitoramento Ambiental/métodos , Proliferação Nociva de Algas , Saúde Pública/métodos , Frutos do Mar/normas , Dinoflagelados/fisiologia , Portugal , Intoxicação por Frutos do Mar/prevenção & controle
18.
Harmful Algae ; 55: 112-120, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-28073524

RESUMO

Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n=256) from European waters, collected 2009-2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2×2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.


Assuntos
Monitoramento Ambiental/métodos , Toxinas Marinhas/análise , Microalgas/química , Frutos do Mar/microbiologia , Europa (Continente) , Humanos , Toxinas Marinhas/química , Ácido Okadáico/análise , Saxitoxina/análise , Intoxicação por Frutos do Mar/microbiologia , Intoxicação por Frutos do Mar/prevenção & controle
19.
Mar Drugs ; 13(12): 7357-76, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26690455

RESUMO

Tetrodotoxin is a neurotoxin responsible for many human fatalities, most commonly following the consumption of pufferfish. Whilst the source of the toxin has not been conclusively proven, it is thought to be associated with various species of marine bacteria. Whilst the toxins are well studied in fish and gastropods, in recent years, there have been a number of reports of tetrodotoxin occurring in bivalve shellfish, including those harvested from the UK and other parts of Europe. This paper reviews evidence concerning the prevalence of tetrodotoxins in the UK together with methodologies currently available for testing. Biological, biomolecular and chemical methods are reviewed, including recommendations for further work. With the recent development of quantitative chromatographic methods for these and other hydrophilic toxins, as well as the commercial availability of rapid testing kits, there are a number of options available to ensure consumers are protected against this threat.


Assuntos
Monitoramento Ambiental/métodos , Toxinas Marinhas/análise , Tetrodotoxina/análise , Animais , Cromatografia/métodos , Humanos , Toxinas Marinhas/toxicidade , Frutos do Mar/análise , Intoxicação por Frutos do Mar/prevenção & controle , Tetraodontiformes , Tetrodotoxina/toxicidade , Reino Unido
20.
Mar Drugs ; 13(12): 7087-112, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26703628

RESUMO

Cyclic imines (CIs) are a group of phytoplankton produced toxins related to shellfish food products, some of which are already present in UK and European waters. Their risk to shellfish consumers is poorly understood, as while no human intoxication has been definitively related to this group, their fast acting toxicity following intraperitoneal injection in mice has led to concern over their human health implications. A request was therefore made by UK food safety authorities to examine these toxins more closely to aid possible management strategies. Of the CI producers only the spirolide producer Alexandrium ostenfeldii is known to exist in UK waters at present but trends in climate change may lead to increased risk from other organisms/CI toxins currently present elsewhere in Europe and in similar environments worldwide. This paper reviews evidence concerning the prevalence of CIs and CI-producing phytoplankton, together with testing methodologies. Chemical, biological and biomolecular methods are reviewed, including recommendations for further work to enable effective testing. Although the focus here is on the UK, from a strategic standpoint many of the topics discussed will also be of interest in other parts of the world since new and emerging marine biotoxins are of global concern.


Assuntos
Iminas/toxicidade , Toxinas Marinhas/toxicidade , Fitoplâncton/metabolismo , Animais , Mudança Climática , Humanos , Iminas/administração & dosagem , Iminas/isolamento & purificação , Toxinas Marinhas/administração & dosagem , Toxinas Marinhas/isolamento & purificação , Camundongos , Frutos do Mar/análise , Intoxicação por Frutos do Mar/prevenção & controle , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA