Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76.567
Filtrar
1.
Methods Mol Biol ; 2852: 171-179, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235744

RESUMO

Studying host-pathogen interactions is essential for understanding infectious diseases and developing possible treatments, especially for priority pathogens with increased virulence and antibiotic resistance, such as Klebsiella pneumoniae. Over time, this subject has been approached from different perspectives, often using mammal host models and invasive endpoint measurements (e.g., sacrifice and organ extraction). However, taking advantage of technological advances, it is now possible to follow the infective process by noninvasive visualization in real time, using optically amenable surrogate hosts. In this line, this chapter describes a live-cell imaging approach to monitor the interaction of K. pneumoniae and potentially other bacterial pathogens with zebrafish larvae in vivo. This methodology is based on the microinjection of fluorescent bacteria into the otic vesicle, followed by time-lapse observation by automated fluorescence microscopy with environmental control, monitoring the dynamics of immune cell recruitment, bacterial load, and larvae survival.


Assuntos
Interações Hospedeiro-Patógeno , Infecções por Klebsiella , Klebsiella pneumoniae , Larva , Microinjeções , Microscopia de Fluorescência , Peixe-Zebra , Animais , Peixe-Zebra/microbiologia , Klebsiella pneumoniae/imunologia , Microinjeções/métodos , Larva/microbiologia , Larva/imunologia , Microscopia de Fluorescência/métodos , Interações Hospedeiro-Patógeno/imunologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/imunologia , Modelos Animais de Doenças
2.
Parasitol Res ; 123(9): 315, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227462

RESUMO

Mosquito-borne diseases, such as malaria, dengue fever, and the Zika virus, pose significant global health challenges, affecting millions annually. Due to increasing insecticide resistance, there is a growing interest in natural alternatives for mosquito control. Lemongrass essential oil, derived from Cymbopogon citratus, has shown promising repellent and larvicidal properties against various mosquito species. In this study, we investigated the larvicidal effect of lemongrass oil and its major compounds on Anopheles sinensis, the primary malaria vector in China. GC-MS analysis identified the major compounds of lemongrass oil as ( +)-citronellal (35.60%), geraniol (21.84%), and citronellol (13.88%). Lemongrass oil showed larvicidal activity against An. sinensis larvae, with an LC50 value of 119.20 ± 3.81 mg/L. Among the major components, citronellol had the lowest LC50 value of 42.76 ± 3.18 mg/L. Moreover, citronellol demonstrated inhibitory effects on acetylcholinesterase (AChE) activity in An. sinensis larvae, assessed by homogenizing larvae at different time points following treatment. Molecular docking studies further elucidated the interaction between citronellol and AChE, revealing the formation of hydrogen bonds and Pi-Sigma bonds. Aromatic amino acid residues such as Tyr71, Trp83, Tyr370, and Tyr374 played a pivotal role in these interactions. These findings may contribute to understanding lemongrass oil's larvicidal activity against An. sinensis and the mechanisms underlying these effects.


Assuntos
Monoterpenos Acíclicos , Anopheles , Inibidores da Colinesterase , Inseticidas , Larva , Óleos Voláteis , Óleos de Plantas , Animais , Anopheles/efeitos dos fármacos , Anopheles/enzimologia , Larva/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Monoterpenos Acíclicos/farmacologia , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Cymbopogon/química , Simulação de Acoplamento Molecular , Terpenos/farmacologia , Terpenos/química , Cromatografia Gasosa-Espectrometria de Massas , China , Acetilcolinesterase/metabolismo , Mosquitos Vetores/efeitos dos fármacos , Monoterpenos/farmacologia , Monoterpenos/química , Aldeídos/farmacologia , Aldeídos/química
3.
Braz J Biol ; 84: e282251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39230078

RESUMO

Anthonomus grandis grandis (Coleoptera: Curculionidae) is a pest with a large potential for destruction in cotton crops, causing damage to the cotton reproductive structures. The earwig Marava arachidis (Dermaptera: Labiidae), is an important reference as a predator in several crops and being easy to rear in the laboratory. To analyze the potential biocontrol of M. arachidis of A. grandis grandis larvae, a study of predatory capacity was conducted using a functional response model. A. grandis grandis larvae were exposed to the predator at densities 1, 2, 4, 6, and 8 larvae (= prey/predator / Petri dish), with 30 replications at each density. Contact between the predator and the prey occurred for 24 hours; after this period, the level of predation of M. arachidis was assessed based on the proportion of preyed larvae. The linear logistic regression coefficient was used with a beta-binomial generalized linear model to determine the functional response. The negative signal of the linear coefficient and the goodness-of-fit tests revealed a quadratic or type II functional response, with the number of prey varying from 1.00 larva (density of 1 larva/predator) to 6.50 larvae (density of 8 larvae/predator). Therefore, the results of the present study demonstrate a high predatory capacity of M. arachidis on A. grandis grandis larvae.


Assuntos
Larva , Controle Biológico de Vetores , Comportamento Predatório , Gorgulhos , Animais , Comportamento Predatório/fisiologia , Larva/fisiologia , Gorgulhos/fisiologia , Fatores de Tempo , Densidade Demográfica , Neópteros/fisiologia
4.
Parasites Hosts Dis ; 62(3): 342-350, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39218633

RESUMO

Although helminth parasites have different life cycles, their hosts share similar immune responses involving Th2 cell-type. Here, we extracted proteins from the larvae of Anisakis simplex complex and Trichinella spiralis to identify common and specific antigens (or allergens) associated with the Th2 immune response. We performed two-dimensional electrophoresis analysis and Matrix-assisted laser desorption ionization-time of flight/time of flight (MALDI-TOF/TOF) experiments. We found 13 potentially immunogenic proteins, which included 5 spots specific to T. spiralis and 8 common to T. spiralis and A. simplex, by tandem mass spectrometry. These molecules were identified structurally as actin, tropomyosin, col cuticle N domain-containing protein, and heat shock proteins. We also identified molecules related to parasite-host immune modulation and interactions. Our results may contribute to reveal potential roles of immunological proteins in parasite-derived immune modulation.


Assuntos
Anisakis , Proteínas de Helminto , Proteoma , Trichinella spiralis , Animais , Proteoma/imunologia , Proteínas de Helminto/imunologia , Trichinella spiralis/imunologia , Anisakis/imunologia , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/análise , Eletroforese em Gel Bidimensional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Interações Hospedeiro-Parasita/imunologia , Larva/imunologia , Espectrometria de Massas em Tandem
5.
J Biomed Mater Res B Appl Biomater ; 112(9): e35478, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223072

RESUMO

Despite the numerous studies on biocompatibility with nano-biomaterials, the biological effects of strontium-substituted HA nanoparticles (nSrHA) need to be better understood. So, we conducted an embryotoxicity test using zebrafish (Danio rerio) according to the OECD 236 guideline, a model that represents a viable alternative that bridges the gap between in vitro and mammalian models. Zebrafish embryos were exposed for 120 h to microspheres containing nSrHA nanoparticles with low and high crystallinity, synthesized at temperatures of 5°C (nSrHA5) and 90°C (nSrHA90). We evaluated lethality, developmental parameters, and reactive oxygen species (ROS) production. The larval behavior was assessed at 168 hpf to determine if the biomaterials affected motor responses and anxiety-like behavior. The results showed that the survival rate decreased significantly for the nSrHA5 group (low crystalline particles), and an increase in ROS was also observed in this group. However, none of the biomaterials caused morphological changes indicative of toxicity during larval development. Additionally, the behavioral tests did not reveal any alterations in all experimental groups, indicating the absence of neurotoxic effects from exposure to the tested biomaterials. These findings provide valuable insights into the biosafety of modified HA-based nanostructured biomaterials, making them a promising strategy for bone tissue repair. As the use of hydroxyapatite-based biomaterials continues to grow, it is crucial to ensure rigorous control over the quality, reliability, and traceability of these materials.


Assuntos
Estrôncio , Peixe-Zebra , Animais , Estrôncio/química , Estrôncio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Teste de Materiais , Hidroxiapatitas/química , Hidroxiapatitas/farmacologia , Nanoestruturas/química , Larva/efeitos dos fármacos
6.
Sci Rep ; 14(1): 20655, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232193

RESUMO

During their development, amphibians undergo various physiological processes that may affect their susceptibility to environmental pollutants. Naturally occurring fluctuations caused by developmental events are often overlooked in ecotoxicological studies. Our aim is to investigate how biomarkers of oxidative stress are modulated at different stages of larval development in the Amazonian amphibian species, Physalaemus ephippifer. The premetamorphosis, prometamorphosis and metamorphic climax stages were used to analyze total antioxidant capacity (ACAP), glutathione S-transferase (GST) activity, lipid peroxidation (LPO) levels and the expression of genes nrf2, gst, gsr (glutathione reductase) and gclc (glycine-cysteine ligase, catalytic subunit). Although there was no difference in ACAP and the genes expression among the studied stages, individuals from the premetamorphosis and prometamorphosis showed higher GST activity than ones under the climax. LPO levels were highest in individuals from the metamorphic climax. The present study suggests that the oxidative status changes during ontogeny of P. ephippifer tadpoles, especially during the metamorphic climax, the most demanding developmental phase. Variations in the redox balance at different developmental stages may lead to a divergent response to pollution. Therefore, we recommend that studies using anuran larvae as biomonitors consider possible physiological differences during ontogeny in their respective analyses.


Assuntos
Anuros , Glutationa Transferase , Larva , Peroxidação de Lipídeos , Oxirredução , Estresse Oxidativo , Animais , Anuros/metabolismo , Anuros/crescimento & desenvolvimento , Larva/metabolismo , Larva/crescimento & desenvolvimento , Glutationa Transferase/metabolismo , Antioxidantes/metabolismo , Metamorfose Biológica , Biomarcadores/metabolismo
7.
J Mol Biol ; 436(17): 168520, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39237197

RESUMO

The red flour beetle Tribolium castaneum has emerged as a powerful model in insect functional genomics. However, a major limitation in the field is the lack of a detailed spatio-temporal view of the genetic signatures underpinning the function of distinct tissues and life stages. Here, we present an ontogenetic and tissue-specific web-based resource for Tribolium transcriptomics: BeetleAtlas (https://www.beetleatlas.org). This web application provides access to a database populated with quantitative expression data for nine adult and seven larval tissues, as well as for four embryonic stages of Tribolium. BeetleAtlas allows one to search for individual Tribolium genes to obtain values of both total gene expression and enrichment in different tissues, together with data for individual isoforms. To facilitate cross-species studies, one can also use Drosophila melanogaster gene identifiers to search for related Tribolium genes. For retrieved genes there are options to identify and display the tissue expression of related Tribolium genes or homologous Drosophila genes. Five additional search modes are available to find genes conforming to any of the following criteria: exhibiting high expression in a particular tissue; showing significant differences in expression between larva and adult; having a peak of expression at a specific stage of embryonic development; belonging to a particular functional category; and displaying a pattern of tissue expression similar to that of a query gene. We illustrate how the different feaures of BeetleAtlas can be used to illuminate our understanding of the genetic mechanisms underpinning the biology of what is the largest animal group on earth.


Assuntos
Transcriptoma , Tribolium , Animais , Tribolium/genética , Tribolium/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Bases de Dados Genéticas , Especificidade de Órgãos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
8.
Vet Parasitol Reg Stud Reports ; 54: 101086, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39237230

RESUMO

Trichinella infections have been eliminated from pork where pigs are raised in biosecure facilities, but wildlife infections persist. Trichinella murrelli is the primary zoonotic species in wild carnivores in the United States, having been identified in several species of omnivores and carnivores. Here, we document its occurrence in seven of 21 (33.3%) red foxes (Vulpes vulpes) from six counties in Pennsylvania. Encysted Trichinella larvae were detected in muscle squashes (<5 g samples) of all seven foxes, and in histological sections of the tongue and limb muscle of three. Larvae from muscle squashes were pooled and tested in a multiplex PCR capable of differentiating all Trichinella species native to the USA; all samples contained only T. murrelli. This is the first identification of T. murrelli in red foxes from Pennsylvania, and the first such survey performed in the last three decades. Results indicate that Trichinella remains endemic in Pennsylvania wildlife and a threat to the health of those who consume wild game.


