Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.051
Filtrar
1.
Cell Physiol Biochem ; 53(4): 701-712, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592599

RESUMO

BACKGROUND/AIMS: Cholinergic signalling mediated by the activation of muscarinic and nicotinic receptors has been described in the literature as a classic and important signalling pathway in the regulation of the inflammatory response. Recent research has investigated the role of acetylcholine, the physiological agonist of these receptors, in the control of energy homeostasis at the central level. Studies have shown that mice that do not express acetylcholine in brain regions regulating energy homeostasis present with excessive weight gain and hyperphagia. However, it has not yet been well-described in the literature which cholinergic receptor subunits are involved in this response; moreover, the signalling pathways responsible for the observed effects are not fully delineated. The hypothalamus is the regulating centre of energy homeostasis, and the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) is highly expressed in this region. When active, α7nAChR recruits proteins such as JAK2/STAT3 to mediate its signalling; the same intracellular components are required by leptin, an anorexigenic hormone. The aim of the present study was to evaluate the role of the hypothalamic α7nAChR in the control of energy homeostasis. METHODS: The work was performed on Swiss male mice. Initially, using immunofluorescent staining on brain sections, the presence of α7nAChR in hypothalamic cells regulating energy homeostasis was evaluated. Animals were submitted to stereotaxis in the lateral ventricle and intracerebroventricular stimulation (ICV) was used for the administration of an agonist (PNU) or antagonist (α-bungarotoxin) of α7nAChR. Metabolic parameters were evaluated and the expression of neuropeptides was evaluated in the hypothalamus by real-time PCR and western blot. The expression of hypothalamic neuropeptides was evaluated in mice treated with siRNA or inhibitors of JAK2/STAT3 (AG490 and STATTIC) proteins. We also evaluated food intake in α7nAChR knockout animals (α7KO). Additionally, in mouse hypothalamic cell culture (the mypHoA-POMC/GFP lineage), we evaluated the expression of neuropeptides and pSTAT3 after stimulation with PNU. RESULTS: Our results indicate co-localisation of α7nAChR with α-MSH, AgRP and NPY in hypothalamic cells. Pharmacological activation of α7nAChR reduced food intake and increased hypothalamic POMC expression and decreased NPY and AgRP mRNA levels and the protein content of pAMPK. Inhibition of α7nAChR with an antagonist increased the mRNA content of NPY and AgRP. Inhibition of α7nAChR with siRNA led to the suppression of POMC expression and an increase in AgRP mRNA levels. α7KO mice showed no changes in food intake. Inhibition of proteins involved in the JAK2/STAT3 signalling pathway reversed the effects observed after PNU stimulation. POMC-GFP cells, when treated with PNU, showed increased POMC expression and nuclear translocation of pSTAT3. CONCLUSION: Thus, selective activation of α7nAChR is able to modulate important markers of the response to food intake, suggesting that α7nAChR activation can suppress the expression of orexigenic markers and favour the expression of anorexics using the intracellular JAK2/STAT3 machinery.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Janus Quinase 2/metabolismo , Pró-Opiomelanocortina/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Bungarotoxinas/farmacologia , Linhagem Celular , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/genética
3.
J Biosci ; 44(4)2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31502564

RESUMO

Vascular calcification is a common problem in the elderly with diabetes, heart failure and end-stage renal disease. The differentiation of vascular smooth muscle cells (VSMCs) into osteoblasts is the main feature, but the exact mechanism remains unclear. It is not clear whether adiponectin (APN) affects osteogenic differentiation of VSMCs. This study aims to explore the effect of APN on vascular calcification by using a cell model induced by beta-glycerophosphate (beta-GP). VSMCs were isolated and treated with beta-GP and APN in this study. The alkaline phosphatase (ALP) activity and expression levels of Runx2, BMP-2, collagen type I and osteocalcin were determined. The expression levels of STAT3 and p-STAT3 in nucleus and cytoplasm of VSMCs were analyzed. The results showed that APN significantly inhibited the expression of ALP, Runx2, BMP-2, collagen I, osteocalcin and the formation of the mineralized matrix in VSMCs induced by beta-GP. APN reduces the osteogenic differentiation of VSMCs induced by beta-GP and down-regulates the expression of the osteogenic transcription factor osterix by inhibiting STATS3 phosphorylation and nuclear transport. APN may be one of the potential candidates for clinical treatment of vascular calcification.


Assuntos
Adiponectina/genética , Osteogênese/genética , Fator de Transcrição STAT3/genética , Calcificação Vascular/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glicerofosfatos/farmacologia , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Osteogênese/efeitos dos fármacos , RNA/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp7/genética , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/patologia
4.
Eur J Med Chem ; 181: 111590, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408808

RESUMO

Hybridization strategy is an effective strategy to obtain multi-target inhibitors in drug design. In this study, we assembled the pharmacophores of momelotinib and tandutinib to get a series of 4-piperazinyl-2-aminopyrimidine derivatives. All compounds were tested for the inhibition of JAK2 and FLT3 enzymes, of which, compounds with potent enzyme activities were assayed for antiproliferative activities against three cancer cell lines (HEL, MV4-11, and HL60). The structure-activity relationship studies were conducted through variations in two regions, the "A" phenyl ring and "B" phenyl ring. Compound 14j showed the most balanced in vitro inhibitory activity against JAK2 and FLT3 (JAK2 IC50 = 27 nM, FLT3 IC50 = 30 nM), and it also showed potent inhibition against the above tested cell lines. In the cellular context, 14j strongly induced apoptosis by arresting cell cycle in the G1/S phase, and was selected as a promising JAK2/FLT3 dual inhibitor.


Assuntos
Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Drogas , Humanos , Janus Quinase 2/metabolismo , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Piperazinas/química , Piperazinas/farmacologia , Tirosina Quinase 3 Semelhante a fms/metabolismo
5.
Gene ; 719: 144080, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31454541

RESUMO

Trigeminal neuropathic pain is seen as a huge clinical challenge. Although numerous drugs have been developed to treat the condition, some patients have shown intolerance to the drugs and thus continue to suffer. In the present study, a rat model of trigeminal neuropathic pain was established using incorrectly positioned dental implants, which had various manifestations that were similar to human trigeminal neuropathic pain. Using this model, we investigated the differential regulation of JAK2 and PTEN. Firstly, we examined the expression of JAK2 and PTEN in the medullary dorsal horn. After inhibiting JAK2/PTEN, we evaluated nociception-related behavioral alterations. The rat models were established by replacing the left lower second molar with a mini dental implant. Immunoblot assay and immunofluorescence experiments indicated high expression of JAK2 and PTEN in medullary dorsal horn after the nerve injury, which attained plateau levels on post-operative day (POD) 5-10 and 10-20. Administration of adenovirus-shRNA-JAK2 on POD 1 reduced mechanical allodynia and downstream STAT activation. Meanwhile, the administration of adenovirus-shRNA-PTEN on POD 1 attenuated mechanical allodynia while upregulating AKT. In addition to postoperative JAK2 and PTEN activation, dexmedetomidine treatment (10 mg/kg) also modulated the downstream sensors of these signaling molecules. These data suggest that JAK2 and PTEN are pivotal to the development of trigeminal neuropathic pain, and that JAK2 and PTEN suppression alleviates the neuropathic pain.


Assuntos
Técnicas de Silenciamento de Genes , Janus Quinase 2/genética , Neuralgia/diagnóstico , PTEN Fosfo-Hidrolase/genética , Neuralgia do Trigêmeo/genética , Animais , Implantes Dentários/efeitos adversos , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Dexmedetomidina/administração & dosagem , Dexmedetomidina/uso terapêutico , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Janus Quinase 2/antagonistas & inibidores , Masculino , Neuralgia/genética , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Medição da Dor , Ratos , Ratos Sprague-Dawley
6.
Phytomedicine ; 63: 153055, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31377585

RESUMO

BACKGROUND: Indoleamine 2,3-dioxygenase 1 (IDO1), an important intracellular rate-limiting enzyme in the development of Hepatic fibrosis (HF), and has been proposed as a hallmark of HF. Danshensu (DSS) is a major bioactive component that isolated from a edible traditional Chinese medicinal herb Salviae Miltiorrhizae Radix et Rhizoma (Danshen), while, the anti-HF mode and mechanism of action of DSS have not been fully elucidated. METHODS: Carbon tetrachloride (CCl4)-induced rat HF model and TGF-ß1-induced hepatic stellate cell (HSC) model were employed to assess the in vivo and in vitro anti-HF effects of DSS. HSC-T6 cells stably expressing IDO1, a constitutively active IDO1 mutant, was used to determine the role of JAK2-STAT3 signaling in the DSS's anti-HF effects. RESULTS: We found that intragastric administration of DSS potently reduced fibrosis, inhibited IDO1 expression and STAT3 activity both in vitro and in vivo. Using molecular docking and molecular dynamics analysis, DSS was identified as a novel IDO1 inhibitor. Mechanistic studies indicated that DSS inhibited JAK2-STAT3 signaling, it reduced IDO1 expression, STAT3 phosphorylation and STAT3 nuclear localization. More importantly, overexpression of IDO1 diminished DSS's anti-HF effects. CONCLUSION: Our findings provide a pharmacological justification for the clinical use of DSS in treating HF, and suggest that DSS has the potential to be developed as a modern alternative and/or complimentary agent for HF treatment and prevention.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Janus Quinase 2/metabolismo , Lactatos/farmacologia , Cirrose Hepática Experimental/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Linhagem Celular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Janus Quinase 2/antagonistas & inibidores , Lactatos/química , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Masculino , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
7.
Chin J Nat Med ; 17(5): 372-380, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31171272

