Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.072
Filtrar
1.
Nat Commun ; 13(1): 5347, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100596

RESUMO

Chronic inflammation is frequently associated with myeloproliferative neoplasms (MPN), but the role of inflammation in the pathogenesis of MPN remains unclear. Expression of the proinflammatory cytokine interleukin-1 (IL-1) is elevated in patients with MPN as well as in Jak2V617F knock-in mice. Here, we show that genetic deletion of IL-1 receptor 1 (IL-1R1) normalizes peripheral blood counts, reduces splenomegaly and ameliorates bone marrow fibrosis in homozygous Jak2V617F mouse model of myelofibrosis. Deletion of IL-1R1 also significantly reduces Jak2V617F mutant hematopoietic stem/progenitor cells. Exogenous administration of IL-1ß enhances myeloid cell expansion and accelerates the development of bone marrow fibrosis in heterozygous Jak2V617F mice. Furthermore, treatment with anti-IL-1R1 antibodies significantly reduces leukocytosis and splenomegaly, and ameliorates bone marrow fibrosis in homozygous Jak2V617F mice. Collectively, these results suggest that IL-1 signaling plays a pathogenic role in MPN disease progression, and targeting of IL-1R1 could be a useful strategy for the treatment of myelofibrosis.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Mielofibrose Primária , Animais , Inflamação/genética , Interleucina-1 , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Mielofibrose Primária/genética , Esplenomegalia/genética
2.
Nat Commun ; 13(1): 5346, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100613

RESUMO

Interleukin-1ß (IL-1ß) is a master regulator of inflammation. Increased activity of IL-1ß has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1ß serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1ß overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1ß in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1ß in JAK2-V617F mutant mice by anti-IL-1ß antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1ß with anti-IL-1ß antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Osteosclerose , Mielofibrose Primária , Animais , Interleucina-1beta , Janus Quinase 2/metabolismo , Camundongos , Camundongos Knockout , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Nitrilas , Osteosclerose/genética , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Pirazóis , Pirimidinas
3.
Comput Math Methods Med ; 2022: 5873479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928970

RESUMO

Background: Overexpression of miR-195 can make gastric cancer cells stay in G1/G2 phase. miR-195 has been shown to inhibit gastric cancer cell replication and accelerate cell death by targeting JAK2. However, the relationship between miR-195, JAK2, and gastric cancer is not clear. Objective: To observe the effect of mir-195 regulated by JAK2 on the growth, invasion, and death of gastric cancer cells. Methods: MGC803 and NCI gastric N87 cells were introduced into the negative control sequences of miR-195 and RNA, respectively. To detect the expression of miR-195 in cells, to detect the effect of miR-195 on mitosis and proliferation of tumor cells, to analyze the effect of miR-195 on cell invasion and metastasis, and to detect the regulation of miR-195 on JAK2 expression. Results: The level of miR-195 in miR-195-MIMICS group was significantly higher than that in miR-NC group. The cell survival rate of miR-195 mimic group was lower than that of miR-NC group (P < 0.05). Compared with miR-NC group, the number of cells in G1 phase increased, the cells in G2 phase and S phase decreased, and the proportion of cells in G2 and S phase decreased in miR-195 mimic group. The scratch distance of miR-195 simulator group was larger than that of control group. The number of invasive cells in the miR-195 mimic group was significantly lower than that in the control group. The expression of JAK2 protein in miR-195 mimic group was lower than that in miR-NC group. There was a significant negative correlation between the expression level of miR-195 and JAK2 (rhabdomile 0.326 and record 0.00). There are continuous interaction fragments between JAK2 and miR-195. The luciferase activity of miR-195 mimic and wild type JAK2 sequence expression vector was significantly lower than that of wild type JAK2 sequence expression vector. Conclusion: miR-195 may inhibit the occurrence, metastasis, and invasion of gastric tumor by downregulating the expression of JAK2. miR-195/JAK2 may be a new molecular target for the treatment of gastrointestinal tumors.


Assuntos
Janus Quinase 2 , MicroRNAs , Neoplasias Gástricas , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
4.
Eur J Pharmacol ; 931: 175213, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981604

RESUMO

Morin is a bioactive flavonoid with prominent neuroprotective potentials, however, its impact on epilepsy-provoked cognitive dysregulations has not been revealed. Hence, the present investigation aims to divulge the potential anticonvulsant/neuroprotective effects of morin in rats using a pentylenetetrazole (PTZ)-induced kindling model with an emphasis on the possible signaling trajectories involved. Kindling was induced using a sub-convulsive dose of PTZ (35 mg/kg, i.p.), once every other day for 25 days (12 injections). The expression of targeted biomarkers and molecular signals were examined in hippocampal tissues by ELISA, Western blotting, immunohistochemistry, and histopathology. Contrary to PTZ effects, administration of morin (10 mg/kg, i.p., from day 15 of PTZ injection to the end of the experiment) significantly reduced the severity of seizures coupled with a delay in kindling acquisition. It also preserved hippocampal neurons, and diminished astrogliosis to counteract cognitive deficits, exhibited by the enhanced performance in MWM and PA tests. These favorable impacts of morin were mediated via the abrogation of the PTZ-induced necroptotic changes and mitochondrial fragmentation proven by the suppression of p-RIPK-1/p-RIPK-3/p-MLKL and PGAM5/Drp-1 cues alongside the enhancement of caspase-8. Besides, morin inhibited the inflammatory cascade documented by the attenuation of the pro-convulsant receptor/cytokines TNFR-1, TNF-α, I L-1ß, and IL-6 and the marked reduction of hippocampal IL-6/p-JAK2/p-STAT3/GFAP cue. In tandem, morin signified its anti-oxidant capacity by lowering the hippocampal contents of MDA, NOX-1, and Keap-1 with the restoration of the impaired Nrf-2/HO-1 pathway. Together, these versatile neuro-modulatory effects highlight the promising role of morin in the management of epilepsy.


Assuntos
Epilepsia , Excitação Neurológica , Animais , Cognição , Epilepsia/induzido quimicamente , Flavonoides , Hipocampo , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Pentilenotetrazol , Proteínas Quinases/metabolismo , Ratos , Convulsões/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo
5.
Drug Des Devel Ther ; 16: 2545-2557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959422

RESUMO

Purpose: Chronic myelogenous leukemia (CML) is a hematological malignancy with increased proliferation of cells of the myeloid series. This can disrupt normal hematopoiesis. The 1-(2-(dimethylamino)acetyl)-rocaglaol (MQ-16) is a new synthetic flavagline compound that showed promising activity in chronic myeloid leukemia K562 cells. This study aims to analyze the underlying mechanisms of MQ-16 against CML. Methods: Growth, cell cycle progression, and apoptosis were assessed in K562 cells following MQ-16 exposure by MTT assay and flow cytometry. The effect of MQ-16 on DNA strands between nucleosomes was examined by 1% agarose gel electrophoresis. PI3K/Akt/mTOR, JAK2/STAT3, and mitogen-activated protein kinase (MAPK) pathway-related proteins were detected in MQ-16-treated K562 cells by Western blot. Results: MQ-16 significantly inhibited the proliferation of K562 cells and arrested the cell cycle at the G2/M phase in a time- and concentration-dependent manner. MQ-16 induced mitochondria-dependent apoptosis by downregulating the anti-apoptotic proteins Bcl-2 and Bcl-xL and induced time- and concentration-dependent DNA fragmentation. In addition, MQ-16 affected the expression of PI3K/Akt/mTOR, JAK2/STAT3, and MAPK pathway-related proteins. Conclusion: In summary, MQ-16 appears to be a promising chemotherapeutic drug for treating CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Proto-Oncogênicas c-akt , Apoptose , Benzofuranos , Proliferação de Células , Humanos , Janus Quinase 2/metabolismo , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Biomed Res Int ; 2022: 9122264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937397

RESUMO

Vascular calcification is characterized as the deposition of hydroxyapatite mineral in the form of calcium-phosphate complexes in the vasculature. Transdifferentiation between vascular smooth muscle cells (VSMCs) and osteoblast-like cells is considered essential in the progression of vascular calcification. The pathophysiological mechanisms underlying vascular calcification and VSMC osteogenic differentiation remain to be fully elucidated, and the development of novel therapies is required. In the present study, PCR and western blot analysis were conducted to quantify the mRNA and protein expression levels of calcification-associated markers (bone morphogenetic protein 2, alkaline phosphatase, osteoprotegerin, osteocalcin, and runt-related transcription factor 2) and adropin in VSMCs and rat vascular tissues. The calcification of VSMCs was assessed using alizarin red staining. Moreover, adropin expression levels in VSMCs were analyzed using immunofluorescence. Lentiviral transfection and small interfering RNA were used for overexpression and knockdown of adropin in VSMCs, respectively. The results demonstrated that adropin alleviated vascular calcification in vivo. Moreover, adropin also inhibited osteogenic differentiation and the calcification of VSMCs in vitro. Notably, results of the present study revealed that the tyrosine protein kinase JAK2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway played a key role in the aforementioned inhibition. In conclusion, the results of the present study demonstrated that adropin inhibited VSMC osteogenic differentiation to alleviate vascular calcification via the JAK2/STAT3 signaling pathway.


Assuntos
Osteogênese , Calcificação Vascular , Animais , Janus Quinase 2/metabolismo , Músculo Liso Vascular/metabolismo , Osteogênese/genética , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
7.
J Ethnopharmacol ; 298: 115592, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35931304

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the long history of traditional Chinese medicine, Panax notoginseng has been used as a key herb for the treatment of blood diseases. Brain microvessels support adequate blood circulation to maintain normal physiological function, therefore, brain microcirculation disorder is an important therapeutic target for various brain diseases. However, the role of Xueshuantong (XST) injection composed of saponins from P. Notoginseng (PNS) in the amelioration of cerebral microcirculation disorder is unclear. AIMS OF THE STUDY: Cerebral microcirculation disorder and inflammation play a vital role in stroke. Capillary endothelial cells and adjacent tight junctions are fundamental to the structure and function of cerebrovascule. XST injection has been used clinically in the treatment of stroke, but no studies have reported its indication in cerebral microcirculation disorder. This study is to explore the action and mechanism of XST injection in the alleviation of cerebral microcirculation disorder in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. MATERIALS AND METHODS: MCAO/R rats and LPS-induced bEnd.3 cells were employed for the investigation of effect and mechanism of XST injection. Brain damages were evaluated by neurobehavioral assessment, 2, 3, 5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin staining (H&E), and Nissl staining. Morphology and density changes of cerebral microvessels were monitored by immunohistochemistry. Cell permeability was detected by measurement of trans-endothelial electrical resistance (TEER) and sodium fluorescein (NaF) leakage. The mRNA and protein expressions of inflammatory cytokines, tight junction proteins, adhesion molecules, Janus kinase 2 (JAK2), signal transducer and activator of transcription-3 (STAT3), inhibitor of NF-κB (IκB), nuclear factor-κB (NF-κB) and c-jun N-terminal kinase (JNK) in brain microvessels and lipopolysaccharide (LPS)-induced bEnd.3 cells were measured by real-time PCR and Western blot, respectively. RESULTS: XST injection at 48 mg/kg significantly improved the neurological damage, inflammatory infiltration, and microvessel morphology, and increased microvessel density in brain of MCAO/R rats. The endothelial permeability was significantly mitigated by XST injection in LPS-induced bEnd.3 cells. Meanwhile, the tight junction proteins such as zona occludens 1 (ZO-1) and occludin were elevated remarkably in brain microvessel of MCAO/R rats and LPS-induced bEnd.3 cells. Moreover, the expression of inflammatory mediators including interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), cycloocygenases 2 (COX-2), vascular cellular adhesion molecule-1 (VCAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 were inhibited by XST injection. In addition, XST injection suppressed the phosphorylation of JAK2, STAT3, IκB, NF-κB and JNK, which could be abolished by anisomycin, the JNK agonist. CONCLUSION: XST injection improved cerebral microvescular structure damage and dysfunction in MCAO/R rats through inhibiting inflammation activated by JNK mediated JAK2/STAT3 and NF-κB signaling pathways. The novel findings may provide theoretical basis for the clinical application in the treatment of cerebral microcirculation disorder.


Assuntos
NF-kappa B , Acidente Vascular Cerebral , Animais , Medicamentos de Ervas Chinesas , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/metabolismo , Janus Quinase 2/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microcirculação , NF-kappa B/metabolismo , Ratos , Reperfusão , Fator de Transcrição STAT3 , Transdução de Sinais , Proteínas de Junções Íntimas
8.
Cytokine ; 157: 155966, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35905625

RESUMO

Altered lipid metabolism in obesity causes pregnancy complications in humans and animals. Leptin levels increase in pregnancy, as well as obesity. However, the effect of obesity on uterine leptin receptors and its distal signaling is not clear. The present study aimed to understand the effect of increased fat on leptin signaling in rat uterus. Wistar female rats were fed with an HF diet (40% Fat, 17% Sucrose, 1.25% Cholesterol, 0.75% Cholic acid) for 6 weeks before the mating and during pregnancy. HF diet significantly increased the fat depots, liver weight, serum, and tissue cholesterol levels. It produced fatty degeneration in the liver and caused infiltration of inflammatory cells, cystic endometrial glands, and sub endometrial fibrosis of the uterus. In isometric tension experiments, leptin caused a significant increase in uterine contractions in high fat-fed animals compared to control animals. Analysis of receptor expressions revealed no significant difference between the groups. However, a significant decrease in the JAK2 and BKCaα mRNA expression was observed in the uterus of high fat-fed rats. No change in the BKCaß, eNOS, iNOS, MLCP, and MLCK mRNA expressions was noticed in the HF group compared to the control. The findings of the present study suggest that the contractile response to leptin in the uterus of high fat-fed rats may be attributed to reduced signaling through JAK2 and, lowered expressions of BKCa channel α subunits.


Assuntos
Leptina , Contração Uterina , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Gorduras na Dieta , Feminino , Janus Quinase 2/metabolismo , Obesidade/metabolismo , Gravidez , Prenhez , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
9.
J Cell Mol Med ; 26(16): 4591-4601, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841281

RESUMO

Tumour Necrosis Factor (TNF) potently induces a transient inflammatory response that must be downregulated once any invasive stimulus has resolved. Yet, how TNF-induced inflammation is shut down in normal cells is incompletely understood. The present study shows that STAT3 was activated in mouse embryo fibroblasts (MEFs) by treatment with TNF or an agonist antibody to TNFR1. STAT3 activation was inhibited by pharmacological inhibition of the Jak2 tyrosine kinase that associates with TNFR1. To identify STAT3 target genes, global transcriptome analysis by RNA sequencing was performed in wild-type MEFs and MEFs from STAT3 knockout (STAT3KO ) mice that were stimulated with TNF, and the results were validated at the protein level by using multiplex cytokine assays and immunoblotting. After TNF stimulation, STAT3KO MEFs showed greater gene and protein induction of the inflammatory chemokines Ccl2, Cxcl1 and Cxcl10 than WT MEFs. These observations show that, by activating STAT3, TNF selectively modulates expression of a cohort of chemokines that promote inflammation. The greater induction by TNF of chemokines in STAT3KO than WT MEFs suggested that TNF induced an inhibitory protein in WT MEFs. Consistent with this possibility, STAT3 activation by TNFR1 increased the expression of Tnfaip3/A20, a ubiquitin modifying enzyme that inhibits inflammation, in WT MEFs but not in STAT3KO MEFs. Moreover, enforced expression of Tnfaip3/A20 in STAT3KO MEFs suppressed proinflammatory chemokine expression induced by TNF. Our observations identify Tnfaip3/A20 as a new downstream target for STAT3 which limits the induction of Ccl2, Cxcl1 and Cxcl10 and inflammation induced by TNF.


Assuntos
Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Expressão Gênica , Inflamação , Janus Quinase 2/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Transcrição STAT3/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Cancer Lett ; 544: 215812, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35780928

RESUMO

Burkitt lymphoma (BL), which is characterized by high invasiveness, is a subgroup of non-Hodgkin lymphoma. Although BL is regarded as a highly curable disease, especially for children, some patients unfortunately still do not respond adequately. The understanding of the etiology and molecular mechanisms of BL is still limited, and targeted therapies are still lacking. Here, we found that T-LAK cell-derived protein kinase (TOPK) and phosphorylated Janus kinase 2 (p-JAK2) are highly expressed in the tissues of BL patients. We report that TOPK directly binds to and is phosphorylated at Tyr74 by JAK2. Histone H3, one of the downstream targets of TOPK, is also phosphorylated in vivo and in vitro. Furthermore, we report that the phosphorylation of TOPK at Tyr74 by JAK2 plays a vital role in the proliferation of BL cells and promotes BL tumorigenesis in vivo. Phosphorylation of TOPK at Tyr74 by JAK2 enhances the stability of TOPK. Collectively, our results suggest that the JAK2/TOPK/histone H3 axis plays a key role in the proliferation of BL cells and BL tumorigenesis in vivo.


Assuntos
Linfoma de Burkitt , Linfoma de Burkitt/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Criança , Histonas/metabolismo , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação
11.
Zhonghua Zhong Liu Za Zhi ; 44(7): 728-736, 2022 Jul 23.
Artigo em Chinês | MEDLINE | ID: mdl-35880339

RESUMO

Objective: To investigate the role and mechanism of tumor-derived mesenchymal stem cells in regulating the M2 polarization of macrophages within gastric cancer microenvironment. Methods: Gastric cancer tissues and the adjacent non-cancerous tissues were collected from patients underwent gastric cancer resection in the First People's Hospital of Lianyungang during 2018. In our study, THP-1-differentiated macrophages were co-cultured with gastric cancer-derived mesenchymal stem cells (GC-MSCs). Then, the M2 subtype-related gene, the markers expressed on cell surface and the cytokine profile were analyzed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), flow cytometry and Luminex liquid chip, respectively. The key cytokines mediating the inducing effect of GC-MSCs on macrophage polarization into the M2 subtype were detected and screened by Luminex liquid chip, which were further confirmed by the neutralizing antibody test. The expressions of macrophage proteins involved in M2 polarization-related signaling pathways under the different co-culture conditions of GC-MSCs were detected by western blot. Results: In Mac+ GC-MSC-culture medium (CM) group, the expression levels of Ym-1 and Fizz-1 (1.53±0.32 and 13.22±1.05, respectively), which are markers for M2 subtype, were both significantly higher than those of Mac group (1.00±0.05 and 1.21±0.38, respectively, P<0.05). The level of iNOS in Mac+ GC-MSC-CM group (0.60±0.41) was significantly lower than that of Mac group (1.06±0.38, P=0.023). In Mac+ GC-MSC-Transwell (TW) group, the expression levels of Ym-1 and Fizz-1 (1.47±0.09 and 13.16±2.77, respectively) were both significantly higher than those of Mac group (1.00±0.05 and 1.21±0.38, respectively, P<0.05). The level of iNOS in Mac+ GC-MSC-CM group (0.56±0.03) was significantly lower than that of Mac group (1.06±0.38, P=0.026). The ratios of CD163(+) /CD204(+) cells in Mac+ GC-MSC-CM and Mac+ GC-MSC-TW groups (3.80% and 4.40%, respectively) were both remarkably higher than that of Mac group (0.60%, P<0.05). The expression levels of IL-10, IL-6, MCP-1 and VEGF in Mac+ GC-MSC-CM group were (592.60±87.52), (1 346.80±64.70), (11 256.00±29.03) and (1 463.90±66.67) pg/ml, respectively, which were significantly higher than those of Mac group [(41.03±2.59), (17.35±1.79), (5 213.30±523.71) and (267.12±12.06) pg/ml, respectively, P<0.05]. The levels of TNF-α, IP-10, RANTES and MIP-1α were (95.57±9.34), (410.48±40.68), (6 967.30±1.29) and (1 538.70±283.04) pg/ml, which were significantly lower than those of Mac group [(138.01±24.31, (1 298.60±310.50), (14 631.00±4.21) and (6 633.20±1.47) pg/ml, respectively, P<0.05]. The levels of IL-6 and IL-8 in GC-MSCs [(11 185.02±2.82) and (12 718.03±370.17) pg/ml, respectively] were both strikingly higher than those of MSCs from adjacent non-cancerous gastric cancer tissues [(270.71±59.38) and (106.04±32.84) pg/ml, repectively, P<0.05]. The ratios of CD86(+) cells in Mac+ IL-6-blocked-GC-MSC-CM and Mac+ IL-8-blocked-GC-MSC-CM groups (28.80% and 31.40%, respectively) were both higher than that of Mac+ GC-MSC-CM group (24.70%). Compared to Mac+ GC-MSC-CM group (13.70%), the ratios of CD204(+) cells in Mac+ IL-6-blocked-GC-MSC-CM and Mac+ IL-8-blocked-GC-MSC-CM groups (9.90% and 8.70%, separately) were reduced. The expression levels of p-JAK2 and p-STAT3, which are proteins of macrophage M2 polarization-related signaling pathway, in Mac+ GC-MSC-CM group (0.86±0.01 and 1.08±0.01, respectively) were significantly higher than those of Mac group (0.50±0.01 and 0.82±0.01, respectively, P<0.05). The expression levels of p-JAK2 in Mac+ IL-6-blocked-GC-MSC-CM group (0.47±0.02) were significantly lower those that of Mac+ GC-MSC-CM group (0.86±0.01, P<0.05). The expression levels of p-JAK2 and p-STAT3 in Mac+ IL-8-blocked-GC-MSC-CM group (0.50±0.01 and 0.85±0.01, respectively) were both significantly lower than those of Mac+ GC-MSC-CM group (0.86±0.01 and 1.08±0.01, P<0.05). The expression levels of p-JAK2 and p-STAT3 in Mac+ IL-6/IL-8-blocked-GC-MSC-CM group (0.37±0.01 and 0.65±0.01, respectively) were both significantly lower than those of Mac+ GC-MSC-CM group (0.86±0.01 and 1.08±0.01, P<0.05). Conclusion: GC-MSCs promote the activation of JAK2/STAT3 signaling pathway in macrophages via high secretions of IL-6 and IL-8, which subsequently induce the macrophage polarization into a pro-tumor M2 subtype within gastric cancer microenvironment.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Gástricas , Humanos , Interleucina-6/genética , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Janus Quinase 2/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Microambiente Tumoral
12.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3361-3371, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35851130

RESUMO

A high performance liquid chromatography(HPLC) method was established to analyze the components in Shengjiang Powder(SJP) such as emodin and curcumin and explore its therapeutic effect on experimental autoimmune encephalomyelitis(EAE) mice. To be specific, HPLC was performed to determine the content of compounds in SJP such as emodin and curcumin. A total of 72 female SPF C57 BL/6 mice were randomized into control group(equivalent volume of ultrapure water, ig), model group(equivalent volume of ultrapure water, ig), low-, medium-, and high-dose SJP groups(SJP, ig), and positive control group(prednisone acetate, ig), 12 each group. EAE was induced in mice except the control group. Administration began from the first day after immunization. The general conditions, symptom score, and body weight of the mice were recorded. On the 21 st day, mouse brain tissues were separrated. Then hematoxylin-eosin(HE) staining and Luxol Fast Blue(LFB) staining were used to detect the pathological changes of brain tissues. Immunohistochemistry(IHC) was employed to determine the myelin basic protein(MBP) level, and Western blot the expression of occludin and claudin-5, as well as the levels of interleukin-6(IL-6) and proteins in the Janus kinase 2(JAK2)/signal transducer and activator of transcription 3(STAT3) pathway and their phosphorylation levels. The mRNA expression of IL-6, JAK2, and STAT3 was detected by real-time quantitative polymerase chain reaction(qPCR). Finally, molecular docking of six main active components in SJP, including emodin and curcumin, with IL-6, JAK2 and STAT3 was performed, and the binding affinity was evaluated. The results showed that the established HPLC method demonstrated high precision, reproducibility, stability, and high recovery of samples. Compared with the model group, SJP reduced the clinical symptom score and alleviate the inflammatory infiltration of brain white matter and demyelination of EAE mice. At the same time, SJP increased the expression of occludin and claudin-5, down-regulated the mRNA expression of IL-6, JAK2, and STAT3, as well as the levels of IL-6/JAK/STAT3 proteins and the phosphorylation levels, with significant difference. Molecular docking suggested that the six active components in SJP had high binding energy with IL-6, JAK2, and STAT3 proteins. The established HPLC method is simple, accurate, and highly sensitive, which can simultaneously determine the content of emodin and curcumin in SJP. SJP may alleviate the clinical symptoms of EAE by inhibiting IL-6/JAK2/STAT3 signaling pathway, protecting the blood-brain barrier, and relieving the inflammatory response and demyelinization of brain tissue.


Assuntos
Curcumina , Emodina , Encefalomielite Autoimune Experimental , Animais , Cromatografia Líquida de Alta Pressão , Claudina-5/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/genética , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ocludina/metabolismo , Pós , RNA Mensageiro , Reprodutibilidade dos Testes , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Água/metabolismo
13.
J Ethnopharmacol ; 296: 115507, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35788038

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Geum japonicum var. chinense F.Bolle (Rnglish name Gei herba, GH), a traditional Miao medicine, promotes hematopoiesis. Emerging evidence shows that total tannins of GH (TGH) can treat ischemic diseases. AIM OF THE STUDY: To explore the protective mechanism of TGH in hematopoietic dysfunction (HD) mice. MATERIALS AND METHOD: Forty-eight female mice were randomly assigned to 6 groups: control, model, Zhenqi Fuzheng positive, and three doses TGH. Cyclophosphamide was injected in mice to establish an HD model. Spleen tissue was examined histomorphologically, peripheral hemograms and organ index were calculated, and serum hematopoietic factor levels were determined. The expression of proteins in the Janus kinase 2 (JAK2)/transcription 3/5 (STAT3/5) pathway, as well as upstream and downstream proteins, was examined using western blot to elucidate the underlying protective mechanisms of TGH. RESULTS: TGH could effectively alleviate spleen tissue damage in HD mice, improve peripheral hemogram and antagonize organ atrophy, and increase levels of Granulocyte-macrophage Colony Stimulating Factor (GM-CSF) and Erythropoietin (EPO) in HD mouse serum. Furthermore, after TGH treatment, the protein expression levels of P-JAK2, P-STAT3, P-STAT5, M-CSF, G-CSF, Bcl-2, and Bcl-xL were significantly higher than in the model group. At the same time, following TGH treatment, the protein expression levels of LC3 A/B, Beclin1, ATG5, and ATG7 were significantly lower than in the model group. CONCLUSIONS: TGH has been shown to protect HD mice through a mechanism linked to the activation of the JAK2/STAT3/5 pathway, as well as autophagy inhibition and apoptosis activation.


Assuntos
Geum , Janus Quinase 2 , Animais , Apoptose , Feminino , Fator Estimulador de Colônias de Granulócitos/metabolismo , Janus Quinase 2/metabolismo , Camundongos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Taninos/farmacologia
14.
Eur J Pharmacol ; 929: 175153, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35839932

RESUMO

Growing evidence indicates that silibinin (SLB), a main component extracted from Chinese herb Silybum marianum, can effectively antagonize doxorubicin (DOX) induced myocardial injury (DIMI), but the specific molecular mechanism is still unelucidated. Herein, DOX induced human AC16 cardiomyocyte injury model and Network Pharmacology are used to predict and verify the potential mechanism. The analysis results of the core PPI network of SLB against DIMI show that JAK/STAT signaling pathway and autophagy are significantly enriched. Molecular docking results indicate that SLB has stronger binding ability to signaling key proteins IL6ST, JAK2 and STAT3 (affinity ≤ -7.0 kcal/mol). The detection results of pathway activation and autophagy level demonstrate that SLB significantly alleviates DOX induced IL6ST/JAK2/STAT3 signaling pathway inhibition and autophagy inhibition, reduces the death rate of cardiomyocytes. This protective effect of SLB is eliminated when key pathway proteins (IL6ST, JAK2, STAT3) are knocked down or autophagy is inhibited (3-MA or Beclin1 knockdown). These results suggest that the regulation of IL6ST/JAK2/STAT3 signaling pathway and autophagy may be important mechanism for SLB's protective effect on DOX injured cardiomyocytes. Further experimental results prove that knockdown of IL6ST, JAK2 and STAT3 eliminate the mitochondrial ROS scavenging effect and autophagy promoting effect of SLB. In sum, SLB can decrease the mitochondrial ROS and restore autophagy to antagonize DOX-induced cardiomyocyte injury by activating IL6ST/JAK2/STAT3 signaling pathway.


Assuntos
Janus Quinase 2 , Miócitos Cardíacos , Apoptose , Autofagia , Receptor gp130 de Citocina/metabolismo , Doxorrubicina/farmacologia , Humanos , Janus Quinase 2/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Silibina/farmacologia
15.
Pharmacol Res ; 183: 106362, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878738

RESUMO

The Janus kinase (JAK) family of nonreceptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (Tyrosine Kinase 2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that interacts with and regulates the activity of the adjacent protein kinase domain (JH1). The Janus kinase family is regulated by numerous cytokines including interferons, interleukins, and hormones such as erythropoietin and thrombopoietin. Ligand binding to cytokine receptors leads to the activation of associated Janus kinases, which then catalyze the phosphorylation of the receptors. The SH2 domain of signal transducers and activators of transcription (STAT) binds to the cytokine receptor phosphotyrosines thereby promoting STAT phosphorylation and activation by the Janus kinases. STAT dimers are then translocated into the nucleus where they participate in the regulation and expression of dozens of proteins. JAK1/3 signaling participates in the pathogenesis of inflammatory disorders while JAK1/2 signaling contributes to the development of myeloproliferative neoplasms as well as several malignancies including leukemias and lymphomas. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and about 50% of cases of myelofibrosis and essential thrombocythemia. Abrocitinib, ruxolitinib, and upadacitinib are JAK inhibitors that are FDA-approved for the treatment of atopic dermatitis. Baricitinib is used for the treatment of rheumatoid arthritis and covid 19. Tofacitinib and upadacitinib are JAK antagonists that are used for the treatment of rheumatoid arthritis and ulcerative colitis. Additionally, ruxolitinib is approved for the treatment of polycythemia vera while fedratinib, pacritinib, and ruxolitinib are approved for the treatment of myelofibrosis.


Assuntos
Artrite Reumatoide , COVID-19 , Inibidores de Janus Quinases , Policitemia Vera , Mielofibrose Primária , Artrite Reumatoide/tratamento farmacológico , Humanos , Janus Quinase 1 , Janus Quinase 2/metabolismo , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
16.
Cell Death Dis ; 13(7): 586, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798703

RESUMO

Herein, we describe the clinical and hematological features of three genetically related families predisposed to myeloproliferative neoplasms (MPNs). Using whole-exome sequencing, we identified a c.1367delG mutation(p.Arg456fs) in CHST15 (NM_001270764), a gene encoding a type II transmembraneglycoproteinthat acts as a sulfotransferase and participates in the biosynthesis of chondroitin sulfate E, in germline and somatic cells in familial MPN. CHST15defects caused an increased JAK2V617F allele burden and upregulated p-Stat3 activity,leading to an increase in the proliferative and prodifferentiation potential of transgenic HEL cells. We demonstrated that mutant CHST15 is able to coimmmunoprecipitate the JAK2 protein,suggesting the presence of a CHST15-JAK2-Stat3 signaling axis in familial MPN. Gene expression profiling showed that the FREM1, IFI27 and C4B_2 genes are overexpressed in familial MPN, suggesting the activation of an "inflammatory response-extracellular matrix-immune regulation" signaling network in the CHST15 mutation background.We thus concluded that CHST15 is a novel gene that predisposes to familial MPN and increases the probability of disease development or transformation.


Assuntos
Glicoproteínas de Membrana , Transtornos Mieloproliferativos , Neoplasias , Sulfotransferases , Alelos , Mutação em Linhagem Germinativa , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Glicoproteínas de Membrana/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Neoplasias/genética , Sulfotransferases/genética
17.
Braz J Med Biol Res ; 55: e12145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35858000

RESUMO

Dexmedetomidine (DEX) is known to provide neuroprotection against cerebral ischemia and reperfusion injury (CIRI), but the exact mechanisms remain unclear. This study was conducted to investigate whether DEX pretreatment conferred neuroprotection against CIRI by inhibiting neuroinflammation through the JAK2/STAT3 signaling pathway. Middle cerebral artery occlusion (MCAO) was performed to establish a cerebral ischemia/reperfusion (I/R) model. Specific-pathogen-free male Sprague-Dawley rats were randomly divided into Sham, I/R, DEX, DEX+IL-6, and AG490 (a selective inhibitor of JAK2) groups. The Longa score, TTC staining, and HE staining were used to evaluate brain damage. ELISA was used to exam levels of TNF-α. Western blotting was used to assess the levels of JAK2, phosphorylated-JAK2 (p-JAK2), STAT3, and phosphorylated-STAT3 (p-STAT3). Our results suggested that both pretreatment with DEX and AG490 decreased the Longa score and cerebral infarct areas following cerebral I/R. After treatment with IL-6, the effects of DEX on abrogating these pathological changes were reduced. HE staining revealed that I/R-induced neuronal pathological changes were attenuated by DEX application, consistent with the AG490 group. However, these effects of DEX were abolished by IL-6. Furthermore, TNF-α levels were significantly increased in the I/R group, accompanied by an increase in the levels of the p-JAK2 and p-STAT3. DEX and AG490 pretreatment down-regulated the expressions of TNF-α, p-JAK2, and p-STAT3. In contrast, the down-regulation of TNF-α, p-JAK2, and p-STAT3 induced by DEX was reversed by IL-6. Collectively, our results indicated that DEX pretreatment conferred neuroprotection against CIRI by inhibiting neuroinflammation via negatively regulating the JAK2/STAT3 signaling pathway.


Assuntos
Isquemia Encefálica , Dexmedetomidina , Traumatismo por Reperfusão , Animais , Apoptose , Isquemia Encefálica/complicações , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia , Masculino , Doenças Neuroinflamatórias , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
18.
Biomed Res Int ; 2022: 4801703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860797

RESUMO

Colorectal cancer (CRC) is one of the more common causes of cancer death worldwide. Chemotherapy is effective in the treatment of CRC, but it can produce a range of adverse effects that can significantly reduce the quality of life of CRC patients. The selection of drugs that are effective in treating CRC with few adverse effects is now an important task and is aimed at prolonging the survival of patients and improving their prognosis. In this study, CRC cells were treated with linalool using CRC cell lines as the study subjects, and cell viability, apoptosis, and cell migration were observed after treatment. Previous studies have demonstrated the therapeutic effects of linalool on CRC and its ability to inhibit CRC progression by modulating the AKT/mTOR and JAK2/STAT3 pathways.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Monoterpenos Acíclicos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Humanos , Janus Quinase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Qualidade de Vida , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
19.
Cell Death Dis ; 13(7): 619, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851582

RESUMO

Checkpoint kinase 2 (CHK2) plays an important role in safeguarding the mitotic progression, specifically the spindle assembly, though the mechanism of regulation remains poorly understood. Here, we identified a novel mitotic phosphorylation site on CHK2 Tyr156, and its responsible kinase JAK2. Expression of a phospho-deficient mutant CHK2 Y156F or treatment with JAK2 inhibitor IV compromised mitotic spindle assembly, leading to genome instability. In contrast, a phospho-mimicking mutant CHK2 Y156E restored mitotic normalcy in JAK2-inhibited cells. Mechanistically, we show that this phosphorylation is required for CHK2 interaction with and phosphorylation of the spindle assembly checkpoint (SAC) kinase Mps1, and failure of which results in impaired Mps1 kinetochore localization and defective SAC. Concordantly, analysis of clinical cancer datasets revealed that deletion of JAK2 is associated with increased genome alteration; and alteration in CHEK2 and JAK2 is linked to preferential deletion or amplification of cancer-related genes. Thus, our findings not only reveal a novel JAK2-CHK2 signaling axis that maintains genome integrity through SAC but also highlight the potential impact on genomic stability with clinical JAK2 inhibition.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Instabilidade Genômica , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose/genética , Fosforilação/fisiologia , Fuso Acromático/genética , Fuso Acromático/metabolismo
20.
Eur J Pharmacol ; 927: 175066, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643302

RESUMO

The phytochemical sulforaphane (SFN) has been studied for its potential anti-obesity effect, but neither its molecular targets nor its interaction with the antimalarial drug chloroquine (CQ) has been fully delineated. Therefore, high-fat diet (HFD) obese rats were randomly allocated into one of five groups and were left untreated or gavaged orally with SFN (0.5 or 1 mg/kg), CQ (5 mg/kg), or their combination (0.5/5 mg/kg) for six successive weeks to assess their potential interaction and the enrolled mechanisms. SFN effectively reduced the HFD-induced weight gain, blood glucose, and serum leptin levels, and improved lipid profile. On the molecular level, SFN inhibited the lipogenesis-related enzymes, namely sterol regulatory element-binding protein (SREBP)-1c, fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) in both liver and visceral white adipose tissue (vWAT) of HFD obese rats. SFN also turned off the inflammatory pathway conserved Janus kinase/signaling transducers and activators of transcription/suppressor of cytokine signaling (JAK-2/STAT-3/SOCS-3) in these tissues, as well as the inflammatory markers nuclear factor-kappa (NF-κ) B and interleukin (IL)-22 in serum. In contrast, SFN downregulated the gene expression of microRNA (miR-200a), while significantly increasing the autophagic parameters; viz., beclin-1, autophagy-related protein (ATG)-7, and microtubule-associated protein 2 light chain 3 (LC3-II) in both liver and vWAT. On most of the parameters mentioned above, treatment with CQ solely produced a satisfactory effect and intensified the low dose of SFN in the combination regimen. These findings demonstrated the beneficial effects of using CQ as an add-on anti-obesity medicine to SFN.


Assuntos
Cloroquina , Dieta Hiperlipídica , Isotiocianatos , Janus Quinase 2 , Fator de Transcrição STAT3 , Sulfóxidos , Proteína 3 Supressora da Sinalização de Citocinas , Animais , Cloroquina/farmacologia , Isotiocianatos/farmacologia , Janus Quinase 2/metabolismo , Fígado/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Distribuição Aleatória , Ratos , Fator de Transcrição STAT3/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Sulfóxidos/farmacologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...