Assuntos
Raposas , Trichinella , Triquinelose , Animais , Raposas/parasitologia , Triquinelose/veterinária , Triquinelose/parasitologia , Triquinelose/epidemiologia , Pennsylvania/epidemiologia , Trichinella/isolamento & purificação , Trichinella/classificação , Feminino , Animais Selvagens/parasitologia , Masculino , Larva/classificação
9.
Sci Rep ; 14(1): 20677, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237741

RESUMO

Mosquito-borne diseases, such as malaria, dengue, and Zika, pose major public health challenges globally, affecting millions of people. The growing resistance of mosquito populations to synthetic insecticides underscores the critical need for effective and environmentally friendly larvicides. Although chemical pesticides can initially be effective, they often lead to negative environmental consequences and health hazards for non-target species, including humans. This study aimed to evaluate the larvicidal effects of Trachyspermum ammi essential oil and Delphinium speciosum extract on the larvae of three major mosquito species: Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Mosquito larvae of Ae. aegypti, An. stephensi, and Cx. quinquefasciatus were reared under controlled laboratory conditions. The larvicidal activity of T. ammi essential oil and D. speciosum extract was evaluated through standard bioassays, using various concentrations of essential oils (10, 20, 40, 80, and 160 ppm) and extracts (160, 320, 640, 1280, and 2560 ppm) to determine the lethal concentration (LC50) values after 24 h of exposure. Fresh plant materials were collected, with the essential oil extracted via hydro-distillation, and the extract prepared using methanol solvent extraction. The chemical composition of T. ammi essential oil was examined using gas chromatography-mass spectrometry (GC-MS). Additionally, the preliminary analysis of the chemical compounds in D. speciosum extract was carried out using thin layer chromatography (TLC) and nuclear magnetic resonance spectroscopy (NMR) techniques. The results indicated that the essential oil of T. ammi exhibited more effective larvicidal activity compared to the D. speciosum extract. Specifically, the essential oil demonstrated LC50 values of 18 ppm for Cx. quinquefasciatus and 19 ppm for Ae. aegypti. In contrast, the D. speciosum extract showed the strongest larvicidal effect against An. stephensi, with an LC50 of 517 ppm. Concentrations of 40 ppm of the essential oil and 1280 ppm of the extract resulted in 100% mortality across all three species. Both the essential oil of T. ammi and the D. speciosum extract exhibited concentration-dependent larvicidal activity, and these results were statistically significant (p < 0.001) compared to the no-treatment group. GC-MS analysis revealed thymol (88.95%), o-cymen-5-ol (4.11%), and γ-terpinene (2.10%) as the major constituents of the T. ammi essential oil. Additionally, TLC verified the presence of alkaloids in both chloroform and methanolic extracts. Proton NMR identified a diterpene structure for these alkaloids. These findings suggest that T. ammi essential oil is a promising candidate for natural mosquito control strategies. Given its efficacy, further research is warranted to explore its potential in integrated vector management programs.


Assuntos
Delphinium , Inseticidas , Larva , Mosquitos Vetores , Óleos Voláteis , Extratos Vegetais , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inseticidas/farmacologia , Inseticidas/química , Delphinium/química , Aedes/efeitos dos fármacos , Dengue , Malária/prevenção & controle , Anopheles/efeitos dos fármacos , Filariose , Culex/efeitos dos fármacos , Controle de Mosquitos/métodos
10.
J Nanobiotechnology ; 22(1): 544, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39237945

RESUMO

Piercing-sucking pests are the most notorious group of pests for global agriculture. RNAi-mediated crop protection by foliar application is a promising approach in field trials. However, the effect of this approach on piercing-sucking pests is far from satisfactory due to the limited uptake and transport of double strand RNA (dsRNA) in plants. Therefore, there is an urgent need for more feasible and biocompatible dsRNA delivery approaches to better control piercing-sucking pests. Here, we report that foliar application of layered double hydroxide (LDH)-loaded dsRNA can effectively disrupt Panonychus citri at multiple developmental stages. MgAl-LDH-dsRNA targeting Chitinase (Chit) gene significantly promoted the RNAi efficiency and then increased the mortality of P. citri nymphs by enhancing dsRNA stability in gut, promoting the adhesion of dsRNA onto leaf surface, facilitating dsRNA internalization into leaf cells, and delivering dsRNA from the stem to the leaf via the vascular system of pomelo plants. Finally, this delivery pathway based on other metal elements such as iron (MgFe-LDH) was also found to significantly improve the protection against P. citri and the nymphs or larvae of Diaphorina citri and Aphis gossypii, two other important piercing-sucking hemipeteran pests, indicating the universality of nanoparticles LDH in promoting the RNAi efficiency and mortality of piercing-sucking pests. Collectively, this study provides insights into the synergistic mechanism for nano-dsRNA systemic translocation in plants, and proposes a potential eco-friendly control strategy for piercing-sucking pests.


Assuntos
Hidróxidos , Interferência de RNA , RNA de Cadeia Dupla , Animais , Hidróxidos/química , Hidróxidos/farmacologia , Nanopartículas/química , Ninfa , Hemípteros , Folhas de Planta , Larva , Quitinases/metabolismo , Quitinases/genética , Citrus
11.
Parasit Vectors ; 17(1): 379, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238034

RESUMO

BACKGROUND: Black flies are among the most medically and veterinary important insects, as adult females of certain species are the sole vector of Onchocerca volvulus. Here, a new black fly species belonging to the subgenus Asiosimulium Takaoka & Choochote, 2005, is described and formally named as Simulium (Asiosimulium) kittipati sp. nov. METHODS: Pupae and larvae of black flies were collected from available substrates in the stream from central Thailand. Pupae were individually separated in plastic tubes and maintained until adult flies emerged. The emerged adult flies associated with their pupal exuviae and cocoon as well as mature larvae preserved in 85% ethanol were used to describe the new species based on an integrated approach of morphological examination and molecular analysis of the COI gene. RESULTS: The new species is characterized in the female by the medium-long sensory vesicle with a medium-sized opening apically, scutum with three faint longitudinal vittae, and the ellipsoidal spermatheca; in the male by the number of upper-eye (large) facets in 20 vertical columns and 21 horizontal rows, hind basitarsus slender, nearly parallel-sided, and median sclerite much wider and upturned apically; in the pupa by the head and thoracic integument densely covered with tiny tubercles, and the pupal gill of arborescent type with 28-30 filaments; and in the larva by the postgenal cleft deep, nearly reaching the posterior margin of the hypostoma, and dark pigmented sheath of the subesophageal ganglion. The DNA barcode successfully differentiated the new species from its congeners with an interspecific genetic divergence of 1.74-18.72%, confirming the morphological identification that the species is a new member of the subgenus Asiosimulium. Phylogenetic analyses also indicated that the new species is genetically closely related to Simulium phurueaense Tangkawanit, Wongpakam & Pramual, 2018, further supporting its morphological classification. CONCLUSIONS: This is the ninth species assigned to the subgenus Asiosimulium within the genus Simulium Latreille, 1802. Taxonomic notes and identification keys are given to distinguish this new species from the eight known species members in its same subgenus. Additionally, a distribution map of all species members in this subgenus occurring in Thailand and other countries is provided.


Assuntos
Larva , Filogenia , Pupa , Simuliidae , Animais , Simuliidae/genética , Simuliidae/anatomia & histologia , Simuliidae/classificação , Tailândia , Feminino , Masculino , Pupa/anatomia & histologia , Pupa/genética , Pupa/classificação , Larva/anatomia & histologia , Larva/genética , Larva/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Insetos Vetores/anatomia & histologia , Insetos Vetores/genética , Insetos Vetores/classificação
12.
Elife ; 122024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240259

RESUMO

Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic-pituitary-gonadal axis in mammals to trigger the juvenile-adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Hormônios de Inseto , Neurônios , Receptores de Esteroides , Comportamento Sexual Animal , Animais , Drosophila melanogaster/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Comportamento Sexual Animal/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurônios/fisiologia , Neurônios/metabolismo , Hormônios de Inseto/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Ecdisona/metabolismo , Metamorfose Biológica/fisiologia , Masculino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Proteínas de Insetos
13.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39225032

RESUMO

Poplar is a valuable tree species that is distributed all over the world. However, many insect pests infest poplar trees and have caused significant damage. To control poplar pests, we transformed a poplar species, Populus davidiana × P. bolleana Loucne, with the dsRNA of the chitinase gene of a poplar defoliator, Clostera anastomosis (Linnaeus) (Lepidoptera: Notodontidae), employing an Agrobaterium-mediated approach. The transgenic plant has been identified by cloning the T-DNA flanking sequences using TAIL-PCR and quantifying the expression of the dsRNA using qPCR. The toxicity assay of the transgenic poplar lines was carried out by feeding the target insect species (C. anastomosis). The results showed that, in C. anastomosis, the activity of chitinase was significantly decreased, consistent with the expression on mRNA levels, and the larval mortality was significantly increased. These results suggested that the transgenic poplar of dsRNA could be used for pest control.


Assuntos
Quitinases , Larva , Mariposas , Plantas Geneticamente Modificadas , Populus , RNA de Cadeia Dupla , Animais , Populus/genética , Quitinases/genética , Quitinases/metabolismo , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/genética , Controle Biológico de Vetores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
14.
Biol Lett ; 20(9): 20240141, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226921

RESUMO

Sexual conflict is widespread among sexually reproducing organisms. Phenotypic plasticity in female resistance traits has the potential to moderate the harm imposed by males during mating, yet female plasticity has rarely been explored. In this experiment, we investigated whether female seed beetles invest more in immunocompetence, measured as phenoloxidase (PO) capacity, when exposed to cues signalling a greater risk of sexual conflict. Risk perception was manipulated by housing focal individuals alone or with a companion as developing larvae, followed by exposure to a mating-free male- or female-biased social environment when adults. We predicted that females exposed to cues of increased sexual conflict would have increased PO capacity. However, PO capacity did not differ between either larval or adult social treatments. Our results suggest that females may not perceive a risk to their fitness on the basis of increased male presence or are unable to adjust this aspect of their phenotype in response to that risk.


Assuntos
Besouros , Monofenol Mono-Oxigenase , Animais , Feminino , Masculino , Besouros/imunologia , Besouros/fisiologia , Monofenol Mono-Oxigenase/metabolismo , Comportamento Sexual Animal/fisiologia , Regulação para Cima , Larva/imunologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Imunocompetência
15.
Carbohydr Polym ; 344: 122545, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218561

RESUMO

The industry of insect-based proteins as feed and food products has been encountering a huge development since the last decade, and industrial-scale factories are now arising worldwide. Among all the species studied, Black Soldier Fly is one of the most promising and farmed. This rearing activity generates several by-products in the form of chitin-rich biomass that can be valorised to keep a virtuous production cycle embedded in the scope of the bioeconomy. Herein, we report the isolation of chitin and, for the first time, chitin nanocrystals (ChNCs) from all the BSF rearing by-products, i.e., moults (larval exuviae, puparium) and dead adults. Extraction yields, were dependent on the type of by-products and ranged from 5.8 % to 20.0 %, and the chemical structure of the extracts exhibited typical features of α-chitin, confirmed by FTIR, NMR, XRD and TGA analysis. Both STEM in SEM and AFM analysis confirmed the isolation of chitin nanocrystals presenting a rod-like morphology. The average nanocrystal height estimated by AFM ranged from 13 to 27 nm depending on the by-product sample. The following results highlighted the potential of BSF rearing by-products, promoting an approach to valorise those industrial waste and paving the way towards insect-based biorefinery.


Assuntos
Quitina , Nanopartículas , Quitina/química , Quitina/isolamento & purificação , Animais , Nanopartículas/química , Larva/química , Simuliidae/química , Pupa/química
16.
Parasit Vectors ; 17(1): 330, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103931

RESUMO

BACKGROUND: Aedes albopictus is an important vector for pathogens such as dengue, Zika, and chikungunya viruses. While insecticides is the mainstay for mosquito control, their widespread and excessive use has led to the increased resistance in Ae. albopictus globally. Gut symbiotic bacteria are believed to play a potential role in insect physiology, potentially linking to mosquitoes' metabolic resistance against insecticides. METHODS: We investigated the role of symbiotic bacteria in the development of resistance in Ae. albopictus by comparing gut symbiotic bacteria between deltamethrin-sensitive and deltamethrin-resistant populations. Adults were reared from field-collected larvae. Sensitive and resistant mosquitoes were screened using 0.03% and 0.09% deltamethrin, respectively, on the basis of the World Health Organization (WHO) tube bioassay. Sensitive and resistant field-collected larvae were screened using 5 × LC50 (lethal concentration at 50% mortality) and 20 × LC50 concentration of deltamethrin, respectively. Laboratory strain deltamethrin-sensitive adults and larvae were used as controls. The DNA of gut samples from these mosquitoes were extracted using the magnetic bead method. Bacterial 16S rDNA was sequenced using BGISEQ method. We isolated and cultured gut microorganisms from adult and larvae mosquitoes using four different media: Luria Bertani (LB), brain heart infusion (BHI), nutrient agar (NA), and salmonella shigella (SS). RESULTS: Sequencing revealed significantly higher gut microbial diversity in field-resistant larvae compared with field-sensitive and laboratory-sensitive larvae (P < 0.01). Conversely, gut microorganism diversity in field-resistant and field-sensitive adults was significantly lower compared with laboratory-sensitive adults (P < 0.01). At the species level, 25 and 12 bacterial species were isolated from the gut of field resistant larvae and adults, respectively. The abundance of Flavobacterium spp., Gemmobacter spp., and Dysgonomonas spp. was significantly higher in the gut of field-resistant larvae compared with sensitive larvae (all P < 0.05). Furthermore, the abundance of Flavobacterium spp., Pantoea spp., and Aeromonas spp. was significantly higher in the gut of field-resistant adults compared with sensitive adults (all P < 0.05). The dominant and differentially occurring microorganisms were also different between resistant larval and adult mosquitoes. These findings suggest that the gut commensal bacteria of Ae. albopictus adults and larvae may play distinct roles in their deltamethrin resistance. CONCLUSIONS: This study provides an empirical basis for further exploration of the mechanisms underlying the role of gut microbial in insecticide resistance, potentially opening a new prospect for mosquito control strategies.


Assuntos
Aedes , Bactérias , Resistência a Inseticidas , Inseticidas , Larva , Nitrilas , Piretrinas , RNA Ribossômico 16S , Simbiose , Animais , Piretrinas/farmacologia , Nitrilas/farmacologia , Aedes/microbiologia , Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Larva/microbiologia , Larva/efeitos dos fármacos , RNA Ribossômico 16S/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Microbioma Gastrointestinal/efeitos dos fármacos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/efeitos dos fármacos , DNA Ribossômico/genética , Feminino , DNA Bacteriano/genética , Trato Gastrointestinal/microbiologia
17.
An Acad Bras Cienc ; 96(suppl 1): e20240350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109699

RESUMO

The current study aims at using non-hatchable artemia eggs of local origin and making use of these eggs by decapsulating and presenting them as food for the larvae of the Cyprinus carpio as a source of animal protein with high nutritional value instead of throwing them away. The results showed that the second parameter (A2) was highly significant at the level (P≤0.05) in the growth rates of the larvae that were fed on decapsulated artemia eggs alone, and it was better than the two control parameters (A1), in which the larvae were fed with feed designated for Cyprinus carpio fish. It also outperformed the third parameter (A3), in which the feed was mixed with artemia eggs with 50% decapsulation, which also outperformed the control parameter with high significance at the same level (P≤0.05).


Assuntos
Ração Animal , Artemia , Carpas , Larva , Animais , Carpas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Aquicultura/métodos
18.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39123968

RESUMO

Incorporating insect meals into poultry diets has emerged as a sustainable alternative to conventional feed sources, offering nutritional, welfare benefits, and environmental advantages. This study aims to monitor and compare volatile compounds emitted from raw poultry carcasses and subsequently from cooked chicken pieces from animals fed with different diets, including the utilization of insect-based feed ingredients. Alongside the use of traditional analytical techniques, like solid-phase microextraction combined with gas chromatography-mass spectrometry (SPME-GC-MS), to explore the changes in VOC emissions, we investigate the potential of S3+ technology. This small device, which uses an array of six metal oxide semiconductor gas sensors (MOXs), can differentiate poultry products based on their volatile profiles. By testing MOX sensors in this context, we can develop a portable, cheap, rapid, non-invasive, and non-destructive method for assessing food quality and safety. Indeed, understanding changes in volatile compounds is crucial to assessing control measures in poultry production along the entire supply chain, from the field to the fork. Linear discriminant analysis (LDA) was applied using MOX sensor readings as predictor variables and different gas classes as target variables, successfully discriminating the various samples based on their total volatile profiles. By optimizing feed composition and monitoring volatile compounds, poultry producers can enhance both the sustainability and safety of poultry production systems, contributing to a more efficient and environmentally friendly poultry industry.


Assuntos
Galinhas , Cromatografia Gasosa-Espectrometria de Massas , Larva , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Larva/fisiologia , Insetos/fisiologia , Microextração em Fase Sólida/métodos , Carne/análise , Nanoestruturas/química , Ração Animal/análise , Análise Discriminante
19.
Molecules ; 29(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39125083

RESUMO

The growing world population necessitates the implementation of appropriate processing technologies for edible insects. The objective of this study was to examine the impact of distinct drying techniques, including convective drying at 70 °C (70CD) and 90 °C (90CD) and freeze-drying (FD), on the drying kinetics, physical characteristics (water activity, color), chemical characteristics (chemical composition, amino acid profile, oil properties, total polyphenol content and antioxidant activity, mineral composition, FTIR), and presence of hazards (allergens, microorganisms) of blanched yellow mealworm larvae. The freeze-drying process results in greater lightness and reduced moisture content and water activity. The study demonstrated that the freeze-dried insects exhibited lower contents of protein and essential amino acids as compared to the convective-dried insects. The lowest content of total polyphenols was found in the freeze-dried yellow mealworm larvae; however, the highest antioxidant activity was determined for those insects. Although the oil isolated from the freeze-dried insects exhibited the lowest acid and peroxide values, it proved to have the lowest PUFA content and oxidative stability. All the samples met the microbiological criteria for dried insects. The results of the study demonstrate that a high temperature during the CD method does not result in the anticipated undesirable changes. It appears that freeze-drying is not the optimal method for preserving the nutritional value of insects, particularly with regard to the quality of protein and oil.


Assuntos
Antioxidantes , Dessecação , Liofilização , Larva , Tenebrio , Animais , Larva/química , Tenebrio/química , Liofilização/métodos , Antioxidantes/química , Antioxidantes/análise , Dessecação/métodos , Polifenóis/análise , Polifenóis/química , Aminoácidos/análise , Aminoácidos/química
20.
Proc Biol Sci ; 291(2028): 20240511, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39110169

RESUMO

Predator responses to warming can occur via phenotypic plasticity, evolutionary adaptation or a combination of both, changing their top-down effects on prey communities. However, we lack evidence of how warming-induced evolutionary changes in predators may influence natural food webs. Here, we ask whether wild fish subject to warming across multiple generations differ in their impacts on prey communities compared with their nearby conspecifics experiencing a natural thermal regime. We carried out a common garden mesocosm experiment with larval perch (Perca fluviatilis), originating from a heated or reference coastal environment, feeding on zooplankton communities under a gradient of experimental temperatures. Overall, in the presence of fish of heated origin, zooplankton abundance was higher and did not change with experimental warming, whereas in the presence of fish of unheated origin, it declined with experimental temperature. Responses in zooplankton taxonomic and size composition suggest that larvae of heated origin consume more large-sized taxa as the temperature increases. Our findings show that differences between fish populations, potentially representing adaptation to their long-term thermal environments, can affect the abundance, biomass, size and species composition of their prey communities. This suggests that rapid microevolution in predators to ongoing climate warming might have indirect cross-generational ecological consequences propagating through food webs.


Assuntos
Cadeia Alimentar , Percas , Comportamento Predatório , Zooplâncton , Animais , Zooplâncton/fisiologia , Percas/fisiologia , Aquecimento Global , Larva/fisiologia , Larva/crescimento & desenvolvimento , Mudança Climática , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA