Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.793
Filtrar
1.
Food Chem ; 400: 134001, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084586

RESUMO

Flavonoids are associated with health benefits, but most of them have poor oral bioavailability due to their extremely low aqueous solubility. Flavonoid O-phosphorylation suggests a potent modification to solve the problems. Here, we isolated, identified and characterized an unprecedented phosphotransferase, flavonoid phosphate synthetase (BsFPS), from B. subtilis. The enzyme catalyzes the ATP-dependent phosphorylation of flavonoid to generate flavonoid monophosphates, AMP and orthophosphate. BsFPS is a promiscuous phosphotransferase that efficiently catalyzes structurally-diverse flavonoids, including isoflavones, flavones, flavonols, flavanones and flavonolignans. Based on MS and NMR analysis, the phosphorylation mainly occurs on the hydroxyl group at C-7 of A-ring or C-4' of B-ring in flavonoid skeleton. Notably, BsFPS is regioselective for the ortho-3',4'-dihydroxy moiety of catechol-containing structures, such as luteolin and quercetin, to produce phosphate conjugates at C-4' or C-3' of B-ring. Our findings highlight the potential for developing biosynthetic platform to obtain new phosphorylated flavonoids for pharmaceutical and nutraceutical applications.


Assuntos
Flavanonas , Flavonas , Flavonolignanos , Isoflavonas , Monofosfato de Adenosina , Trifosfato de Adenosina , Bacillus subtilis , Catecóis , Flavonoides/química , Ligases , Luteolina , Fosfatos , Fosfotransferases , Quercetina
2.
Food Chem ; 403: 134339, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174344

RESUMO

Formononetin (FMN) is a methoxy isoflavone found abundantly in leguminous plants and associated foods. Several analytical methods have been developed to detect FMN. However, they are costly, complicated, and time-consuming. This study describes an indirect competitive enzyme-linked immunosorbent assay (icELISA) to determine FMN content in food samples using a monoclonal antibody (mAb) against FMN produced by a newly established hybridoma cell line. Validation studies were conducted, and this assay was found to be sufficiently reliable, with an analytical measurement range of 19.53-1250 ng/mL and a detection limit of 17.42 ng/mL. Furthermore, icELISA was successfully applied for a cell-based assay in which the amount of FMN and ononin uptake was quantified in MC3T3-E1 cells. Hence, icELISA is a simple and reliable method for the detection and quantification of FMN, as well as elucidation of its functions and underlying mechanisms of action.


Assuntos
Mononucleotídeo de Flavina , Isoflavonas , Animais , Camundongos , Ensaio de Imunoadsorção Enzimática/métodos , Hibridomas/química , Isoflavonas/análise , Camundongos Endogâmicos BALB C
3.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361954

RESUMO

Metabolic reprogramming is a key attribute of cancer progression. An altered expression of pyruvate kinase M2 (PKM2), a phosphotyrosine-binding protein is observed in many human cancers. PKM2 plays a vital role in metabolic reprogramming, transcription and cell cycle progression and thus is deliberated as an attractive target in anticancer drug development. The expression of PKM2 is essential for aerobic glycolysis and cell proliferation, especially in cancer cells, facilitating selective targeting of PKM2 in cell metabolism for cancer therapeutics. We have screened a virtual library of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database of Indian medicinal plants to identify potential activators of PKM2. The initial screening was carried out for the physicochemical properties of the compounds, and then structure-based molecular docking was performed to select compounds based on their binding affinity towards PKM2. Subsequently, the ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, PAINS (Pan-assay interference compounds) patterns, and PASS evaluation were carried out to find more potent hits against PKM2. Here, Tuberosin was identified from the screening process bearing appreciable binding affinity toward the PKM2-binding pocket and showed a worthy set of drug-like properties. Finally, molecular dynamics simulation for 100 ns was performed, which showed decent stability of the protein-ligand complex and relatival conformational dynamics throughout the trajectory. The study suggests that modulating PKM2 with natural compounds is an attractive approach in treating human malignancy after required validation.


Assuntos
Ativadores de Enzimas , Isoflavonas , Neoplasias , Piruvato Quinase , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Piruvato Quinase/metabolismo , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico
4.
Metab Eng ; 74: 206-219, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36336175

RESUMO

Genistin is one of the bioactive isoflavone glucosides found in legumes, which have great nutraceutical and pharmaceutical significance. The market available isoflavones are currently produced by direct plant extraction. However, its low abundance in plant and structural complexity hinders access to this phytopharmaceutical via plant extraction or chemical synthesis. Here, the E. coli cell factory for sustainable production of genistin from glycerol was constructed. First, we rebuilt the precursor genistein biosynthesis pathway in E. coli, and its titer was then increased by 668% by identifying rate-limiting steps and applying an artificial protein scaffold system. Then de novo production of genistin from glycerol was achieved by functional screening and introduction of glycosyl-transferases, UDP-glucose pathway and specific genistin efflux pumps, and 48.1 mg/L of genistin was obtained. A further engineered E. coli strain equipped with an improved malonyl-CoA pathway, alternative glycerol-utilization pathways, acetyl-CoA carboxylase (ACC), and CRISPR interference (CRISPRi) mediated regulation produced up to 137.8 mg/L of genistin in shake flask cultures. Finally, 202.7 mg/L genistin was achieved through fed-batch fermentation in a 3-L bioreactor. This study represents the de novo genistin production from glycerol for the first time and will lay the foundation for low-cost microbial production of glucoside isoflavones. In addition, the multiphase workflow may provide a reference for engineering the biosynthetic pathways in other microbial hosts as well, for green manufacturing of complex natural products.


Assuntos
Escherichia coli , Isoflavonas , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Glicerol/metabolismo , Isoflavonas/metabolismo , Glucosídeos
5.
J Plant Physiol ; 279: 153855, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36335894

RESUMO

The involvement of nitric oxide (NO) in exogenous melatonin (MT)-induced isoflavone accumulation and growth improvement in NaCl-stressed soybeans was investigated in this study. The results demonstrated that MT increased the activity of nitrate reductase (NR) and upregulated the relative expression of NR1, NR2, and nitric oxide synthase1, which subsequently led to an increase in NO content. MT and sodium nitroprusside (SNP, as an NO donor) markedly increased isoflavone content by enhancing the activities of cinnamic acid 4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL), and by upregulating gene expression of C4H, Isoflavone synthase, PAL, and Chalcone isomerase 1A, which are involved in isoflavone biosynthesis. Moreover, MT, as well as SNP, improved the growth and biomass of NaCl-treated soybeans by increasing the activities of superoxide dismutase, catalase, and peroxidase, and reducing the accumulation of H2O2 and O2•- in soybeans under NaCl stress. These MT-induced responses were entirely reversed by the supply of 4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, a specific scavenger of NO), which in turn considerably decreased endogenous NO content. These results suggest that NO acts as an important downstream signal molecule, mediating MT-induced isoflavone accumulation and growth improvement in NaCl-stressed soybeans.


Assuntos
Fabaceae , Isoflavonas , Melatonina , Soja , Isoflavonas/farmacologia , Cloreto de Sódio/farmacologia , Óxido Nítrico , Melatonina/farmacologia , Peróxido de Hidrogênio , Fenilalanina Amônia-Liase
6.
Commun Biol ; 5(1): 1249, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376429

RESUMO

Isoflavonoids play important roles in plant defense and also exhibit a range of mammalian health-promoting activities. Their biosynthesis is initiated by two enzymes with unusual catalytic activities; 2-hydroxyisoflavanone synthase (2-HIS), a membrane-bound cytochrome P450 catalyzing a coupled aryl-ring migration and hydroxylation, and 2-hydroxyisoflavanone dehydratase (2-HID), a member of a large carboxylesterase family that paradoxically catalyzes dehydration of 2-hydroxyisoflavanones to isoflavone. Here we report the crystal structures of 2-HIS from Medicago truncatula and 2-HID from Pueraria lobata. The 2-HIS structure reveals a unique cytochrome P450 conformation and heme and substrate binding mode that facilitate the coupled aryl-ring migration and hydroxylation reactions. The 2-HID structure reveals the active site architecture and putative catalytic residues for the dual dehydratase and carboxylesterase activities. Mutagenesis studies revealed key residues involved in substrate binding and specificity. Understanding the structural basis of isoflavone biosynthesis will facilitate the engineering of new bioactive isoflavonoids.


Assuntos
Isoflavonas , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Conformação Proteica , Hidroliases/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Mamíferos
7.
Appl Microbiol Biotechnol ; 106(23): 7763-7778, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334126

RESUMO

Glucosylation cascade consisting of Leloir glycosyltransferase and sucrose synthase with in situ regeneration system of expensive and low available nucleotide sugars is a game-changing strategy for enzyme-based production of glycoconjugates of relevant natural products. We designed a stepwise approach including co-expression and one-step purification and co-immobilization on glass-based EziG resins of sucrose synthase from Glycine max (GmSuSy) with promiscuous glucosyltransferase YjiC from Bacillus licheniformis to produce efficient, robust, and versatile biocatalyst suited for preparative scale flavonoid glucosylation. The undertaken investigations identified optimal reaction conditions (30 °C, pH 7.5, and 10 mM Mg2+) and the best-suited carrier (EziG Opal). The prepared catalyst exhibited excellent reusability, retaining up to 96% of initial activity after 12 cycles of reactions. The semi-preparative glucosylation of poorly soluble isoflavone Biochanin A resulted in the production of 73 mg Sissotrin (Biochanin A 7-O-glucoside). Additionally, the evaluation of the designed double-controlled, monocistronic expression system with two independently induced promoters (rhaBAD and trc) brought beneficial information for dual-expression plasmid design. KEY POINTS: • Simultaneous and titratable expression from two independent promoters is possible, although full control over the expression is limited. • Designed catalyst managed to glucosylate poorly soluble isoflavone. • The STY of Sissotrin using the designed catalyst reached 0.26 g/L∙h∙g of the resin.


Assuntos
Flavonoides , Isoflavonas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Soja/metabolismo , Glucosídeos
8.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364022

RESUMO

Herb-drug interactions are vital in effectively managing type-2-diabetes complications. Puerarin is a natural isoflavonoid in the Pueraria genus, and its pharmacological activities, including antidiabetic activity, are well established. The similar modes of action of puerarin and metformin in diabetic models suggest their positive pharmacodynamic interactions. This study investigated this in streptozotocin/nicotinamide-induced type-2 diabetic rats. Puerarin at doses of 80 mg/kg, 120 mg/kg and 160 mg/kg improved the activity of metformin in reversing hyperglycaemia, dysregulated lipid profiles, dysfunction of the liver, kidney, and pancreas, and inflammation. The treatment with either puerarin (high dose, 160 mg/kg intraperitoneally) or metformin (100 mg/kg intraperitoneally) did not bring the dysregulated biomarkers to normal levels in 4 weeks. By contrast, the combination of puerarin (160 mg/kg) and metformin (100 mg/kg) did. This study is the first to report scientific evidence for the positive pharmacodynamic interactions between puerarin and metformin.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Isoflavonas , Metformina , Ratos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Experimental/induzido quimicamente , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações
9.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364084

RESUMO

Fourteen compounds were isolated from Pueraria lobata (Willd.) Ohwi by column chromatography and preparative thin-layer chromatography; the structures were identified by spectroscopic analysis and compared with data reported in the literature. Seven compounds were isolated and identified from Pueraria lobata for the first time: Linoleic acid, Sandwicensin, Isovanillin, Ethyl ferulate, Haginin A, Isopterofuran, 3'.7-Dihydroxyisoflavan. The other 10 compounds were structurally identified as follows: Lupenone, Lupeol, ß-sitosterol, Genistein, Medicarpin, Coniferyl Aldehyde, Syringaldehyde. All compounds were evaluated for their ability to inhibit SW480 and SW620 cells using the CCK-8 method; compound 5 (Sandwicensin) had the best activity, and compounds 6, 9, 11 and 12 exhibited moderate inhibitory activity. In addition, the targets and signaling pathways of Sandwicensin treatment for CRC were mined using network pharmacology, and MAPK3, MTOR, CCND1 and CDK4 were found to be closely associated with Sandwicensin treatment for CRC; the GO and KEGG analysis showed that Sandwicensin may directly regulate the cycle, proliferation and apoptosis of CRC cells through cancer-related pathways.


Assuntos
Isoflavonas , Neoplasias , Pueraria , Humanos , Pueraria/química , Raízes de Plantas/química , Genisteína , Isoflavonas/química
10.
Molecules ; 27(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364128

RESUMO

The deficiency or wrong combination of metal ions in Cu, Zn-superoxide dismutase (SOD1), is regarded as one of the main factors causing the aggregation of SOD1 and then inducing amyotrophic lateral sclerosis (ALS). A ligands-targets screening process based on native electrospray ionization ion mobility mass spectrometry (ESI-IMS-MS) was established in this study. Four glycosides including daidzin, sophoricoside, glycitin, and genistin were screened out from seven soybean isoflavone compounds and were found to interact with zinc-deficient or metal-free SOD1. The structure and conformation stability of metal-free and zinc-deficient SOD1 and their complexes with the four glycosides was investigated by collision-induced dissociation (CID) and collision-induced unfolding (CIU). The four glycosides could strongly bind to the metal-free and copper recombined SOD1 and enhance the folding stability of these proteins. Additionally, the ThT fluorescence assay showed that these glycosides could inhibit the toxic aggregation of the zinc-deficient or metal-free SOD1. The competitive interaction experiments together with molecular docking indicate that glycitin, which showed the best stabilizing effects, binds with SOD1 between ß-sheet 6 and loop IV. In short, this study provides good insight into the relationship between inhibitors and different SOD1s.


Assuntos
Esclerose Amiotrófica Lateral , Isoflavonas , Zinco/química , Superóxido Dismutase-1/metabolismo , Soja/metabolismo , Simulação de Acoplamento Molecular , Superóxido Dismutase/metabolismo , Esclerose Amiotrófica Lateral/metabolismo , Cobre/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Isoflavonas/farmacologia , Glicosídeos , Mutação
11.
Biomed Res Int ; 2022: 8862278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330454

RESUMO

Bone remodels via resorption and formation, two phenomena that continuously occur in bone turnover. The RANKL/RANK/OPG pathway is one of the several mechanisms that affect bone turnover. The RANKL/OPG ratio has a substantial role in bone resorption. An imbalance between formation and resorption is related to an increased RANKL/OPG balance. OPG, a member of this system, can bind to RANKL and suppress RANK-RANKL interaction, and subsequently, inhibit further osteoclastogenesis. The serum levels of RANKL and OPG in the bone microenvironment are vital for osteoclasts formation. The RANK/RANKL/OPG system plays a role in the pathogenesis of bone disorders. This system can be considered a new treatment target for bone disorders. Soy isoflavones affect the RANK/RANKL/OPG system through numerous mechanisms. Soy isoflavones decrease RANKL levels and increase OPG levels. Therefore, isoflavones improve bone metabolism and decrease bone resorption. Soy isoflavones decrease serum markers of bone resorption and improve bone metabolism. However, while the available data are promising, the results of several studies reported no change in RANKL and OPG levels with isoflavones supplementation. In this regard, current evidence is insufficient for conclusive approval of the efficacy of isoflavones on RANKL/RANK/OPG and further research, including animal and human studies, are needed to confirm the effect of soy isoflavones on the RANKL/RANK/OPG pathway. This study was a review of available evidence to determine the role of isoflavones in bone hemostasis and the RANK/RANKL/OPG pathway. The identification of the effects of isoflavones on the RANKL/RANK/OPG pathway directs future studies and leads to the development of effective treatment strategies for bone disorders.


Assuntos
Doenças Ósseas , Reabsorção Óssea , Isoflavonas , Animais , Humanos , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Osteoprotegerina/metabolismo , Densidade Óssea , Ligante RANK/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Doenças Ósseas/metabolismo , Isoflavonas/farmacologia
12.
ACS Synth Biol ; 11(11): 3575-3582, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36282591

RESUMO

Introducing metabolic pathways to the gut is important to tailor the biochemical components ultimately absorbed by the host. Given identical diets, hosts possessing different consortia of gut bacteria can exhibit distinct health outcomes regulated by metabolic capabilities of the gut microbiota. The disparate competency of the population to metabolize isoflavones, such as dietary daidzein, has shown health benefits for those individuals possessing gut bacteria capable of producing equol from daidzein-rich diets. To begin addressing health inequalities due to gut metabolic pathway deficiencies, we developed a probiotic that allows metabolism of isoflavones to provide a gut phenotype paralleling that of natural equol producers. Toward this goal, we engineered Escherichia coli to produce the enzymes necessary for conversion of daidzein to equol, and as demonstrated in a murine model, these bacteria enabled elevated serum equol levels to dietary daidzein, thus serving as a starting point for more sophisticated systems.


Assuntos
Microbioma Gastrointestinal , Isoflavonas , Camundongos , Animais , Equol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Isoflavonas/metabolismo , Dieta , Microbioma Gastrointestinal/genética , Bactérias/metabolismo
13.
Metabolomics ; 18(11): 84, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289122

RESUMO

INTRODUCTION: Phytoestrogens found in soy, fruits, peanuts, and other legumes, have been identified as metabolites capable of providing beneficial effects in multiple pathological conditions due to their ability to mimic endogenous estrogen. Interestingly, the health-promoting effects of some phytoestrogens, such as isoflavones, are dependent on the presence of specific gut bacteria. Specifically, gut bacteria can metabolize isoflavones into equol, which has a higher affinity for endogenous estrogen receptors compared to dietary isoflavones. We have previously shown that patients with multiple sclerosis (MS), a neuroinflammatory disease, lack gut bacteria that are able to metabolize phytoestrogen. Further, we have validated the importance of both isoflavones and phytoestrogen-metabolizing gut bacteria in disease protection utilizing an animal model of MS. Specifically, we have shown that an isoflavone-rich diet can protect from neuroinflammatory diseases, and that protection was dependent on the ability of gut bacteria to metabolize isoflavones into equol. Additionally, mice on a diet with isoflavones showed an anti-inflammatory response compared to the mice on a diet lacking isoflavones. However, it is unknown how isoflavones and/or equol mediates their protective effects, especially their effects on host metabolite levels. OBJECTIVES: In this study, we utilized untargeted metabolomics to identify metabolites found in plasma that were modulated by the presence of dietary isoflavones. RESULTS: We found that the consumption of isoflavones increased anti-inflammatory monounsaturated fatty acids and beneficial polyunsaturated fatty acids while reducing pro-inflammatory glycerophospholipids, sphingolipids, phenylalanine metabolism, and arachidonic acid derivatives. CONCLUSION: Isoflavone consumption alters the systemic metabolic landscape through concurrent increases in monounsaturated fatty acids and beneficial polyunsaturated fatty acids plus reduction in pro-inflammatory metabolites and pathways. This highlights a potential mechanism by which an isoflavone diet may modulate immune-mediated disease.


Assuntos
Isoflavonas , Animais , Camundongos , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Equol/metabolismo , Fitoestrógenos/metabolismo , Metabolismo dos Lipídeos , Receptores de Estrogênio/metabolismo , Fenilalanina/metabolismo , Metabolômica , Estrogênios , Bactérias/metabolismo , Inflamação/tratamento farmacológico , Ácidos Graxos Monoinsaturados , Esfingolipídeos , Glicerofosfolipídeos , Ácidos Araquidônicos
14.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232674

RESUMO

Platelets are crucial for hemostasis and arterial thrombosis, which may lead to severe cardiovascular diseases (CVDs). Thus, therapeutic agents must be developed to prevent pathological platelet activation. Glabridin, a major bioalkaloid extracted from licorice root, improves metabolic abnormalities (i.e., obesity and diabetes) and protects against CVDs and neuronal disorders. To the best of our knowledge, no studies have focused on glabridin's effects on platelet activation. Therefore, we investigated these effects in humans and mice. Glabridin exhibited the highest inhibitory effects on collagen-stimulated platelet aggregation and moderate effects on arachidonic-acid-stimulated activation; however, no effects were observed for any other agonists (e.g., thrombin or U46619). Glabridin evidently reduced P-selectin expression, ATP release, and intracellular Ca2+ ([Ca2+]i) mobilization and thromboxane A2 formation; it further reduced the activation of phospholipase C (PLC)γ2/protein kinase C (PKC), phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3ß (GSK3ß), mitogen-activated protein kinase (MAPK), and NF-κB. In mice, glabridin reduced the mortality rate caused by acute pulmonary thromboembolism without altering bleeding time. Thus, glabridin effectively inhibits the PLCγ2/PKC cascade and prevents the activation of the PI3K/Akt/GSK3ß and MAPK pathways; this leads to a reduction in [Ca2+]i mobilization, which eventually inhibits platelet aggregation. Therefore, glabridin may be a promising therapeutic agent for thromboembolic disorders.


Assuntos
Glycyrrhiza , Selectina-P , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/metabolismo , Colágeno/metabolismo , Flavonoides/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Isoflavonas , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Selectina-P/metabolismo , Fenóis , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Fosforilação , Ativação Plaquetária , Agregação Plaquetária , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombina/metabolismo , Tromboxanos/metabolismo
15.
Drug Des Devel Ther ; 16: 3315-3326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193285

RESUMO

Purpose: Puerarin (PUR) is a major bioactive ingredient extracted from the root of Pueraria lobata (Willd.) Ohwi, which is known as Gegen in traditional Chinese medicine. Conventional PUR ophthalmic dosage forms such as solutions and suspensions have many drawbacks, including-rapid precorneal elimination of the drug mainly due to lacrimal duct drainage. The purpose of this study is to develop a thermal responsive in situ gel system containing PUR-loaded human albumin nanoparticles (PUR-HSA-NPs ISG). Methods: The system has the required sol-gel phase transition temperature, and therefore can be used for local ocular administration to treat glaucoma. The formulation was evaluated for its sol-gel transition temperature, viscosity and in vitro release. In vivo eye irritation was evaluated in rabbits. In this study, the animal model of glaucoma was used to evaluate the pharmacodynamics of PUR-HSA-NPs ISG in vivo. Results: Morphologically, the PUR-HSA-NPs ISG exhibited a normal spherical shape with no aggregation or degradation. It had a mean size of 64.8 nm, and the drug-loading and encapsulation efficiency were 7.1%±0.3% and 80.7%±7.4%, respectively. The gelation temperature of the prepared PUR-HSA-NPs ISG thermogelling solutions was 37°C. Meanwhile, the PUR-HSA-NPs ISG showed thixotropic behavior with the downward curve exhibiting lower shear stress values as compared to corresponding points on the upward curve. The pharmacological results showed a continuous reduction of the IOP value for a long time and that the value remained in a lower-level range compared to that in the PUR eye drop group. According to the pharmacodynamic results, the Bcl-2/Bax ratio of the PUR-HSA-NPs ISG group was closest to 1 (0.8798, 24 h), with obvious reduction of tissue cell apoptosis. Conclusion: Through this study, it was found that PUR-HSA-NPs ISG is an ideal ocular drug delivery system. It is hoped that this product could be further promoted for clinical applications in the future.


Assuntos
Glaucoma , Nanopartículas , Albuminas , Animais , Sistemas de Liberação de Medicamentos/métodos , Géis , Glaucoma/tratamento farmacológico , Humanos , Isoflavonas , Soluções Oftálmicas , Coelhos , Albumina Sérica Humana , Proteína X Associada a bcl-2
16.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233223

RESUMO

S-equol, a metabolite of soy isoflavone daidzein transformed by the gut microbiome, is the most biologically potent among all soy isoflavones and their metabolites. Soy isoflavones are phytoestrogens and exert their actions through estrogen receptor-ß. Epidemiological studies in East Asia, where soy isoflavones are regularly consumed, show that dietary isoflavone intake is inversely associated with cognitive decline and dementia; however, randomized controlled trials of soy isoflavones in Western countries did not generally show their cognitive benefit. The discrepant results may be attributed to S-equol production capability; after consuming soy isoflavones, 40-70% of East Asians produce S-equol, whereas 20-30% of Westerners do. Recent observational and clinical studies in Japan show that S-equol but not soy isoflavones is inversely associated with multiple vascular pathologies, contributing to cognitive impairment and dementia, including arterial stiffness and white matter lesion volume. S-equol has better permeability to the blood-brain barrier than soy isoflavones, although their affinity to estrogen receptor-ß is similar. S-equol is also the most potent antioxidant among all known soy isoflavones. Although S-equol is available as a dietary supplement, no long-term trials in humans have examined the effect of S-equol supplementation on arterial stiffness, cerebrovascular disease, cognitive decline, or dementia.


Assuntos
Disfunção Cognitiva , Demência , Microbioma Gastrointestinal , Isoflavonas , Antioxidantes , Disfunção Cognitiva/prevenção & controle , Demência/prevenção & controle , Equol/metabolismo , Receptor beta de Estrogênio , Humanos , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Fitoestrógenos/metabolismo , Receptores de Estrogênio
17.
Biomed Pharmacother ; 155: 113758, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271546

RESUMO

Diabetic nephropathy [DN] is one of the most prevalent microvascular complications of diabetes mellitus [DM] and it is considered a leading cause of kidney failure. In this study calycosin, an isoflavone that constitutes the major constituent in Radix Astragali with numerous pharmacological merits was investigated as reno-protective agent against DN and also the potential underlying mechanisms were investigated. Streptozotocin (STZ) (40 mg/kg) was injected in the peritoneal cavity of male Sprague-Dawely rats to induce DM. For ten weeks, calycosin (5 and 10 mg/kg), and NAC (500 mg/kg) were orally administered and they significantly lowered blood glucose levels, but significantly increased insulin levels. Calycosin improved the deteriorated kidney functions as evidenced in retracted serum creatinine, albuminuria, blood urea nitrogen, and proteinuria levels. Meanwhile, urine creatinine clearance significantly escalated. Furthermore, biomarkers of cell injury; LDH activity, significantly declined and kidney content of NO markedly decreased as well. Inflammation, fibrosis and oxidative stress were manifested by increased serum levels of IL-1ß, renal NF-κBp65, NLRP3, TXNIP and MDA contents with declined levels of IL-10 and TAC and decreased Nrf2 expression. The above-mentioned biomarkers were significantly improved with calycosin treatment which modulated NF-κB/p65/NLRP3/TXNIP signaling, oxidative stress, inflammatory cytokines and fibrotic processes; Thus, implying a reno-protective impact. This was associated with improvement in renal histopathological and immune-histopathological parameters; H&E, Masson Trichrome and Nrf-2. Based on these findings, calycosin can be presumed to be a promising drug for hindering the development of DN through modulation of NF-κB/p65/NLRP3/TXNIP inflammasome signaling pathway.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Insulinas , Isoflavonas , Ratos , Masculino , Animais , Nefropatias Diabéticas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estreptozocina , Inflamassomos/metabolismo , Creatinina/metabolismo , Interleucina-10/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , NF-kappa B/metabolismo , Glicemia/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Transdução de Sinais , Rim/patologia , Biomarcadores/metabolismo , Insulinas/metabolismo , Insulinas/uso terapêutico
18.
Food Res Int ; 161: 111766, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192931

RESUMO

Cold plasma has been used to promote seed germination. In this study, soybean seeds were directly treated with cold plasma (CP) for different durations (0, 30, 60, 120, and 180 s) and then cultivated with cold-plasma-activated water (PAW) during germination. The effects of CP and PAW treatment on the physical-biochemical properties and nutritional components of soybean sprouts were investigated. The results showed that sprout length increased by 41.07% after moderate CP (60 s) and further increased with PAW. The fresh weight increased by 11.24% after moderate CP treatment. Although sugar content decreased with CP, it increased with PAW. Total amino acid and isoflavone content increased after moderate CP treatment. Both CP and PAW treatments increased the intercellular water and weakened the fluidity of water, and small-molecule proteins were polymerized into large-molecule proteins. The solubility of protein was enhanced under PAW treatment. However, neither PAW nor CP treatment exerted a significant influence on the secondary structure of proteins. The hardness of the soybean sprouts decreased and their fracturability increased after moderate CP treatment. This study demonstrates that cold plasma has the potential to enhance the biomass and edible quality of soybean sprouts.


Assuntos
Isoflavonas , Gases em Plasma , Aminoácidos , Isoflavonas/química , Gases em Plasma/farmacologia , Soja/química , Açúcares , Água
19.
Chem Commun (Camb) ; 58(88): 12337-12340, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259981

RESUMO

We report a C-glycosyltransferase PlCGT from Pueraria lobata. PlCGT exhibits efficient C-glycosylation activities toward two types of substrates (isoflavones and phloroglucinol derivatives). Homology modelling reveals that a narrow hydrophobic pocket is responsible for its substrate selectivity. An unusual Asn16-Asp124 dyad in the pocket may mediate the SN2-like mechanism in C-glycosylation.


Assuntos
Isoflavonas , Pueraria , Pueraria/química , Glicosiltransferases , Raízes de Plantas/química , Isoflavonas/química
20.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293214

RESUMO

This study aimed to evaluate the safety and potential use of soy isoflavones in the treatment of skin problems, difficult-to-heal wounds and postoperative scars in women after the oncological treatment of breast cancer. The effects of different concentrations of genistein as a representative of soy isoflavonoids on MCF-7 tumor cells and BJ skin fibroblasts cultured in vitro were assessed. Genistein affects both healthy dermal BJ fibroblasts and cancerous MCF-7 cells. The effect of the tested isoflavonoid is closely related to its concentration. High concentrations of genistein destroy MCF-7 cancer cells, regardless of the exposure time, with a much greater effect on reducing cancer cell numbers at longer times (48 h). Lower concentrations of genistein (10 and 20 µM) increase the abundance of dermal fibroblasts. However, higher concentrations of genistein (50 µM and higher) are detrimental to fibroblasts at longer exposure times (48 h). Our studies indicate that although genistein shows high potential for use in the treatment of skin problems, wounds and surgical scars in women during and after breast cancer treatment, it is not completely safe. Introducing isoflavonoids to treatment requires further research into their mechanisms of action at the molecular level, taking into account genetic and immunological aspects. It is also necessary to conduct research in in vivo models, which will allow for eliminating adverse side effects of therapy.


Assuntos
Neoplasias da Mama , Isoflavonas , Feminino , Humanos , Genisteína/farmacologia , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Cicatriz/patologia , Fibroblastos , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...