Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.272
Filtrar
1.
BMC Plant Biol ; 21(1): 307, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193031

RESUMO

BACKGROUND: Maize rough dwarf disease (MRDD), a widespread disease caused by four pathogenic viruses, severely reduces maize yield and grain quality. Resistance against MRDD is a complex trait that controlled by many quantitative trait loci (QTL) and easily influenced by environmental conditions. So far, many studies have reported numbers of resistant QTL, however, only one QTL have been cloned, so it is especially important to map and clone more genes that confer resistance to MRDD. RESULTS: In the study, a major quantitative trait locus (QTL) qMrdd2, which confers resistance to MRDD, was identified and fine mapped. qMrdd2, located on chromosome 2, was consistently identified in a 15-Mb interval between the simple sequence repeat (SSR) markers D184 and D1600 by using a recombinant inbred line (RIL) population derived from a cross between resistant ("80007") and susceptible ("80044") inbred lines. Using a recombinant-derived progeny test strategy, qMrdd2 was delineated to an interval of 577 kb flanked by markers N31 and N42. We further demonstrated that qMrdd2 is an incompletely dominant resistance locus for MRDD that reduced the disease severity index by 20.4%. CONCLUSIONS: A major resistance QTL (qMrdd2) have been identified and successfully refined into 577 kb region. This locus will be valuable for improving maize variety resistance to MRDD via marker-assisted selection (MAS).


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Locos de Características Quantitativas/genética , Zea mays/genética , Zea mays/virologia , Análise de Variância , Ligação Genética , Endogamia , Modelos Genéticos , Fenótipo , Mapeamento Físico do Cromossomo
2.
Hum Genet ; 140(8): 1183-1200, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34076780

RESUMO

Dyslexia is a common heritable developmental disorder involving impaired reading abilities. Its genetic underpinnings are thought to be complex and heterogeneous, involving common and rare genetic variation. Multigenerational families segregating apparent monogenic forms of language-related disorders can provide useful entrypoints into biological pathways. In the present study, we performed a genome-wide linkage scan in a three-generational family in which dyslexia affects 14 of its 30 members and seems to be transmitted with an autosomal dominant pattern of inheritance. We identified a locus on chromosome 7q21.11 which cosegregated with dyslexia status, with the exception of two cases of phenocopy (LOD = 2.83). Whole-genome sequencing of key individuals enabled the assessment of coding and noncoding variation in the family. Two rare single-nucleotide variants (rs144517871 and rs143835534) within the first intron of the SEMA3C gene cosegregated with the 7q21.11 risk haplotype. In silico characterization of these two variants predicted effects on gene regulation, which we functionally validated for rs144517871 in human cell lines using luciferase reporter assays. SEMA3C encodes a secreted protein that acts as a guidance cue in several processes, including cortical neuronal migration and cellular polarization. We hypothesize that these intronic variants could have a cis-regulatory effect on SEMA3C expression, making a contribution to dyslexia susceptibility in this family.


Assuntos
Dislexia/genética , Predisposição Genética para Doença , Padrões de Herança , Polimorfismo de Nucleotídeo Único , Semaforinas/genética , Sequência de Bases , Movimento Celular , Cromossomos Humanos Par 7 , Dislexia/diagnóstico por imagem , Dislexia/metabolismo , Dislexia/fisiopatologia , Família , Feminino , Expressão Gênica , Genes Dominantes , Ligação Genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Íntrons , Escore Lod , Masculino , Neuroimagem , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Fenótipo , Semaforinas/deficiência , Sequenciamento Completo do Genoma
3.
Microb Genom ; 7(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34184982

RESUMO

The COVID-19 pandemic has spread rapidly throughout the world. In the UK, the initial peak was in April 2020; in the county of Norfolk (UK) and surrounding areas, which has a stable, low-density population, over 3200 cases were reported between March and August 2020. As part of the activities of the national COVID-19 Genomics Consortium (COG-UK) we undertook whole genome sequencing of the SARS-CoV-2 genomes present in positive clinical samples from the Norfolk region. These samples were collected by four major hospitals, multiple minor hospitals, care facilities and community organizations within Norfolk and surrounding areas. We combined clinical metadata with the sequencing data from regional SARS-CoV-2 genomes to understand the origins, genetic variation, transmission and expansion (spread) of the virus within the region and provide context nationally. Data were fed back into the national effort for pandemic management, whilst simultaneously being used to assist local outbreak analyses. Overall, 1565 positive samples (172 per 100 000 population) from 1376 cases were evaluated; for 140 cases between two and six samples were available providing longitudinal data. This represented 42.6 % of all positive samples identified by hospital testing in the region and encompassed those with clinical need, and health and care workers and their families. In total, 1035 cases had genome sequences of sufficient quality to provide phylogenetic lineages. These genomes belonged to 26 distinct global lineages, indicating that there were multiple separate introductions into the region. Furthermore, 100 genetically distinct UK lineages were detected demonstrating local evolution, at a rate of ~2 SNPs per month, and multiple co-occurring lineages as the pandemic progressed. Our analysis: identified a discrete sublineage associated with six care facilities; found no evidence of reinfection in longitudinal samples; ruled out a nosocomial outbreak; identified 16 lineages in key workers which were not in patients, indicating infection control measures were effective; and found the D614G spike protein mutation which is linked to increased transmissibility dominates the samples and rapidly confirmed relatedness of cases in an outbreak at a food processing facility. The large-scale genome sequencing of SARS-CoV-2-positive samples has provided valuable additional data for public health epidemiology in the Norfolk region, and will continue to help identify and untangle hidden transmission chains as the pandemic evolves.


Assuntos
COVID-19/patologia , Genoma Viral , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Análise por Conglomerados , Surtos de Doenças , Ligação Genética , Humanos , Estudos Longitudinais , Pandemias , Filogenia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma
4.
BMC Plant Biol ; 21(1): 290, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167476

RESUMO

BACKGROUND: Spinach (Spinacia oleracea L.) is an important leafy vegetable crop, and leaf-related traits including leaf length, leaf width, and petiole length, are important commercial traits. However, the underlying genes remain unclear. The objective of the study was to conduct QTL mapping of leaf-related traits in spinach. RESULTS: A BC1 population was used to construct the linkage map and for QTL mapping of leaf length, leaf width, petiole length, and the ratio of leaf length to width in 2015 and 2019. Two genetic linkage maps were constructed by specific locus amplified fragment sequencing (SLAF-seq), and kompetitive allele specific PCR (KASP) technology, respectively using BC1 population in 2015. Based on the results of 2015, the specific linkage groups (LG) detected QTLs were generated using BC1 population in 2019. A total of 13 QTLs were detected for leaf-related traits, only five QTLs being repeatedly detected in multiple years or linkage maps. Interestingly, the major QTLs of leaf length, petiole length, and the ratio of leaf length to width were highly associated with the same SNP markers (KM3102838, KM1360385 and KM2191098). A major QTL of leaf width was mapped on chromosome 1 from 41.470-42.045 Mb. And 44 genes were identified within the region. Based on the GO analysis, these genes were significantly enriched on ribonuclease, lyase activity, phosphodiester bond hydrolysis process, and cell wall component, thus it might change cell size to determine leaves shape. CONCLUSIONS: Five QTLs for leaf-related traits were repeatedly detected at least two years or linkage maps. The major QTLs of leaf length, petiole length, and the ratio of leaf length to width were mapped on the same loci. And three genes (Spo10792, Spo21018, and Spo21019) were identified as important candidate genes for leaf width.


Assuntos
Folhas de Planta/genética , Locos de Características Quantitativas/genética , Spinacia oleracea/genética , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Folhas de Planta/anatomia & histologia , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Spinacia oleracea/anatomia & histologia
5.
Microb Genom ; 7(6)2021 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1286632

RESUMO

The COVID-19 pandemic has spread rapidly throughout the world. In the UK, the initial peak was in April 2020; in the county of Norfolk (UK) and surrounding areas, which has a stable, low-density population, over 3200 cases were reported between March and August 2020. As part of the activities of the national COVID-19 Genomics Consortium (COG-UK) we undertook whole genome sequencing of the SARS-CoV-2 genomes present in positive clinical samples from the Norfolk region. These samples were collected by four major hospitals, multiple minor hospitals, care facilities and community organizations within Norfolk and surrounding areas. We combined clinical metadata with the sequencing data from regional SARS-CoV-2 genomes to understand the origins, genetic variation, transmission and expansion (spread) of the virus within the region and provide context nationally. Data were fed back into the national effort for pandemic management, whilst simultaneously being used to assist local outbreak analyses. Overall, 1565 positive samples (172 per 100 000 population) from 1376 cases were evaluated; for 140 cases between two and six samples were available providing longitudinal data. This represented 42.6 % of all positive samples identified by hospital testing in the region and encompassed those with clinical need, and health and care workers and their families. In total, 1035 cases had genome sequences of sufficient quality to provide phylogenetic lineages. These genomes belonged to 26 distinct global lineages, indicating that there were multiple separate introductions into the region. Furthermore, 100 genetically distinct UK lineages were detected demonstrating local evolution, at a rate of ~2 SNPs per month, and multiple co-occurring lineages as the pandemic progressed. Our analysis: identified a discrete sublineage associated with six care facilities; found no evidence of reinfection in longitudinal samples; ruled out a nosocomial outbreak; identified 16 lineages in key workers which were not in patients, indicating infection control measures were effective; and found the D614G spike protein mutation which is linked to increased transmissibility dominates the samples and rapidly confirmed relatedness of cases in an outbreak at a food processing facility. The large-scale genome sequencing of SARS-CoV-2-positive samples has provided valuable additional data for public health epidemiology in the Norfolk region, and will continue to help identify and untangle hidden transmission chains as the pandemic evolves.


Assuntos
COVID-19/patologia , Genoma Viral , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Análise por Conglomerados , Surtos de Doenças , Ligação Genética , Humanos , Estudos Longitudinais , Pandemias , Filogenia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma
6.
BMC Genomics ; 22(1): 426, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107887

RESUMO

BACKGROUND: Tilapia is one of the most abundant species in aquaculture. Hypoxia is known to depress growth rate, but the genetic mechanism by which this occurs is unknown. In this study, two groups consisting of 3140 fish that were raised in either aerated (normoxia) or non-aerated pond (nocturnal hypoxia). During grow out, fish were sampled five times to determine individual body weight (BW) gains. We applied a genome-wide association study to identify SNPs and genes associated with the hypoxic and normoxic environments in the 16th generation of a Genetically Improved Farmed Tilapia population. RESULTS: In the hypoxic environment, 36 SNPs associated with at least one of the five body weight measurements (BW1 till BW5), of which six, located between 19.48 Mb and 21.04 Mb on Linkage group (LG) 8, were significant for body weight in the early growth stage (BW1 to BW2). Further significant associations were found for BW in the later growth stage (BW3 to BW5), located on LG1 and LG8. Analysis of genes within the candidate genomic region suggested that MAPK and VEGF signalling were significantly involved in the later growth stage under the hypoxic environment. Well-known hypoxia-regulated genes such as igf1rb, rora, efna3 and aurk were also associated with growth in the later stage in the hypoxic environment. Conversely, 13 linkage groups containing 29 unique significant and suggestive SNPs were found across the whole growth period under the normoxic environment. A meta-analysis showed that 33 SNPs were significantly associated with BW across the two environments, indicating a shared effect independent of hypoxic or normoxic environment. Functional pathways were involved in nervous system development and organ growth in the early stage, and oocyte maturation in the later stage. CONCLUSIONS: There are clear genotype-growth associations in both normoxic and hypoxic environments, although genome architecture involved changed over the growing period, indicating a transition in metabolism along the way. The involvement of pathways important in hypoxia especially at the later growth stage indicates a genotype-by-environment interaction, in which MAPK and VEGF signalling are important components.


Assuntos
Ciclídeos , Estudo de Associação Genômica Ampla , Animais , Ciclídeos/genética , Ligação Genética , Genótipo , Oxigênio
7.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070753

RESUMO

In situ imaging of molecular markers on a physical chromosome is an indispensable tool for refining genetic maps and validation genome assembly at the chromosomal level. Despite the tremendous progress in genome sequencing, the plant genome assembly at the chromosome level remains a challenge. Recently developed optical and Hi-C mapping are aimed at assistance in genome assembly. For high confidence in the genome assembly at chromosome level, more independent approaches are required. The present study is aimed at refining an ultrasensitive Tyr-FISH technique and developing a reliable and simple method of in situ mapping of a short unique DNA sequences on plant chromosomes. We have carefully analyzed the critical steps of the Tyr-FISH to find out the reasons behind the flaws of this technique. The accurate visualization of markers/genes appeared to be significantly dependent on the means of chromosome slide preparation, probe design and labeling, and high stringency washing. Appropriate adjustment of these steps allowed us to detect a short DNA sequence of 1.6 Kb with a frequency of 51.6%. Based on our results, we developed a more reliable and simple protocol for dual-color Tyr-FISH visualization of unique short DNA sequences on plant chromosomes. This new protocol can allow for more accurate determination of the physical distance between markers and can be applied for faster integration of genetic and cytogenetic maps.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/química , Genoma de Planta , Hibridização in Situ Fluorescente , Cebolas/genética , Coloração e Rotulagem/métodos , Cromossomos de Plantas/metabolismo , Sondas de DNA/síntese química , Sondas de DNA/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Ligação Genética , Marcadores Genéticos , Cebolas/metabolismo , Transcriptoma
8.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072027

RESUMO

A high-density genetic linkage map is essential for genetic and genomic studies including QTL mapping, genome assembly, and comparative genomic analysis. Here, we constructed a citrus high-density linkage map using SSR and SNP markers, which are evenly distributed across the citrus genome. The integrated linkage map contains 4163 markers with an average distance of 1.12 cM. The female and male linkage maps contain 1478 and 2976 markers with genetic lengths of 1093.90 cM and 1227.03 cM, respectively. Meanwhile, a genetic map comparison demonstrates that the linear order of common markers is highly conserved between the clementine mandarin and Poncirus trifoliata. Based on this high-density integrated citrus genetic map and two years of deciduous phenotypic data, two loci conferring leaf abscission phenotypic variation were detected on scaffold 1 (including 36 genes) and scaffold 8 (including 107 genes) using association analysis. Moreover, the expression patterns of 30 candidate genes were investigated under cold stress conditions because cold temperature is closely linked with the deciduous trait. The developed high-density genetic map will facilitate QTL mapping and genomic studies, and the localization of the leaf abscission deciduous trait will be valuable for understanding the mechanism of this deciduous trait and citrus breeding.


Assuntos
Mapeamento Cromossômico , Poncirus/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Resposta ao Choque Frio , Biologia Computacional/métodos , Ligação Genética , Marcadores Genéticos , Humanos , Mutação INDEL , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único
9.
BMC Genomics ; 22(1): 386, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034669

RESUMO

BACKGROUND: The maize husk consists of numerous leafy layers and plays vital roles in protecting the ear from pathogen infection and dehydration. Teosinte, the wild ancestor of maize, has about three layers of small husk outer covering the ear. Although several quantitative trait loci (QTL) underlying husk morphology variation have been reported, the genetic basis of husk traits between teosinte and maize remains unclear. RESULTS: A linkage population including 191 BC2F8 inbred lines generated from the maize line Mo17 and the teosinte line X26-4 was used to identify QTL associated with three husk traits: i.e., husk length (HL), husk width (HW) and the number of husk layers (HN). The best linear unbiased predictor (BLUP) depicted wide phenotypic variation and high heritability of all three traits. The HL exhibited greater correlation with HW than HN. A total of 4 QTLs were identified including 1, 1, 2, which are associated with HL, HW and HN, respectively. The proportion of phenotypic variation explained by these QTLs was 9.6, 8.9 and 8.1% for HL, HN and HW, respectively. CONCLUSIONS: The QTLs identified in this study will pave a path to explore candidate genes regulating husk growth and development, and benefit the molecular breeding program based on molecular marker-assisted selection to cultivate maize varieties with an ideal husk morphology.


Assuntos
Locos de Características Quantitativas , Zea mays , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Zea mays/genética
10.
Bone ; 150: 116022, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34048959

RESUMO

Idiopathic scoliosis (IS) is an abnormality of the vertebral column with a spine curvature of at least 10 degrees. It is the most common spinal deformity in children with a prevalence of 2%-3%, and its aetiology is unknown. Genetic factors are known to play a role and a number of linkage analyses showed associations of various loci. Here we describe a new case of a de novo interstitial deletion 8q11.21q11.2 disrupting SNTG1 gene, identified by array-CGH in a girl with cognitive impairment and a scoliosis that 'appears' like to IS. SNTG1 encodes γ-1 Syntrophin protein that is part of the dystrophin associated protein complex and interacts directly with the C-terminal of dystrophin. Its expression is restricted to neurons and particularly in those areas of the brain that have been suggested to affect postural control. The involvement of SNTG1 gene in IS was already been reported in a family with a breakpoint between exons 10 and 11. Mutational analysis of SNTG1 exons in 152 sporadic IS patients had revealed changes in three patients. In conclusion, our data add a further line of evidence suggesting SNTG1 could represent an interesting candidate for its involvement in scoliosis.


Assuntos
Disfunção Cognitiva , Escoliose , Criança , Feminino , Ligação Genética , Humanos , Proteínas , Escoliose/genética , Coluna Vertebral/diagnóstico por imagem
12.
BMC Genomics ; 22(1): 230, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794798

RESUMO

BACKGROUND: The Chinese giant salamander Andrias davidianus is an important amphibian species in China because of its increasing economic value, protection status and special evolutionary position from aquatic to terrestrial animal. Its large genome presents challenges to genetic research. Genetic linkage mapping is an important tool for genome assembly and determination of phenotype-related loci. RESULTS: In this study, we constructed a high-density genetic linkage map using ddRAD sequencing technology to obtain SNP genotyping data of members from an full-sib family which sex had been determined. A total of 10,896 markers were grouped and oriented into 30 linkage groups, representing 30 chromosomes of A. davidianus. The genetic length of LGs ranged from 17.61 cM (LG30) to 280.81 cM (LG1), with a mean inter-locus distance ranging from 0.11(LG3) to 0.48 cM (LG26). The total genetic map length was 2643.10 cM with an average inter-locus distance of 0.24 cM. Three sex-related loci and four sex-related markers were found on LG6 and LG23, respectively. CONCLUSION: We constructed the first High-density genetic linkage map and identified three sex-related loci in the Chinese giant salamander. Current results are expected to be a useful tool for future genomic studies aiming at the marker-assisted breeding of the species.


Assuntos
Locos de Características Quantitativas , Urodelos , Animais , China , Mapeamento Cromossômico , Ligação Genética , Polimorfismo de Nucleotídeo Único , Urodelos/genética
13.
G3 (Bethesda) ; 11(3)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33890617

RESUMO

Intermediate wheatgrass (Thinopyrum intermedium) is an outcrossing, cool season grass species currently undergoing direct domestication as a perennial grain crop. Though many traits are selection targets, understanding the genetic architecture of those important for local adaptation may accelerate the domestication process. Nested association mapping (NAM) has proven useful in dissecting the genetic control of agronomic traits many crop species, but its utility in primarily outcrossing, perennial species has yet to be demonstrated. Here, we introduce an intermediate wheatgrass NAM population developed by crossing ten phenotypically divergent donor parents to an adapted common parent in a reciprocal manner, yielding 1,168 F1 progeny from 10 families. Using genotyping by sequencing, we identified 8,003 SNP markers and developed a population-specific consensus genetic map with 3,144 markers across 21 linkage groups. Using both genomewide association mapping and linkage mapping combined across and within families, we characterized the genetic control of flowering time. In the analysis of two measures of maturity across four separate environments, we detected as many as 75 significant QTL, many of which correspond to the same regions in both analysis methods across 11 chromosomes. The results demonstrate a complex genetic control that is variable across years, locations, traits, and within families. The methods were effective at detecting previously identified QTL, as well as new QTL that align closely to the well-characterized flowering time orthologs from barley, including Ppd-H1 and Constans. Our results demonstrate the utility of the NAM population for understanding the genetic control of flowering time and its potential for application to other traits of interest.


Assuntos
Poaceae , Locos de Características Quantitativas , Mapeamento Cromossômico , Ligação Genética , Genótipo , Fenótipo , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
14.
Planta ; 253(5): 109, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33871705

RESUMO

MAIN CONCLUSION: QTL mapping of stem diameter was carried out in three RIL populations using a high-density genetic map, and candidate genes related to stem diameter were predicted. Stem diameter is an important agronomic trait affecting soybean lodging and productivity. However, this trait is underexploited, and the underlying genetic mechanism in soybean remains unclear. In this study, three recombinant inbred line (RIL) populations, including 156 F10 lines from Nannong 94-156 × Bogao (N × B), 127 F9 lines from Dongnong 50 × Williams 82 (D × W), and 146 F9 lines from Suinong 14 × Enrei (S × E), were used to identify QTLs for soybean stem diameter across multiple environments. Phenotype analysis revealed that stem diameter exhibited strong positive correlations with plant height and 100-seed weight, two of the most important yield components. A total of 12 QTLs for stem diameter were identified on eight chromosomes across three RIL populations and five environments. The most influential QTL that was stably identified across all the populations and environments, q11, explained 12.58-26.63% of the phenotypic variation. Detection of several environment-specific QTLs, including q14, q16, and q20, suggests that environments may also have important effects in shaping the natural variation in soybean stem diameter. Furthermore, we predicted candidate genes underlying the QTLs and found that several promising candidate genes may be responsible for the variation in stem diameter in soybean. Overall, the markers/genes linked closely or underlying the major QTLs may be used for marker-assisted selection of soybean varieties to enhance lodging resistance and even yield. Our results lay the foundation for the fine mapping of stem development-related genes to reveal the molecular mechanisms.


Assuntos
Locos de Características Quantitativas , Soja , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Locos de Características Quantitativas/genética , Sementes , Soja/genética
15.
Methods Mol Biol ; 2249: 335-367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33871853

RESUMO

Genetic and environmental factors are critical elements in most common complex disease. Genetics is increasingly being recognized to play a substantive role in the susceptibility, prognosis, and treatment of common diseases. Due to recent and rapid advancements in characterization of genetic variants and large-scale genotyping platforms, multiple genes and genetic variants have now been identified for common, complex diseases. The most efficient method for gene identification at present appears to be large-scale association-based studies, which integrate genetic and epidemiological principles. As the strategy for gene identification studies has shifted toward genetic association-based methods rather than traditional linkage analysis, epidemiological methods are increasingly being integrated into genetic investigations and in public health research. Consequently, the disciplines of genetics and epidemiology, which historically have functioned separately, have been integrated into a hybrid discipline referred to as genetic epidemiology. In this chapter, we review methods for establishing the genetic burden of complex genetic disease, followed by methods for gene and/or genetic variant identification. When appropriate, we will highlight the epidemiological issues and clinical applications that guide these methods.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Epidemiologia Molecular , Fenótipo , Análise de Sequência de DNA
16.
BMC Plant Biol ; 21(1): 186, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874903

RESUMO

BACKGROUND: Time-to-maturation (TTM) is an important trait contributing to adaptability, yield and quality in peanut (Arachis hypogaea L). Virginia market-type peanut belongs to the late-maturing A. hypogaea subspecies with considerable variation in TTM within this market type. Consequently, planting and harvesting schedule of peanut cultivars, including Virginia market-type, need to be optimized to maximize yield and grade. Little is known regarding the genetic control of TTM in peanut due to the challenge of phenotyping and limited DNA polymorphism. Here, we investigated the genetic control of TTM within the Virginia market-type peanut using a SNP-based high-density genetic map. A recombinant inbred line (RIL) population, derived from a cross between two Virginia-type cultivars 'Hanoch' and 'Harari' with contrasting TTM (12-15 days on multi-years observations), was phenotyped in the field for 2 years following a randomized complete block design. TTM was estimated by maturity index (MI). Other agronomic traits like harvest index (HI), branching habit (BH) and shelling percentage (SP) were recorded as well. RESULTS: MI was highly segregated in the population, with 13.3-70.9% and 28.4-80.2% in years 2018 and 2019. The constructed genetic map included 1833 SNP markers distributed on 24 linkage groups, covering a total map distance of 1773.5 cM corresponding to 20 chromosomes on the tetraploid peanut genome with 1.6 cM mean distance between the adjacent markers. Thirty QTL were identified for all measured traits. Among the four QTL regions for MI, two consistent QTL regions (qMIA04a,b and qMIB03a,b) were identified on chromosomes A04 (118680323-125,599,371; 6.9Mbp) and B03 (2839591-4,674,238; 1.8Mbp), with LOD values of 5.33-6.45 and 5-5.35 which explained phenotypic variation of 9.9-11.9% and 9.3-9.9%, respectively. QTL for HI were found to share the same loci as MI on chromosomes B03, B05, and B06, demonstrating the possible pleiotropic effect of HI on TTM. Significant but smaller effects on MI were detected for BH, pod yield and SP. CONCLUSIONS: This study identified consistent QTL regions conditioning TTM for Virginia market-type peanut. The information and materials generated here can be used to further develop molecular markers to select peanut idiotypes suitable for diverse growth environments.


Assuntos
Arachis/crescimento & desenvolvimento , Arachis/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/fisiologia , Ligação Genética , Fenótipo
17.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800919

RESUMO

Trypsin inhibitors (TI), a common anti-nutritional factor in soybean, prevent animals' protein digestibility reducing animal growth performance. No commercial soybean cultivars with low or null concentration of TI are available. The availability of a high throughput genotyping assay will be beneficial to incorporate the low TI trait into elite breeding lines. The aim of this study is to develop and validate a breeder friendly Kompetitive Allele Specific PCR (KASP) assay linked to low Kunitz trypsin inhibitor (KTI) in soybean seeds. A total of 200 F3:5 lines derived from PI 547656 (low KTI) X Glenn (normal KTI) were genotyped using the BARCSoySNP6K_v2 Beadchip. F3:4 and F3:5 lines were grown in Blacksburg and Orange, Virginia in three years, respectively, and were measured for KTI content using a quantitative HPLC method. We identified three SNP markers tightly linked to the major QTL associated to low KTI in the mapping population. Based on these SNPs, we developed and validated the KASP assays in a set of 93 diverse germplasm accessions. The marker Gm08_44814503 has 86% selection efficiency for the accessions with low KTI and could be used in marker assisted breeding to facilitate the incorporation of low KTI content in soybean seeds.


Assuntos
Genes de Plantas , Melhoramento Vegetal , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/enzimologia , Soja/genética , Inibidor da Tripsina de Soja de Kunitz/genética , Alelos , Cromatografia Líquida de Alta Pressão/métodos , DNA de Plantas/análise , DNA de Plantas/genética , Ligação Genética , Fenótipo , Folhas de Planta/química , Soja/enzimologia , Inibidor da Tripsina de Soja de Kunitz/análise
18.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33681979

RESUMO

Sorghum bicolor, a photosynthetically efficient C4 grass, represents an important source of grain, forage, fermentable sugars, and cellulosic fibers that can be utilized in myriad applications ranging from bioenergy to bioindustrial feedstocks. Sorghum's efficient fixation of carbon per unit time per unit area per unit input has led to its classification as a preferred biomass crop highlighted by its designation as an advanced biofuel by the U.S. Department of Energy. Due to its extensive genetic diversity and worldwide colonization, sorghum has considerable diversity for a range of phenotypes influencing productivity, composition, and sink/source dynamics. To dissect the genetic basis of these key traits, we present a sorghum carbon-partitioning nested association mapping (NAM) population generated by crossing 11 diverse founder lines with Grassl as the single recurrent female. By exploiting existing variation among cellulosic, forage, sweet, and grain sorghum carbon partitioning regimes, the sorghum carbon-partitioning NAM population will allow the identification of important biomass-associated traits, elucidate the genetic architecture underlying carbon partitioning and improve our understanding of the genetic determinants affecting unique phenotypes within Poaceae. We contrast this NAM population with an existing grain population generated using Tx430 as the recurrent female. Genotypic data are assessed for quality by examining variant density, nucleotide diversity, linkage decay, and are validated using pericarp and testa phenotypes to map known genes affecting these phenotypes. We release the 11-family NAM population along with corresponding genomic data for use in genetic, genomic, and agronomic studies with a focus on carbon-partitioning regimes.


Assuntos
Sorghum , Carbono , Ligação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Sorghum/genética
19.
Front Immunol ; 12: 613468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659002

RESUMO

Schistosomiasis remains the fourth most prevalent parasitic disease affecting over 200 million people worldwide. Control efforts have focussed on the disruption of the life cycle targeting the parasite, vector and human host. Parasite burdens are highly skewed, and the majority of eggs are shed into the environment by a minority of the infected population. Most morbidity results from hepatic fibrosis leading to portal hypertension and is not well-correlated with worm burden. Genetics as well as environmental factors may play a role in these skewed distributions and understanding the genetic risk factors for intensity of infection and morbidity may help improve control measures. In this review, we focus on how genetic factors may influence parasite load, hepatic fibrosis and portal hypertension. We found 28 studies on the genetics of human infection and 20 studies on the genetics of pathology in humans. S. mansoni and S. haematobium infection intensity have been showed to be controlled by a major quantitative trait locus SM1, on chromosome 5q31-q33 containing several genes involved in the Th2 immune response, and three other loci of smaller effect on chromosomes 1, 6, and 7. The most common pathology associated with schistosomiasis is hepatic and portal vein fibroses and the SM2 quantitative trait locus on chromosome six has been linked to intensity of fibrosis. Although there has been an emphasis on Th2 cytokines in candidate gene studies, we found that four of the five QTL regions contain Th17 pathway genes that have been included in schistosomiasis studies: IL17B and IL12B in SM1, IL17A and IL17F in 6p21-q2, IL6R in 1p21-q23 and IL22RA2 in SM2. The Th17 pathway is known to be involved in response to schistosome infection and hepatic fibrosis but variants in this pathway have not been tested for any effect on the regulation of these phenotypes. These should be priorities for future studies.


Assuntos
Variação Genética , Genoma Helmíntico , Hepatopatias/etiologia , Schistosoma/genética , Esquistossomose/parasitologia , Alelos , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Gerenciamento Clínico , Genes de Helmintos , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Hipertensão Portal/diagnóstico , Hipertensão Portal/etiologia , Hepatopatias/diagnóstico , Anotação de Sequência Molecular , Carga Parasitária , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Schistosoma/imunologia , Esquistossomose/complicações , Esquistossomose/diagnóstico , Índice de Gravidade de Doença
20.
BMC Genomics ; 22(1): 190, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726664

RESUMO

BACKGROUND: The preferred choice for molecular marker development is identifying existing variation in populations through DNA sequencing. With the genome resources currently available for bitter gourd (Momordica charantia), it is now possible to detect genome-wide insertion-deletion (InDel) polymorphisms among bitter gourd populations, which guides the efficient development of InDel markers. RESULTS: Here, using bioinformatics technology, we detected 389,487 InDels from 61 Chinese bitter gourd accessions with an average density of approximately 1298 InDels/Mb. Then we developed a total of 2502 unique InDel primer pairs with a polymorphism information content (PIC) ≥0.6 distributed across the whole genome. Amplification of InDels in two bitter gourd lines '47-2-1-1-3' and '04-17,' indicated that the InDel markers were reliable and accurate. To highlight their utilization, the InDel markers were employed to construct a genetic map using 113 '47-2-1-1-3' × '04-17' F2 individuals. This InDel genetic map of bitter gourd consisted of 164 new InDel markers distributed on 15 linkage groups with a coverage of approximately half of the genome. CONCLUSIONS: This is the first report on the development of genome-wide InDel markers for bitter gourd. The validation of the amplification and genetic map construction suggests that these unique InDel markers may enhance the efficiency of genetic studies and marker-assisted selection for bitter gourd.


Assuntos
Momordica charantia , Ligação Genética , Genoma , Humanos , Mutação INDEL , Momordica charantia/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...