Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 961
Filtrar
1.
Life Sci ; 273: 119302, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662427

RESUMO

Src homolog and collagen homolog (SHC) proteins are adaptor proteins bound to cell surface receptors that play an important role in signal transduction and related diseases. As an important member of the SHC protein family, SHC1 regulates cell proliferation and apoptosis, reactive oxygen species (ROS) production, and oxidative stress. Three isomeric proteins namely, p46shc, p52shc, and p66shc, are produced from the same SHC1 gene locus. All the three proteins are found in the liver, and are widely expressed in various hepatic cells. SHC1 has been proven to be associated with acute and chronic liver injuries of different etiologies, and plays important roles in liver fibrosis and hepatocellular carcinoma (HCC). Therefore, this review summarizes recent studies that discuss and explore the role of SHC1 in the occurrence and progression of liver diseases. We also provide a theoretical basis for future studies.


Assuntos
Lesão Pulmonar Aguda/patologia , Lesão Pulmonar/patologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Lesão Pulmonar Aguda/metabolismo , Animais , Humanos , Lesão Pulmonar/metabolismo , Isoformas de Proteínas , Transdução de Sinais
2.
PLoS One ; 16(2): e0247510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626084

RESUMO

Angiotensin converting enzyme 2 (ACE2) is the putative functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current literature on the abundance and distribution of ACE2 protein in the human respiratory tract is controversial. We examined the effect of age and lung injury on ACE2 protein expression in rodent and non-human primate (NHP) models. We also examined ACE2 expression in human tissues with and without coronavirus disease 19 (COVID-19). ACE2 expression was detected at very low levels in preterm, but was absent in full-term and adult NHP lung homogenates. This pattern of ACE2 expression contrasted with that of transmembrane protease serine type 2 (TMPRSS2), which was significantly increased in full-term newborn and adult NHP lungs compared to preterm NHP lungs. ACE2 expression was not detected in NHP lungs with cigarette smoke-induced airway disease or bronchopulmonary dysplasia. Murine lungs lacked basal ACE2 immunoreactivity, but responded to hyperoxia, bacterial infection, and allergen exposure with new ACE2 expression in bronchial epithelial cells. In human specimens, robust ACE2 immunoreactivity was detected in ciliated epithelial cells in paranasal sinus specimens, while ACE2 expression was detected only in rare type 2 alveolar epithelial cells in control lungs. In autopsy specimens from patients with COVID-19 pneumonia, ACE2 was detected in rare ciliated epithelial and endothelial cells in the trachea, but not in the lung. There was robust expression of ACE2 expression in F344/N rat nasal mucosa and lung specimens, which authentically recapitulated the ACE2 expression pattern in human paranasal sinus specimens. Thus, ACE2 protein expression demonstrates a significant gradient between upper and lower respiratory tract in humans and is scarce in the lung. This pattern of ACE2 expression supports the notion of sinonasal epithelium being the main entry site for SARS-CoV-2 but raises further questions on the pathogenesis and cellular targets of SARS-CoV-2 in COVID-19 pneumonia.


Assuntos
/biossíntese , Lesão Pulmonar/enzimologia , Fatores Etários , Células Epiteliais Alveolares/metabolismo , Animais , Animais Recém-Nascidos , /metabolismo , Feminino , Expressão Gênica , Humanos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Papio papio , Mucosa Respiratória/enzimologia , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Transcriptoma
3.
DNA Cell Biol ; 40(4): 589-594, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33600261

RESUMO

Silicosis is an irreversible occupational pulmonary disease that is characterized as progressed pulmonary fibrosis. In this study, we investigated the changes of UFSP2 and the related UFMylation in silica-induced pulmonary injury mice models. The experimental silicosis models were prepared by intratracheal injection of silica particles, and the lung samples were harvested at the first or the seventh day after treatment. We found that the UFSP2 expression in the 1-day models was comparable, whereas it was upregulated in the 7-day models. Consistently, the UFMylation in the lung tissues of the 7-day models was activated. In addition, we observed the CADM2, an adhesion molecule, was reported to associate with epithelial-mesenchymal transition, was upregulated in the lungs of 7-day models. In contrast, it remained comparable in the 1-day models. Our data indicated that the UFSP2/UFMylation pathway and the CADM2 might be involved in the silica-induced pulmonary injury.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas/metabolismo , Silicose/metabolismo , Animais , China , Cisteína Endopeptidases/fisiologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Dióxido de Silício/efeitos adversos , Silicose/fisiopatologia
4.
Am J Physiol Cell Physiol ; 320(3): C341-C354, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326311

RESUMO

Chronic obstructive pulmonary disease (COPD) is an important health care issue, and IL-17 can modulate inflammatory responses. We evaluated preventive and therapeutic effect of anti-interleukin (IL)-17 in a model of lung injury induced by elastase, using 32 male C57Bl6 mice, divided into 4 groups: SAL, ELASTASE CONTROL (EC), ELASTASE + PREVENTIVE ANTI-IL-17 (EP), and ELASTASE + THERAPEUTIC ANTI-IL-17 (ET). On the 29th day, animals were anesthetized with thiopental, tracheotomized, and placed on a ventilator to evaluate lung mechanical, exhaled nitric oxide (eNO), and total cells of bronchoalveolar lavage fluid was collected. We performed histological techniques, and linear mean intercept (Lm) was analyzed. Both treatments with anti-IL-17 decreased respiratory resistance and elastance, airway resistance, elastance of pulmonary parenchyma, eNO, and Lm compared with EC. There was reduction in total cells and macrophages in ET compared with EC. Both treatments decreased nuclear factor-кB, inducible nitric oxide synthase, matrix metalloproteinase (MMP)-9, MMP-12, transforming growth factor-ß, tumor necrosis factor-α, neutrophils, IL-1ß, isoprostane, and IL-17 in airways and alveolar septa; collagen fibers, decorin and lumican in airways; and elastic fibers and fibronectin in alveolar septa compared with EC. There was reduction of collagen fibers in alveolar septa and biglycan in airways in EP and a reduction of eNO synthase in airways in ET. In conclusion, both treatments with anti-IL-17 contributed to improve most of parameters evaluated in inflammation and extracellular matrix remodeling in this model of lung injury.


Assuntos
Interleucina-17/metabolismo , Lesão Pulmonar/metabolismo , Pulmão/metabolismo , Elastase Pancreática/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
5.
Signal Transduct Target Ther ; 5(1): 240, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060566

RESUMO

The COVID-19 pandemic has emerged as a global health emergency due to its association with severe pneumonia and relative high mortality. However, the molecular characteristics and pathological features underlying COVID-19 pneumonia remain largely unknown. To characterize molecular mechanisms underlying COVID-19 pathogenesis in the lung tissue using a proteomic approach, fresh lung tissues were obtained from newly deceased patients with COVID-19 pneumonia. After virus inactivation, a quantitative proteomic approach combined with bioinformatics analysis was used to detect proteomic changes in the SARS-CoV-2-infected lung tissues. We identified significant differentially expressed proteins involved in a variety of fundamental biological processes including cellular metabolism, blood coagulation, immune response, angiogenesis, and cell microenvironment regulation. Several inflammatory factors were upregulated, which was possibly caused by the activation of NF-κB signaling. Extensive dysregulation of the lung proteome in response to SARS-CoV-2 infection was discovered. Our results systematically outlined the molecular pathological features in terms of the lung response to SARS-CoV-2 infection, and provided the scientific basis for the therapeutic target that is urgently needed to control the COVID-19 pandemic.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/genética , Lesão Pulmonar/genética , Pneumonia Viral/genética , Proteoma/genética , Proteômica/métodos , Síndrome Respiratória Aguda Grave/genética , Idoso , Autopsia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/virologia , Masculino , Redes e Vias Metabólicas , Anotação de Sequência Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Proteoma/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Síndrome Respiratória Aguda Grave/patologia , Síndrome Respiratória Aguda Grave/virologia , Índice de Gravidade de Doença , Transdução de Sinais
6.
Toxicol Lett ; 334: 4-13, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949624

RESUMO

Radon exposure is the most frequent cause of lung cancer in non-smokers. The high linear energy transfer alpha-particles from radon decay cause the accumulation of multiple genetic changes and lead to cancer development. Epithelial-mesenchymal transition (EMT) plays an important role in oncogenesis. However, the mechanisms underlying chronic radon exposure-induced EMT attributed to carcinogenesis are not understood. This study aimed to explore the EMT and potential molecular mechanisms induced by repeated radon exposure. The EMT model of 16HBE and BEAS-2B cells was established with radon exposure (20000 Bq/m3, 20 min each time every 3 days). We found repeated radon exposure facilitated epithelial cell migration, proliferation, reduced cell adhesion and ability to undergo EMT through a decrease in epithelial markers and an increase in mesenchymal markers. Radon regulated the expression of matrix metalloproteinase 2 (MMP2) and tissue inhibitors of metalloproteinase 2 (TIMP2) to disrupt the balance of MMP2/TIMP2. In vivo, BALB/c mice were exposed to 105 Bq/m3 radon gas for cumulative doses of 60 and 120 Working Level Months (WLM). Radon inhalation caused lung damage and fibrosis in mice, which was aggravated with the increase of exposure dose. EMT-like transformation also occurred in lung tissues of radon-exposure mice. Moreover, radon radiation increased p-PI3K, p-AKT and p-mTOR in cells and mice. Radon reduced the GSK-3ß level and elevated the active ß-catenin in 16HBE cells. The m-TOR and AKT inhibitors attenuated radon exposure-induced EMT by regulation related biomarkers. These data demonstrated that radon exposure induced EMT through the PI3K/AKT/mTOR pathway in epithelial cells and lung tissue.


Assuntos
Poluentes Radioativos do Ar/toxicidade , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lesão Pulmonar/induzido quimicamente , Pulmão , Radônio/toxicidade , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Produtos de Decaimento de Radônio/toxicidade , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
7.
Life Sci ; 259: 118286, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32810508

RESUMO

AIMS: To investigate the role of CX3CR1 in hyperoxic lung injury induced pulmonary fibrosis. MATERIALS AND METHODS: Hyperoxic lung injured mice were used as the disease model. Pulmonary fibrosis was determined by H&E and Masson's staining. Autophagy was investigated by western blot, immunofluorescence staining, and transmission electron microscopy. KEY FINDINGS: We observed that increased CX3CR1 expression corresponded with increased pulmonary fibrosis. Additionally, silencing of CX3CR1 significantly alleviated the fibrosis when compared to the control. We observed that exposure of mouse to hyperoxic environment increased macrophage levels along with an increased CD11b expression in the lung tissues. Subsequently, we also observed an increased expression of LC3-II and decreased p62 expression in hyperoxic mice models, suggesting the potential role of hyperoxia induced autophagy. CD11b and LC3/CX3CR1 were expressed and co-localized in a manner indicating CX3CR1 indeed does regulate macrophage autophagy in the hyperoxic lung injury model. We observed a decrease in hyperoxia-associated fibrosis, along with a decrease in autophagy when we used 3-MA (autophagy inhibitor) in our hyperoxic lung injury model. To elucidate the pathway through which CX3CR1 regulated autophagy, we further analyzed the Akt1 pathway. Our experimental results indicated that the Akt1 inhibitor (A-674563) did significantly decrease macrophage autophagy and fibrosis in hyperoxic mice models. SIGNIFICANCE: Thus, our data indicates a novel role of CX3CR1 in regulation of macrophage autophagy and promotion of pulmonary fibrosis in hyperoxic lung injured mice.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Autofagia/fisiologia , Western Blotting , Receptor 1 de Quimiocina CX3C/antagonistas & inibidores , Modelos Animais de Doenças , Hiperóxia/patologia , Pulmão/metabolismo , Lesão Pulmonar/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia
8.
Ecotoxicol Environ Saf ; 204: 110948, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32739672

RESUMO

Exposure to arsenic is epidemiologically associated with increased lung disease. In detailing the mechanism by which arsenic exposure leads to disease, studies have emphasized that metabolic reprogramming and immune dysfunction are related to arsenic-induced lung injury. However, the association between the mechanisms listed above is not well understood. Thus, the current study aimed to investigate the interaction of energy metabolism and macrophage polarization, by which arsenic exposure adversely induced lung injury in both in vitro and human studies. First, we confirmed a shift to glycolytic metabolism resulting from mitochondrial dysfunction. This shift was accompanied by an increase in the levels of phosphorylated PDHE1α (S293) and PDK1 and a concomitant marked increase in several key markers of the HIF-1α signaling pathway (HIF-1α, p-PKM2, GLUT1 and HK-2). In addition, utilizing an in vitro model in which lung epithelial cells are cultured with macrophages, we determined that arsenic treatment polarizes macrophages towards the M2 phenotype through lactate. In the human study, the serum lactate and TGF-ß levels were higher in arsenic-exposed subjects than that in reference subjects (t= 4.50, 6.24, both p < 0.05), while FVC and FEV1 were both lower (t= 5.47, 7.59, both p < 0.05). Pearson correlation analyses showed a significant negative correlation between the serum TGF-ß and lactate levels and the lung function parameters (pcorrelation<0.05). In mediation analyses, lactate and TGF-ß significantly mediated 24.3% and 9.0%, respectively, of the association between arsenic and FVC (pmediation<0.05), while lactate and TGF-ß significantly mediated 22.2% and 12.5%, respectively, of the association between arsenic and FEV1 (pmediation<0.05). Together, the results of the in vitro and human studies indicated that there is complex communication between metabolic reprogramming and immune dysfunction, resulting in exacerbated effects in a feedback loop with increased arsenic-induced lung damage.


Assuntos
Arsênico/toxicidade , Metabolismo Energético/efeitos dos fármacos , Lesão Pulmonar/metabolismo , Macrófagos/efeitos dos fármacos , Adulto , Células Epiteliais , Feminino , Humanos , Lesão Pulmonar/etiologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Células THP-1
9.
Environ Toxicol ; 35(11): 1260-1273, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32639093

RESUMO

Crotonaldehyde, a highly toxic α, ß-unsaturated aldehyde, is a ubiquitous hazardous pollutant. Because of its extreme toxicity and ubiquity in all types of smoke, most current research focuses on the lung toxicity of such air pollutants. However, the specific mechanism of pulmonary toxicity caused by crotonaldehyde remains unclear, especially after long-term exposure to crotonaldehyde at low dose. Therefore, the aim of the present study is to determine whether crotonaldehyde-induced oxidative damage and inflammation promote apoptosis in rats via the mitochondrial pathway using histopathology, immunohistochemistry, biochemistry analysis and Western blot analysis. The results show that crotonaldehyde elicited oxidative damage and inflammation in rats in a concentration-dependent manner. Crotonaldehyde-induced lung injury which was confirmed by H&E, Masson's trichrome staining and TUNEL. And crotonaldehyde-induced lung cell apoptosis showed a concentration-response relationship. Immunohistochemistry and Western blot results showed that apoptotic mitochondrial signaling pathway is abnormally activated in crotonaldehyde-induced lung injury. Collectively, this study demonstrates that exposure of rats to crotonaldehyde induces lung injury by inducing apoptosis, which is related to oxidative damage and inflammation through mitochondrial pathway.


Assuntos
Aldeídos/toxicidade , Poluentes Ambientais/toxicidade , Lesão Pulmonar/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Masculino , Mitocôndrias/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
10.
Life Sci ; 257: 118042, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32621926

RESUMO

AIMS: To investigate the role of bone marrow mesenchymal stem cell (BMSC)-derived exosomes in smoke inhalation lung injury. MAIN METHODS: In this study, we initially isolated exosomes from BMSCs and identified them by western blot and transmission electron microscopy. BMSC-derived exosomes were then used to treat in vitro and in vivo models of smoke inhalation lung injury. Pathologic alterations in lung tissue, the levels of inflammatory factors and apoptosis-related factors, and the expression of HMGB1 and NF-κB were determined to evaluate the therapeutic effect of BMSC-derived exosomes. KEY FINDINGS: We found that BMSC-derived exosomes could alleviate the injury caused by smoke inhalation. Smoke inhalation increased the levels of inflammatory factors and apoptosis-related factors and the expression of HMGB1 and NF-κB, and these increases were reversed by BMSC-derived exosomes. HMGB1 overexpression abrogated the exosome-induced decreases in inflammatory factors, apoptosis-related factors and NF-κB. SIGNIFICANCE: Collectively, these results indicate that BMSC-derived exosomes can effectively alleviate smoke inhalation lung injury by inhibiting the HMGB1/NF-κB pathway, suggesting that exosome, a noncellular therapy, is a potential therapeutic strategy for inhalation lung injury.


Assuntos
Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Lesão por Inalação de Fumaça/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína HMGB1/metabolismo , Inflamação/patologia , Lesão Pulmonar/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fumaça/efeitos adversos , Lesão por Inalação de Fumaça/terapia
11.
Nat Commun ; 11(1): 3559, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678092

RESUMO

The cell type specific sequences of transcriptional programs during lung regeneration have remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model, we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8 + transitional stem cell state during alveolar regeneration. These cells have squamous morphology, feature p53 and NFkB activation and display transcriptional features of cellular senescence. The Krt8+ state appears in several independent models of lung injury and persists in human lung fibrosis, creating a distinct cell-cell communication network with mesenchyme and macrophages during repair. We generated a model of gene regulatory programs leading to Krt8+ transitional cells and their terminal differentiation to alveolar type-1 cells. We propose that in lung fibrosis, perturbed molecular checkpoints on the way to terminal differentiation can cause aberrant persistence of regenerative intermediate stem cell states.


Assuntos
Células Epiteliais Alveolares/metabolismo , Queratina-8/metabolismo , Alvéolos Pulmonares/fisiologia , Fibrose Pulmonar/patologia , Regeneração , Células-Tronco/metabolismo , Células Epiteliais Alveolares/citologia , Animais , Comunicação Celular , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Queratina-8/genética , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/citologia , Fibrose Pulmonar/metabolismo , Análise de Célula Única , Células-Tronco/citologia
12.
ACS Chem Neurosci ; 11(15): 2156-2158, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32709193

RESUMO

Lung injury with COVID-19 may be due to a complex underlying pathophysiology. Cytokine release syndrome appears to be a catalyst of different inflammatory pathways promoting lung parenchymal injury and thromboembolic phenomena ("dual hit" injury). Recently, severe neurological manifestations such as acute disseminated encephalomyelitis, which may be not linked to lung pathology, have been identified in COVID-19, contributing thus further to the versatility of its clinical features.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Citocinas/metabolismo , Lesão Pulmonar/metabolismo , Pneumonia Viral/metabolismo , Animais , Infecções por Coronavirus/complicações , Infecções por Coronavirus/fisiopatologia , Humanos , Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/fisiopatologia
13.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L562-L575, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579393

RESUMO

The poorly understood tolerance toward high tidal volume (VT) ventilation observed in critically ill children and age-equivalent animal models may be explained by surfactant homeostasis. The aim of our prospective animal study was to test whether high VT with adequate positive end-expiratory pressure (PEEP) is associated with surfactant de novo synthesis and secretion, leading to improved lung function, and whether extreme mechanical ventilation affects intracellular lamellar body formation and exocytosis. Rats (14 days old) were allocated to five groups: nonventilated controls, PEEP 5 cmH2O with VT of 8, 16, and 24 mL/kg, and PEEP 1 cmH2O with VT 24 mL/kg. Following 6 h of ventilation, lung function, surfactant proteins and phospholipids, and lamellar bodies were assessed by forced oscillation technique, quantitative real-time polymerase chain reaction, mass spectrometry, immunohistochemistry, and transmission electron microscopy. High VT (24 mL/kg) with PEEP of 5 cmH2O improved respiratory system mechanics and was not associated with lung injury, elevated surfactant protein expression, or surfactant phospholipid content. Extreme ventilation with VT 24 mL/kg and PEEP 1 cmH2O produced a mild inflammatory response and correlated with higher surfactant phospholipid concentrations in bronchoalveolar lavage fluid without affecting lamellar body count and morphology. Elevated phospholipid concentrations in the potentially most injurious strategy (VT 24 mL/kg, PEEP 1 cmH2O) need further evaluation and might reflect accumulation of biophysically inactive small aggregates. In conclusion, our data confirm the resilience of infant rats toward high VT-induced lung injury and challenge the relevance of surfactant synthesis, storage, and secretion as protective factors.


Assuntos
Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Surfactantes Pulmonares/metabolismo , Volume de Ventilação Pulmonar/fisiologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Ratos , Mecânica Respiratória/fisiologia , Tensoativos/metabolismo
14.
Ann Vasc Surg ; 69: 391-399, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32599107

RESUMO

BACKGROUND: Phosphodiesterase enzymes play a pivotal role in the pathogenesis of ischemia/reperfusion (IR). We examined the role of milrinone (MIL), a phosphodiesterase 3 inhibitor, on remote injury of the heart and lung after abdominal aortic cross-clamping. DESIGN: Experimental study. METHODS: Twenty-one Wistar rats were divided into 3 groups: (1) control (C, n = 7), underwent laparotomy and exploration of abdominal aorta only; (2) IR (n = 7), normal saline was applied intraperitoneally (i.p) before IR induced by clamping of the abdominal aorta for 1 hr and then allowing reperfusion for 1 hr; and (3) MIL + IR (n = 7), MIL was given (0.5 mg/kg, i.p) before IR. After sacrification, the lungs and hearts were taken out for analyses and the tissue malondialdehyde (MDA) and glutathione (GSH) were studied. All tissues were examined under light microscopy and transmission electron microscopy (TEM). Expressions of caveolin (Cav)-1 in the lung and Cav-1 and Cav-3 in the heart were examined immunohistochemically. RESULTS: The MIL + IR group had significantly a lower magnitude of oxidative stress than the IR group both in the lung and heart (lung: P = 0.03 for MDA and 0.001 for GSH and heart: P = 0.002 for MDA and 0.000 for GSH). In light microscopy, the MIL + IR group had statistically a lower total injury score than the IR group for both the lung and heart tissue (P = 0.03 and P = 0.04, respectively). In TEM, regression of mitochondrial degeneration and lamellar bodies in type II pneumocytes in the lungs and obvious improvements in disruption at the intercalated discs and mitochondrial degeneration in the hearts in the MIL + IR group were detected compared with the IR group. The expression of both Cav-1 and Cav-3 in the MIL + IR group was improved compared with the IR group (P = 0.03 for both). CONCLUSIONS: MIL attenuates remote injury of heart and lung in lower body IR by inhibiting oxidative stress. Moreover, Cav-1 and Cav-3 might have a potential role in MIL-induced cardioprotection.


Assuntos
Aorta Abdominal/cirurgia , Coração/efeitos dos fármacos , Lesão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Milrinona/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Inibidores da Fosfodiesterase 3/farmacologia , Animais , Antioxidantes/farmacologia , Caveolina 1/metabolismo , Caveolina 3/metabolismo , Constrição , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/ultraestrutura , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais
15.
Sci Rep ; 10(1): 8462, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439972

RESUMO

Bile acids (BA), with their large hydrophobic steroid nucleus and polar groups are amphipathic molecules. In bile, these exist as micelles above their critical micellar concentration (CMC). In blood at low concentrations, these exist as monomers, initiating cellular signals. This micellar to monomer transition may involve complex thermodynamic interactions between bile salts alone or with phospholipids, i.e. mixed micelles and the aqueous environment. We therefore went on to test if therapeutically relevant changes in temperature could influence micellar behavior of bile salts, and in turn whether this affected the biological responses in cells, and in vivo. Sodium taurocholate (STC) belongs to a major class of bile salts. STC has a CMC in the 5-8 mM range and its infusion into the pancreatic duct is commonly used to study pancreatitis. We thus studied micellar breakdown of STC using isothermal titration calorimetry (ITC), dynamic light scattering and cryogenic transmission electron microscopy. Under conditions relevant to the in vivo environment (pH 7.4, Na 0.15 M), ITC showed STC to have a U shaped reduction in micellar breakdown between 37 °C and 15 °C with a nadir at 25 °C approaching ≈90% inhibition. This temperature dependence paralleled pancreatic acinar injury induced by monomeric STC. Mixed micelles of STC and 1-palmitoyl, 2-oleyl phosphatidylcholine, a phospholipid present in high proportions in bile, behaved similarly, with ≈75% reduction in micellar breakdown at 25 °C compared to 37 °C. In vivo pancreatic cooling to 25 °C reduced the increase in circulating BAs after infusion of 120 mM (5%) STC into the pancreatic duct, and duct ligation. Lower BA levels were associated with improved cardiac function, reduced myocardial damage, shock, lung injury and improved survival independent of pancreatic injury. Thus micellar breakdown of bile salts is essential for their entry into the systemic circulation, and thermodynamic interference with this may reduce their systemic entry and consequent injury during cholestasis, such as from biliary pancreatitis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestase/complicações , Inflamação/prevenção & controle , Lesão Pulmonar/prevenção & controle , Micelas , Contusões Miocárdicas/prevenção & controle , Choque/prevenção & controle , Animais , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos , Contusões Miocárdicas/etiologia , Contusões Miocárdicas/metabolismo , Contusões Miocárdicas/patologia , Choque/etiologia , Choque/metabolismo , Choque/patologia , Temperatura , Termodinâmica
16.
Clin Med (Lond) ; 20(4): e72-e75, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32414711

RESUMO

COVID-19, caused by infection with SARS-CoV-2, is a disease characterised by cough, fever and fatigue, which progresses to life-threatening lung injury in approximately 5% of patients. The SARS-CoV-2 virus enters the cell via ACE2. ACE2 is a component of the renin-angiotensin system (RAS) which has an important counterregulatory effect on the classical ACE-dependent pathway. Several antihypertensives increase ACE2 expression or activity, leading to concern that this may facilitate SARS-CoV-2 entry and worsen COVID-19 disease. However, ACE2 is protective against lung injury while ANG II (which is catabolised by ACE2) is associated with lung injury both in mice and humans. We propose that medications which inhibit the RAS ACE-dependent pathway may be beneficial in treating COVID-19 and should be explored in animal models and clinical trials. Here we give an overview of the RAS pathway with respect to COVID-19 and argue that strategies which manipulate this pathway might reduce the destructive lung manifestations of COVID-19 and improve patient outcomes.


Assuntos
Angiotensina II/metabolismo , Anti-Hipertensivos/uso terapêutico , Betacoronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Sistema Renina-Angiotensina , Amidas/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Infecções por Coronavirus/complicações , Infecções por Coronavirus/tratamento farmacológico , Fumaratos/uso terapêutico , Humanos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/virologia , Camundongos , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/tratamento farmacológico , Internalização do Vírus
17.
Sci Rep ; 10(1): 8685, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457348

RESUMO

Extensive use of gallium arsenide (GaAs) has led to increased exposure to humans working in the semiconductor industry. This study employed physicochemical characterization of GaAs obtained from a workplace, cytotoxicity analysis of damage induced by GaAs in 16HBE cells, RNA-seq and related bioinformatic analysis, qRT-PCR verification and survival analysis to comprehensively understand the potential mechanism leading to lung toxicity induced by GaAs. We found that GaAs-induced abnormal gene expression was mainly related to the cellular response to chemical stimuli, the regulation of signalling, cell differentiation and the cell cycle, which are involved in transcriptional misregulation in cancer, the MAPK signalling pathway, the TGF-ß signalling pathway and pulmonary disease-related pathways. Ten upregulated genes (FOS, JUN, HSP90AA1, CDKN1A, ESR1, MYC, RAC1, CTNNB1, MAPK8 and FOXO1) and 7 downregulated genes (TP53, AKT1, NFKB1, SMAD3, CDK1, E2F1 and PLK1) related to GaAs-induced pulmonary toxicity were identified. High expression of HSP90AA1, RAC1 and CDKN1A was significantly associated with a lower rate of overall survival in lung cancers. The results of this study indicate that GaAs-associated toxicities affected the misregulation of oncogenes and tumour suppressing genes, activation of the TGF-ß/MAPK pathway, and regulation of cell differentiation and the cell cycle. These results help to elucidate the molecular mechanism underlying GaAs-induced pulmonary injury.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Gálio/toxicidade , RNA/metabolismo , Regulação para Cima/efeitos dos fármacos , Arsenicais , Brônquios/citologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epitelioides/citologia , Células Epitelioides/efeitos dos fármacos , Células Epitelioides/metabolismo , Humanos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA/química , Análise de Sequência de RNA , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1198-L1210, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320623

RESUMO

The pulmonary epithelial glycocalyx, an anionic cell surface layer enriched in glycosaminoglycans such as heparan sulfate and chondroitin sulfate, contributes to the alveolar barrier. Direct injury to the pulmonary epithelium induces shedding of heparan sulfate into the air space; the impact of this shedding on recovery after lung injury is unknown. Using mass spectrometry, we found that heparan sulfate was shed into the air space for up to 3 wk after intratracheal bleomycin-induced lung injury and coincided with induction of matrix metalloproteinases (MMPs), including MMP2. Delayed inhibition of metalloproteinases, beginning 7 days after bleomycin using the nonspecific MMP inhibitor doxycycline, attenuated heparan sulfate shedding and improved lung function, suggesting that heparan sulfate shedding may impair lung recovery. While we also observed an increase in air space heparanase activity after bleomycin, pharmacological and transgenic inhibition of heparanase in vivo failed to attenuate heparan sulfate shedding or protect against bleomycin-induced lung injury. However, experimental augmentation of airway heparanase activity significantly worsened post-bleomycin outcomes, confirming the importance of epithelial glycocalyx integrity to lung recovery. We hypothesized that MMP-associated heparan sulfate shedding contributed to delayed lung recovery, in part, by the release of large, highly sulfated fragments that sequestered lung-reparative growth factors such as hepatocyte growth factor. In vitro, heparan sulfate bound hepatocyte growth factor and attenuated growth factor signaling, suggesting that heparan sulfate shed into the air space after injury may directly impair lung repair. Accordingly, administration of exogenous heparan sulfate to mice after bleomycin injury increased the likelihood of death due to severe lung dysfunction. Together, our findings demonstrate that alveolar epithelial heparan sulfate shedding impedes lung recovery after bleomycin.


Assuntos
Heparitina Sulfato/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Animais , Bleomicina , Linhagem Celular , Glucuronidase/metabolismo , Heparitina Sulfato/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lesão Pulmonar/fisiopatologia , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/fisiopatologia , Testes de Função Respiratória , Mecânica Respiratória , Fatores de Risco , Transdução de Sinais , Regulação para Cima
19.
Am J Respir Cell Mol Biol ; 63(2): 244-254, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275835

RESUMO

Delayed lung repair leads to alveolopleural fistulae, which are a major cause of morbidity after lung resections. We have reported that intrapleural hypercapnia is associated with delayed lung repair after lung resection. Here, we provide new evidence that hypercapnia delays wound closure of both large airway and alveolar epithelial cell monolayers because of inhibition of epithelial cell migration. Cell migration and airway epithelial wound closure were dependent on Rac1-GTPase activation, which was suppressed by hypercapnia directly through the upregulation of AMP kinase and indirectly through inhibition of injury-induced NF-κB-mediated CXCL12 (pleural CXC motif chemokine 12) release, respectively. Both these pathways were independently suppressed, because dominant negative AMP kinase rescued the effects of hypercapnia on Rac1-GTPase in uninjured resting cells, whereas proteasomal inhibition reversed the NF-κB-mediated CXCL12 release during injury. Constitutive overexpression of Rac1-GTPase rescued the effects of hypercapnia on both pathways as well as on wound healing. Similarly, exogenous recombinant CXCL12 reversed the effects of hypercapnia through Rac1-GTPase activation by its receptor, CXCR4. Moreover, CXCL12 transgenic murine recipients of orthotopic tracheal transplantation were protected from hypercapnia-induced inhibition of tracheal epithelial cell migration and wound repair. In patients undergoing lobectomy, we found inverse correlation between intrapleural carbon dioxide and pleural CXCL12 levels as well as between CXCL12 levels and alveolopleural leak. Accordingly, we provide first evidence that high carbon dioxide levels impair lung repair by inhibiting epithelial cell migration through two distinct pathways, which can be restored by recombinant CXCL12.


Assuntos
Dióxido de Carbono/efeitos adversos , Lesão Pulmonar/fisiopatologia , Pulmão/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Feminino , Humanos , Hipercapnia/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Nat Commun ; 11(1): 1064, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111836

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal and incurable form of interstitial lung disease in which persistent injury results in scar tissue formation. As fibrosis thickens, the lung tissue loses the ability to facilitate gas exchange and provide cells with needed oxygen. Currently, IPF has few treatment options and no effective therapies, aside from lung transplant. Here we present a series of studies utilizing lung spheroid cell-secretome (LSC-Sec) and exosomes (LSC-Exo) by inhalation to treat different models of lung injury and fibrosis. Analysis reveals that LSC-Sec and LSC-Exo treatments could attenuate and resolve bleomycin- and silica-induced fibrosis by reestablishing normal alveolar structure and decreasing both collagen accumulation and myofibroblast proliferation. Additionally, LSC-Sec and LSC-Exo exhibit superior therapeutic benefits than their counterparts derived from mesenchymal stem cells in some measures. We showed that an inhalation treatment of secretome and exosome exhibited therapeutic potential for lung regeneration in two experimental models of pulmonary fibrosis.


Assuntos
Exossomos/transplante , Fibrose Pulmonar Idiopática/terapia , Lesão Pulmonar/terapia , Pulmão/citologia , Esferoides Celulares/metabolismo , Administração por Inalação , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Apoptose/efeitos dos fármacos , Bleomicina/toxicidade , Proliferação de Células , Modelos Animais de Doenças , Exossomos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Miofibroblastos/citologia , Proteômica , Dióxido de Silício/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...