RESUMO

Macrophages play an important role in inflammation, and excessive and chronic activation of macrophages leads to systemic inflammatory diseases, such as atherosclerosis and rheumatoid arthritis. In this paper, we explored the anti-inflammatory effect of broussonin E, a novel phenolic compound isolated from the barks ofBroussonetia kanzinoki, and its underlying molecular mechanisms. We discovered that Broussonin E could suppress the LPS-induced pro-inflammatory production in RAW264.7 cells, involving TNF-α, IL-1ß, IL-6, COX-2 and iNOS. And broussonin E enhanced the expressions of anti-inflammatory mediators such as IL-10, CD206 and arginase-1 (Arg-1) in LPS-stimulated RAW264.7 cells. Further, we demonstrated that broussonin E inhibited the LPS-stimulated phosphorylation of ERK and p38 MAPK. Moreover, we found that broussonin E could activate janus kinase (JAK) 2, signal transducer and activator of transcription (STAT) 3. Downregulated pro-inflammatory cytokines and upregulated anti-inflammatory factors by broussonin E were abolished by using the inhibitor of JAK2-STAT3 pathway, WP1066. Taken together, our results showed that broussonin E could suppress inflammation by modulating macrophages activation statevia inhibiting the ERK and p38 MAPK and enhancing JAK2-STAT3 signaling pathway, and can be further developed as a promising drug for the treatment of inflammation-related diseases such as atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mediadores da Inflamação/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Fenóis/química , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Neurooncol ; 143(1): 35-47, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30993511

RESUMO

PURPOSE: Glioma is a highly aggressive and lethal brain tumor. Signal transducers and activators of transcription (STAT) pathway are widely implicated in glioma carcinogenesis. Our previous study found that the Fynrelated kinase (FRK) gene, plays as a tumor suppressor in the development and progression of glioma. This study aimed to investigate the role of FRK in the activation pathway of STATs and its effect on the growth of glioma. METHODS: The U251 and U87 cells with stable FRK overexpression were generated by lentivirus technique. The effects of FRK on the related proteins of STAT signaling pathway were detected by western blotting. Coimmunoprecipitation was used to detect the association of FRK and STAT1. The effects of STAT1 on the proliferation of glioma cells were detected by CCK8 or Edu cell proliferation assays. The expressions and correlation of FRK and p-STAT1 in glioma tissues were detectd by western blotting or immunohistochemistry. The effect of FRK on the growth of glioma was investigated in vivo mouse model. RESULTS: The level of p-JAK2 and p-STAT1 increased after FRK overexpression, while they decreased after FRK downregulation both in U251 and U87 cells. However, FRK had no effect on STAT3 phosphorylation. FRK-induced STAT1 activation was not dependent on JAK2. FRK associated with STAT1, induced STAT1 nuclear translocation and regulated the expressions of STAT1-related target genes. STAT1 overexpression suppressed the proliferation of glioma cells. In contrast, STAT1 knockdown by siRNA promoted glioma cell growth. Importantly, down-regulation of STAT1 partially attenuated FRK-induced growth suppression. The clinical sample-based study indicated that the expression of FRK was significantly correlated with the expression of p-STAT1. FRK significantly inhibited glioma tumor growth in vivo. CONCLUSIONS: Our findings highlighted a critical role of FRK in tumor suppression ability through promoting STAT1 activation, and provided a potential therapeutic target for glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células/fisiologia , Glioma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/tratamento farmacológico , Glioma/patologia , Células HEK293 , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Masculino , Camundongos Nus , Transplante de Neoplasias , Fosforilação , Fator de Transcrição STAT1/genética , Transdução de Sinais , Sincalida/metabolismo , Carga Tumoral/fisiologia
9.
Hematol Oncol ; 37(4): 418-423, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30985017

RESUMO

The 2016 WHO criteria identified early primary myelofibrosis (PMF) as an individual entity with milder clinical features and better outcome compared with overt PMF. Here, we compared early and overt PMF patients treated with ruxolitinib in terms of baseline clinical/laboratory characteristics, response, and toxicity to treatment. We observed that early-PMF patients achieve better and more stable spleen and symptoms responses, with significantly lower rates of hematological toxicities. No differences in overall and leukemia-free survival were detected between the two cohorts. The application of 2016 WHO criteria is crucial to identify those PMF patients who deserve a stricter monitoring during treatment.


Assuntos
Antineoplásicos/uso terapêutico , Mielofibrose Primária/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas de Laboratório Clínico/normas , Diagnóstico Diferencial , Diagnóstico Precoce , Feminino , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Tamanho do Órgão , Mielofibrose Primária/diagnóstico , Estudos Retrospectivos , Baço/patologia , Trombocitemia Essencial/diagnóstico , Resultado do Tratamento , Organização Mundial da Saúde
10.
Cell Biol Int ; 43(6): 695-705, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30977566

RESUMO

Cardiac hypertrophy is a common pathological change found in various cardiovascular diseases. Although it has long been recognized as an important risk factor responsible for heart failure, there is still a lack of effective treatments in clinic. Chrysophanol is a natural compound with multiple biological activities and protective roles in the cardiovascular system. However, its potential effect on cardiac hypertrophy remains unclear. In the current study, we found that chrysophanol could protect against isoproterenol (ISO)-induced cardiac hypertrophy both in vitro and in vivo. Increase of cell surface and hypertrophic marker expression induced by ISO in neonatal rat cardiomyocytes was downregulated by chrysophanol. Moreover, chrysophanol ameliorated the abnormal changes of cardiac structure and function in rats subjected to ISO injection, as shown by echocardiography and morphometry measurements. Further mechanistical investigation demonstrated that chrysophanol inhibited phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) induced by ISO. Nuclear translocation of STAT3 and transcription of downstream genes promoted by ISO treatment were also remarkably suppressed by chrysophanol. Taken together, our findings revealed that chrysophanol attenuated ISO-induced cardiac hypertrophy by inhibiting JAK2/STAT3 signaling pathway. Chrysophanol may be a potential candidate compound for the prevention and treatment of hypertrophy-related cardiomyopathy.


Assuntos
Antraquinonas/farmacologia , Cardiomegalia/tratamento farmacológico , Janus Quinase 2/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Antraquinonas/metabolismo , Cardiomegalia/enzimologia , Cardiomegalia/metabolismo , Cardiomiopatias/tratamento farmacológico , Isoproterenol/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Lipids Health Dis ; 18(1): 54, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777075

RESUMO

BACKGROUND: Baricitinib, an oral-administrated selective inhibitor of the JAK1 and JAK2, is recently approved for rheumatoid arthritis (RA) treatment. With the aim to provide some insights on the clinical safety, the current study mainly focused on the effect of baricitinib on low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels and cardiovascular risk. METHODS: The net change scores [least squares mean (LSM) and mean change] of LDL-C and HDL-C levels from baseline with the comparison of baricitinib versus placebo were pooled, respectively. Risk rations (RR) of major cardiovascular events (MACEs) and differences of cardiovascular risk scores at the end of treatment across groups were compared. RESULTS: Six trials with randomized 3552 patients were finally included in summary analysis. Results showed that baricitinib significantly increased LDL-C levels, the net mean change was 13.15 mg/dl with 95% CI 8.89~17.42 (I2 = 0) and the net LSM was 11.94 mg/dl with 95% CI 7.52~16.37 (I2 = 84%). HDL-C also increased obviously with the net LSM change was 7.19 mg/dl (95% CI, 6.05~8.33, I2 = 47%) and net mean change was 5.40 mg/dl (95% CI, 3.07~7.74, I2 = 10%). Subgroup and meta-regression analysis demonstrated baricitinib induced LDL-C and HDL-C increases in a dose-response manner. However, both the pooled RRs of MACEs and differences of cardiovascular risk scores were not statistically significant across groups. CONCLUSION: This study confirmed that baricitinib induced a stable dose-response increase in LDL-C and HDL-C levels. Since the causality association between altered lipids and cardiovascular risk was not identified yet, this issue cannot be completely dismissed. Future research is needed to fully dissect the implications of these lipid changes.


Assuntos
Antirreumáticos/administração & dosagem , Artrite Reumatoide/tratamento farmacológico , Azetidinas/administração & dosagem , HDL-Colesterol/agonistas , LDL-Colesterol/agonistas , Inibidores de Proteínas Quinases/administração & dosagem , Sulfonamidas/administração & dosagem , Antirreumáticos/efeitos adversos , Artrite Reumatoide/sangue , Azetidinas/efeitos adversos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/induzido quimicamente , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Relação Dose-Resposta a Droga , Esquema de Medicação , Expressão Gênica , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Sulfonamidas/efeitos adversos
12.
Neuropharmacology ; 149: 133-148, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772375

RESUMO

Leptin is produced in the adipocytes and plays a pivotal role in regulation of energy balance by controlling appetite and metabolism. Leptin receptors are widely distributed in the brain, especially in the hypothalamus, hippocampus, and neocortex. The insular cortex (IC) processes gustatory and visceral information, which functionally correlate to feeding behavior. However, it is still an open issue whether and how leptin modulates IC neural activities. Our paired whole-cell patch-clamp recordings using IC slice preparations demonstrated that unitary inhibitory postsynaptic currents (uIPSCs) but not uEPSCs were potentiated by leptin in the connections between pyramidal (PNs) and fast-spiking neurons (FSNs). The leptin-induced increase in uIPSC amplitude was accompanied by a decrease in paired-pulse ratio. Under application of inhibitors of JAK2-PI3K but not MAPK pathway, leptin did not change uIPSC amplitude. Variance-mean analysis revealed that leptin increased the release probability but not the quantal size and the number of release site. These electrophysiological findings suggest that the leptin-induced uIPSC increase is mediated by activation of JAK2-PI3K pathway in presynaptic FSNs. An in vivo optical imaging revealed that leptin application decreased excitatory propagation in IC induced by electrical stimulation of IC. These leptin-induced effects were not observed under the low energy states: low glucose concentration (2.5 mM) in vitro and one-day-fasting condition in vivo. However, leptin enhanced uIPSCs under application of low glucose with an AMPK inhibitor. These results suggest that leptin suppresses IC excitation by facilitating GABA release in FSN→PN connections, which may not occur under a hunger state.


Assuntos
Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Leptina/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Cromonas/farmacologia , Excitabilidade Cortical/efeitos dos fármacos , Estimulação Elétrica , Flavonoides/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Glucose/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Morfolinas/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Transgênicos , Rotenona/análogos & derivados , Rotenona/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Wortmanina/farmacologia
13.
Rheumatology (Oxford) ; 58(Suppl 1): i17-i26, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30806707

RESUMO

Tofacitinib and baricitinib are the first orally available, small-molecule inhibitors of Janus kinase (JAK) enzymes to be approved for the treatment of RA. Tofacitinib is a selective JAK1, 3 inhibitor with less activity against JAK2 and TYK2 and baricitinib is a selective, oral JAK1, 2 inhibitor with moderate activity against TYK2 and significantly less activity against JAK3. Both drugs have undergone extensive phase III clinical trials in RA and demonstrated rapid improvements in disease activity, function and patient-reported outcomes as well as disease modification. Tofacitinib 5 mg bd, was approved by the Federal Drug Administration in 2012 for the treatment of RA in patients who are intolerant or unresponsive to MTX. An extended release formulation for the treatment of RA was approved by Federal Drug Administration in 2016. In 2017 the European Medicines Agency approved tofacitinib 5 mg bd in combination with MTX and baricitinib 4 mg and 2 mg once daily for the treatment of moderate to severe active RA in adult patients who are intolerant or unresponsive to one or more conventional synthetic DMARDs.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Azetidinas/uso terapêutico , Inibidores de Janus Quinases/uso terapêutico , Piperidinas/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Sulfonamidas/uso terapêutico , Antirreumáticos/uso terapêutico , Quimioterapia Combinada , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Metotrexato/uso terapêutico , Resultado do Tratamento
14.
Pathol Oncol Res ; 25(2): 769-775, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30706361

RESUMO

The study aimed to investigate the reason of HCT116 cell resistance to MEK inhibitor, and the combination treatment effects of MEK inhibitor AZD6244 and JAK2/STAT3 inhibitor AG490 on colon cancer in vitro and in vivo, including cell viability, apoptosis, and explore the partial mechanisms focused on AZD6244 promoted the activation of JAK2-STAT3 pathways. In vitro, we examined the HCT116 cell viability by CCK8, cell apoptosis by flow cytometry; Western blot measured p-ERK, p-JAK2, p-STAT3 and STAT3 expression. In vivo, nude mice were subcutaneously injected by HCT116 cells. The tumor volume and weight were detected. HCT116 cell resistance to MEK inhibitor AZD6244, which inhibited the activation of ERK and promoted the activation of JAK2-STAT3 signaling. The combination treatment of AZD6244 and AG490 significantly inhibited cell viability and induced cell apoptosis, and completely inhibited the activation of ERK and JAK2-STAT3 signaling. Combination treatment of AZD6244 and AG490 had a stronger effect than that of AZD6244 as a monotherapy in vitro and in vivo. The treatment of AZD6244 on K-Ras mutations HCT116 cells promoted the activation of JAK2/STAT3 signaling. JAK2/STAT3 inhibitor AG490 synergistically increases effects of AZD6244 on colon cancer in vitro and in vivo. Collectively, these results provide a rationale for combining inhibitors of the JAK/STAT pathway and MEK inhibitors to reduce the potential impact of drug resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/patologia , Janus Quinase 2/antagonistas & inibidores , MAP Quinase Quinase Quinases/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Benzimidazóis/antagonistas & inibidores , Células HCT116 , Humanos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tirfostinas/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
15.
PLoS One ; 14(2): e0211555, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763329

RESUMO

BACKGROUND: Serum amyloid A (SAA), a potent inflammatory mediator, and Janus kinase 2 (JAK2), an intracellular signaling kinase, are increased by diabetes. The aims were to elucidate: 1) a JAK2-mediated pathway for increased SAA in the kidneys of diabetic mice; 2) a JAK2-SAA pathway for inflammation in podocytes. METHODS: Akita diabetic mice (129S6) with podocyte JAK2 overexpression and angiotensin II infusion (4 weeks) were given a JAK1,2 inhibitor (LY03103801, 3 mg/kg/day orally for the last two weeks). Kidneys were immunostained for SAA isoform 3 (SAA3). SAA3 knockout and control mouse podocytes were exposed to advanced glycation end products (AGE) or exogenous SAA with JAK2 inhibition (Tyrphostin AG 490, 50µM). JAK2 activity (phosphorylation, Western blot, 1 hour) and mRNA for SAA3 and associated inflammatory genes (Cxcl5, Ccl2, and Ccl5) were measured by RT-PCR (20 hours). RESULTS: SAA3 protein was present throughout the diabetic kidney, and podocyte JAK2 overexpression increased tubulointerstitial SAA3 compared to wild type diabetic controls, 43% versus 14% (p = 0.007); JAK1,2 inhibition attenuated the increase in SAA3 to 15% (p = 0.003). Urine albumin-to-creatinine ratio (r = 0.49, p = 0.03), mesangial index (r = 0.64, p = 0.001), and glomerulosclerosis score (r = 0.51, p = 0.02) were associated with SAA3 immunostaining scores across mouse groups. Exposing podocytes to AGE or exogenous SAA increased JAK2 activity within one hour and mRNA for associated inflammatory genes after 20 hours. JAK2 inhibition reduced SAA3 mRNA expression in podocytes exposed to AGE or SAA. SAA3 knockout podocytes had >85% lower AGE-induced inflammatory genes. CONCLUSION: JAK1,2 inhibition reduced SAA and histological features of DKD in podocyte JAK2-overexpressing mice. In podocytes exposed to a diabetes-like condition, JAK2 inhibition reduced expression of SAA, while SAA knockout blocked expression of associated pro-inflammatory mediators. SAA may promote JAK2-dependent inflammation in the diabetic kidney.


Assuntos
Nefropatias Diabéticas/metabolismo , Janus Quinase 2/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Células Cultivadas , Colesterol/sangue , Técnicas de Inativação de Genes , Hemoglobina A Glicada/metabolismo , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Rim/metabolismo , Camundongos , Podócitos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Amiloide A Sérica/genética , Transdução de Sinais , Triglicerídeos/sangue
16.
Expert Opin Investig Drugs ; 28(4): 337-349, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30775933

RESUMO

INTRODUCTION: Tyrosine kinases (TKs) drive cell survival and proliferation in many normal and malignant cell types. TKs are frequently mutated in acute myeloid leukemia (AML) and hence are increasingly targeted. The management of AML has dramatically improved because of TKI-targeted treatment. AREAS COVERED: This review provides a biological background for TK inhibitors (TKIs) in AML and reviews their use in the clinic. TK expression and mutation in AML are explored with a focus on TKs associated with specific AML subsets and treatment outcomes. TKIs that specifically target FLT3, c-Kit, and Jak2 are discussed. TKI targeting of specific genes mutated in individual cases and general 'untargeted' use of these agents are highlighted. Lastly, the mechanisms TKI drug resistance in AML are explored EXPERT OPINION: The use of TKIs in the clinic is improving outcomes for many patients. An improved understanding of tyrosine kinase biology and the expanding use of TKIs are likely to dramatically improve outcomes in the coming decade. TKIs and other targeted agents could gradually supplant the use of cytotoxic chemotherapy for AML.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/enzimologia , Terapia de Alvo Molecular , Mutação , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/metabolismo , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo
17.
Comput Biol Chem ; 79: 110-118, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30785020

RESUMO

Recent studies reported the involvement of JAK2/STAT3 pathway in various solid tumours including breast, ovarian, prostate and lung cancers. Clinical literature also reported the lowered burden in breast and ovarian cancers by targeting JAK2 pathway. In this study, a series of novel 2,4-disubstituted quinazolines (2a-2 j and 3a-3 j) were synthesized and were evaluated for their cytotoxicity against human breast cancer (MDA-MB-231) and ovarian cancer (SK-O-V3) cell lines using MTT assay. Moderate to good in vitro cytotoxic potentials of the newly synthesized molecules were reported against selected human cancer cell lines. Among the tested molecules, compound 3b has shown better cytotoxic activity against MD-MB-231 (10.1 ± 0.51 µM). in vitro JAK2 inhibition assay elucidated the mechanistic profile of the derivatives with moderate percentage of inhibition. Compounds 3b and 3d were reported with 35.4% and 34.2% inhibition of JAK2 protein. SAR studies suggest that the larger hydrophobic aromatic nucleus with hydrophilic linkage could probably increase the cytotoxic and JAK2 potentials and hydroxyl or nitro substitution could be more beneficial. Molecular dynamics simulation studies with JAK2-3b, and JAK2-3d complexes elucidated the conformational changes. With the reported bioactivities of these derivatives, further studies on the derivatization could elucidate the broader cytotoxic potentials.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Citotoxinas/farmacologia , Janus Quinase 2/antagonistas & inibidores , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxinas/síntese química , Citotoxinas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Janus Quinase 2/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
18.
J Exp Clin Cancer Res ; 38(1): 49, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717771

RESUMO

BACKGROUND: The JAK2-STAT signaling pathway plays a critical role in myeloproliferative neoplasms (MPN). An activating mutation in JAK2 (V617F) is present in ~ 95% of polycythemia vera, essential thrombocythemia, and primary myelofibrosis cases. This study aims to explore the selective JAK2V617F inhibitor, evaluate the efficacy and possible mechanism of ZT55 on MPN. METHODS: HTRF assays were conducted to evaluate the selective inhibition of ZT55 for JAKs. Cell apoptosis, proliferation, and cycle arrest assays were performed to examine the effect of ZT55 on HEL cell line with JAK2V617F mutation in vitro. Western analysis was used to monitor the expression and activity of proteins on JAK2/STAT pathway. A mice xenograft model was established to evaluate the antitumor efficacy of ZT55 in vivo. Peripheral blood samples from patients with the JAK2V617F mutation were collected to estimate the effect of ZT55 on erythroid colony formation by colony-forming assay. RESULTS: We found that ZT55 showed a selective inhibition of a 0.031 µM IC50 value against JAK2. It exhibited potent effects on the cellular JAK-STAT pathway, inhibiting tyrosine phosphorylation in JAK2V617F and downstream STAT3/5 transcription factors. ZT55 inhibited the proliferation of the JAK2V617F-expressing HEL cell line, leading to cell cycle arrest at the G2/M phase and induction of caspase-dependent apoptosis. Notably, ZT55 also significantly suppressed the growth of HEL xenograft tumors in vivo. Further evaluation indicated that ZT55 blocked erythroid colony formation of peripheral blood hematopoietic progenitors from patients carrying the JAK2V617F mutation. CONCLUSION: These results suggest that ZT55 is a highly-selective JAK2 inhibitor that can induce apoptosis of human erythroleukemia cells by inhibiting the JAK2-STAT signaling.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Janus Quinase 2/antagonistas & inibidores , Transtornos Mieloproliferativos/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Humanos , Isatis/química , Janus Quinase 2/sangue , Janus Quinase 2/genética , Masculino , Camundongos , Camundongos Nus , Transtornos Mieloproliferativos/sangue , Transtornos Mieloproliferativos/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Mutação Puntual , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Chin J Nat Med ; 17(2): 122-130, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30797418

RESUMO

Macrophages show significant heterogeneity in function and phenotype, which could shift into different populations of cells in response to exposure to various micro-environmental signals. These changes, also termed as macrophage polarization, of which play an important role in the pathogenesis of many diseases. Numerous studies have proved that Hesperidin (HDN), a traditional Chinese medicine, extracted from fruit peels of the genus citrus, play key roles in anti-inflammation, anti-tumor, anti-oxidant and so on. However, the role of HDN in macrophage polarization has never been reported. Additional, because of its poor water solubility and bioavailability. Our laboratory had synthesized many hesperidin derivatives. Among them, hesperidin derivatives-12 (HDND-12) has better water solubility and bioavailability. So, we evaluated the role of HDND-12 in macrophage polarization in the present study. The results showed that the expression of Arginase-1 (Arg-1), interleukin-10 (IL-10), transforming growth factor ß (TGF-ß) were up-regulated by HDND-12, whereas the expression of inducible Nitric Oxide Synthase (iNOS) was down-regulated in LPS- and IFN-γ-treated (M1) RAW264.7 cells. Moreover, the expression of p-JAK2 and p-STAT3 were significantly decreased after stimulation with HDND-12 in M1-like macrophages. More importantly, when we taken AG490 (inhibitor of JAK2/STAT3 signaling), the protein levels of iNOS were significantly reduced in AG490 stimulation group compare with control in LPS, IFN-γ and HDND-12 stimulation cells. Taken together, these findings indicated that HDND-12 could prevent polarization toward M1-like macrophages, at least in part, through modulating JAK2/STAT3 pathway.


Assuntos
Hesperidina/farmacologia , Janus Quinase 2/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Citocinas/genética , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hesperidina/química , Inflamação/genética , Inflamação/metabolismo , Janus Quinase 2/antagonistas & inibidores , Macrófagos/metabolismo , Medicina Tradicional Chinesa , Camundongos , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Fator de Transcrição STAT3/antagonistas & inibidores
20.
BMC Cancer ; 19(1): 102, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678647

RESUMO

BACKGROUND: Due to the lack of effective therapies and poor prognosis in TNBC (triple-negative breast cancer) patients, there is a strong need to develop effective novel targeted therapies for this subtype of breast cancer. Inhibition of heat shock protein 90 (HSP90), a conserved molecular chaperone that is involved in the regulation of oncogenic client proteins, has shown to be a promising therapeutic approach for TNBC. However, both intrinsic and acquired resistance to HSP90 inhibitors (HSP90i) limits their effectiveness in cancer patients. METHODS: We developed models of acquired resistance to HSP90i by prolonged exposure of TNBC cells to HSP90i (ganetespib) in vitro. Whole transcriptome profiling and a 328-compound bioactive small molecule screen were performed on these cells to identify the molecular basis of acquired resistance to HSP90i and potential therapeutic approaches to overcome resistance. RESULTS: Among a panel of seven TNBC cell lines, the most sensitive cell line (Hs578T) to HSP90i was selected as an in vitro model to investigate acquired resistance to HSP90i. Two independent HSP90i-resistant clones were successfully isolated which both showed absence of client proteins degradation, apoptosis induction and G2/M cell cycle arrest after treatment with HSP90i. Gene expression profiling and pathway enrichment analysis demonstrate significant activation of the survival JAK-STAT signalling pathway in both HSP90i-resistant clones, possibly through IL6 autocrine signalling. A bioactive small molecule screen also demonstrated that the HSP90i-resistant clones showed selective sensitivity to JAK2 inhibition. Inhibition of JAK and HSP90 caused higher induction of apoptosis, despite prior acquired resistance to HSP90i. CONCLUSIONS: Acquired resistance to HSP90i in TNBC cells is associated with an upregulated JAK-STAT signalling pathway. A combined inhibition of the JAK-STAT signalling pathway and HSP90 could overcome this resistance. The benefits of the combined therapy could be explored further for the development of effective targeted therapy in TNBC patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-6/metabolismo , Transdução de Sinais/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA