Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307.200
Filtrar
1.
Biosensors (Basel) ; 11(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065240

RESUMO

Exosomes are a kind of membrane-bound phospholipid nanovesicle that are secreted extensively in a variety of biological fluids. Accumulating evidence has indicated that exosomes not only communicate with cells, but also perform functional roles in physiology and pathology. In addition, exosomes have also elicited a great deal of excitement due to their potential as disease biomarkers. Therefore, requirements for sensitive methods capable of precisely and specifically determining exosomes were needed. Herein, we not only develop a sensing surface to capture exosomes but also compare two surface proteins on exosomes, which are appropriate for detecting exosome surface markers by total internal reflected imaging ellipsometry (TIRIE). Protein G and antibody were immobilized on a thin layer of golden substrate to form the biosensing surface. The bio-interaction between antibodies and exosomes was recorded by the TIRIE in real time. The distance between exosomes adhered on a surface was 44 nm ± 0.5 nm. The KD  of anti-CD9 and exosome was lower than anti-CD63 and exosome by introducing pseudo-first-order interaction kinetics, which suggested that CD9 is more suitable for exosome surface markers than CD63. The limit of detection (LOD) of TIRIE was 0.4 µg/mL. In conclusion, we have proposed a surface for the detection of exosomes based on TIRIE, which can make the detection of exosomes convenient and efficient.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Exossomos/química , Linhagem Celular Tumoral , Espectroscopia Dielétrica , Humanos , Limite de Detecção , Proteínas de Membrana , Ligação Proteica
2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(1): 32-40, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34117847

RESUMO

The metabolic reprogramming of tumor cells is characterized by increased uptake of various nutrients including glutamine. Glutamine metabolism provides the required substances for glycolysis and oxidative phosphorylation and affects the homeostasis of carbohydrate,fat and protein metabolism to induce the chemoresistance of tumor cells. Combination of chemotherapeutic agents with inhibitors specific to different components of glutamine metabolic pathway has obtained favorable clinical results on various tumors. Glutamine metabolic pathway plays a role in drug resistance of tumor cells in various ways. Firstly,the dynamic change of glutamine transporters can directly affect intracellular glutamine content thereby causing drug resistance; secondly,tumor stromal cells including adipocyte,fibroblast and metabolite from tumor microenvironment would give rise to immune-mediated drug resistance; thirdly,the expression and activity of key enzymes in glutamine metabolism also has a critical role in drug resistance of tumors. This article reviews the effects of glutamine metabolic pathway in the development of tumor chemoresistance,in terms of transporters,tumor microenvironment and metabolic enzymes,to provide insight for improving the therapeutic efficacy for drug-resistant tumors.


Assuntos
Glutamina , Neoplasias , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glutamina/metabolismo , Glicólise , Humanos , Neoplasias/tratamento farmacológico , Fosforilação Oxidativa , Microambiente Tumoral
3.
BMC Gastroenterol ; 21(1): 260, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118882

RESUMO

BACKGROUND: Targeted optical imaging offers a noninvasive and accurate method for the early detection of gastrointestinal tumors, especially for flat appearances. In our previous study, a sequence of SNFYMPL (SNF) was identified as a specific peptide to bind to esophageal carcinoma using phage-display technology. This study aimed to evaluate the tumor-targeting efficacy of Cy5.5-conjugated SNF probe for imaging of esophageal carcinoma in vitro and in vivo. METHODS: The SNF-Cy5.5 probe was synthesized and then identified using High Performance Liquid Chromatography (HPLC) and mass spectrometry (MS). Confocal fluorescence imaging and Flow cytometry analysis were performed to evaluate the binding specificity and the receptor binding affinity of SNF-Cy5.5 to OE33. In vivo imaging was performed to evaluate the targeting ability of SNF-Cy5.5 to esophageal carcinoma. RESULTS: The confocal imaging and flow cytometry analysis showed that SNF-Cy5.5 bound specifically to the plasma membrane of OE33 cells with a high affinity. In vivo, for non-block group, SNF-Cy5.5 probe exhibited rapid OE33 tumor targeting during 24 h p.i. and excellent tumor-to-background contrast at 2 h p.i. For the block group, SNF-Cy5.5 was not observed in the mice after 4 h p.i. Ex vivo imaging also revealed that a higher fluorescent signal intensity value of the tumors was clearly observed in the non-block group than that in the block group (2.6 ± 0.32 × 109 vs. 0.8 ± 0.08 × 109, p < 0.05). CONCLUSIONS: SNF-Cy5.5 was synthesized and characterized with a high efficiency and purity. The higher affinity, specificity, and tumor targeting efficacy of SNF-Cy5.5 were confirmed by in vitro and in vivo tests. SNF-Cy5.5 is a promising optical probe for the imaging of esophageal adenocarcinoma.


Assuntos
Adenocarcinoma , Espectroscopia de Luz Próxima ao Infravermelho , Adenocarcinoma/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes , Camundongos , Camundongos Nus , Peptídeos
4.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064412

RESUMO

Epidermal growth factor receptor (EGFR) is one of the most promising molecular targets for anticancer therapy. We used boron clusters as a platform for generation of new materials. For this, functional DNA constructs conjugated with boron clusters (B-ASOs) were developed. These B-ASOs, built from 1,2-dicarba-closo-dodecaborane linked with two anti-EGFR antisense oligonucleotides (ASOs), form with their complementary congeners torus-like nanostructures, as previously shown by atomic force microscope (AFM) and transmission electron cryo-microscopy (cryo-TEM) imaging. In the present work, deepened studies were carried out on B-ASO's properties. In solution, B-ASOs formed four dominant complexes as confirmed by non-denaturing polyacrylamide gel electrophoresis (PAGE). These complexes exhibited increased stability in cell lysate comparing to the non-modified ASO. Fluorescently labeled B-ASOs localized mostly in the cytoplasm and decreased EGFR expression by activating RNase H. Moreover, the B-ASO complexes altered the cancer cell phenotype, decreased cell migration rate, and arrested the cells in the S phase of cell cycle. The 1,2-dicarba-closo-dodecaborane-containing nanostructures did not activate NLRP3 inflammasome in human macrophages. In addition, as shown by inductively coupled plasma mass spectrometry (ICP MS), these nanostructures effectively penetrated the human squamous carcinoma cells (A431), showing their potential applicability as anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Boranos/farmacologia , Regulação Neoplásica da Expressão Gênica , Nanopartículas/química , Oligonucleotídeos Antissenso/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Boranos/síntese química , Boranos/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HeLa , Humanos , Cinética , Células MCF-7 , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Transdução de Sinais
5.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064458

RESUMO

Vitamin D and beta-glucans are both immunostimulants. Vitamin D exerts its beneficial effects on many components of the immune system. In macrophages, the hormone modulates both phagocytic activity and cytokine production; therefore, it plays an important role in mediating the innate immune response to infection. The immunomodulatory properties of beta-glucans are attributed to the ability of these fungal cell wall polysaccharides to bind to different receptors expressed on the cell surface of phagocytic and cytotoxic innate immune cells, including monocytes and macrophages. The intracellular signaling pathways activated by beta-glucans lead to enhanced phagocytosis and cytokine response. In this study we investigated the possible potentiation of immunomodulatory properties of the combined treatment with vitamin D and beta-glucans. The effects of 100 nM 1,25-dihydroxyvitamin D3 or 100 µg/mL beta-glucans were evaluated in human macrophages in terms of cytokine production, intracellular vesicle acidification and changes in energy metabolism, three hallmarks of macrophage antimicrobial activation. We found that all the analyzed parameters were enhanced by the co-treatment compared to the response to single molecules. The results of this study support the validity of a novel therapeutic approach that could boost the immune response, taking advantage of the synergy between two natural compounds.


Assuntos
Adjuvantes Imunológicos/farmacologia , Calcitriol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , beta-Glucanas/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Sinergismo Farmacológico , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-8/genética , Interleucina-8/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/imunologia , Transdução de Sinais , Células THP-1 , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/imunologia
6.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064489

RESUMO

Melanoma represents one of the most aggressive and drug resistant skin cancers with poor prognosis in its advanced stages. Despite the increasing number of targeted therapies, novel approaches are needed to counteract both therapeutic resistance and the side effects of classic therapy. Betulinic acid (BA) is a bioactive phytocompound that has been reported to induce apoptosis in several types of cancers including melanomas; however, its effects on mitochondrial bioenergetics are less investigated. The present study performed in A375 human melanoma cells was aimed to characterize the effects of BA on mitochondrial bioenergetics and cellular behavior. BA demonstrated a dose-dependent inhibitory effect in both mitochondrial respiration and glycolysis in A375 melanoma cells and at sub-toxic concentrations (10 µM) induced mitochondrial dysfunction by eliciting a decrease in the mitochondrial membrane potential and changes in mitochondria morphology and localization. In addition, BA triggered a dose-dependent cytotoxic effect characterized by apoptotic features: morphological alterations (nuclear fragmentation, apoptotic bodies) and the upregulation of pro-apoptotic markers mRNA expression (Bax, Bad and Bak). BA represents a viable therapeutic option via a complex modulatory effect on mitochondrial metabolism that might be useful in advanced melanoma or as reliable strategy to counteract resistance to standard therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Concentração Inibidora 50 , Melanócitos/metabolismo , Melanócitos/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/agonistas , Transdução de Sinais , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo
7.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068624

RESUMO

Melanoma cells are resistant to most anticancer chemotherapeutics. Despite poor response rates and short-term efficacy, chemotherapy remains the main approach to treating this cancer. The underlying mechanisms of the intrinsic chemoresistance of melanoma remain unclear, but elucidating these mechanisms is important to improve the efficacy of chemotherapy regimens. Increasing evidence suggests that sirtuin 2 (SIRT2) plays a key role in the response of melanoma cells to chemotherapeutics; thus, in the present study, we evaluated the impact of shRNA-mediated and pharmacological inhibition of SIRT2 on the sensitivity of melanoma cells to cisplatin, which is used in several regimens to treat melanoma patients. We found that cells with SIRT2 inhibition revealed increased sensitivity to cisplatin and exhibited increased accumulation of γ-H2AX and reduced EGFR-AKT-RAF-ERK1/2 (epidermal growth factor receptor-protein B kinase-RAF kinase-extracellular signal-regulated kinase 1/2) pathway signaling compared to control cells. Thus, our results show that sirtuin 2 inhibition increased the in vitro efficacy of cisplatin against melanoma cells.


Assuntos
Cisplatino/farmacologia , Melanoma/tratamento farmacológico , Sirtuína 2/genética , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/genética , Melanoma/patologia , Proteínas Proto-Oncogênicas c-akt , Sirtuína 2/antagonistas & inibidores , Quinases raf/genética
8.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071702

RESUMO

Cisplatin is a chemotherapy drug that kills cancer cells by damaging their DNA. In human cells, this damage is repaired primarily by nucleotide excision repair. While cisplatin is generally effective, many cancers exhibit initial or acquired resistance to it. Here, we studied cisplatin resistance in a defined cell line system. We conducted a comprehensive genomic characterization of the cisplatin-sensitive A2780 ovarian cancer cell line compared to A2780cis, its resistant derivative. The resistant cells acquired less damage, but had similar repair kinetics. Genome-wide mapping of nucleotide excision repair showed a shift in the resistant cells from global genome towards transcription-coupled repair. By mapping gene expression changes following cisplatin treatment, we identified 56 upregulated genes that have higher basal expression in the resistant cell line, suggesting they are primed for a cisplatin response. More than half of these genes are novel to cisplatin- or damage-response. Six out of seven primed genes tested were upregulated in response to cisplatin in additional cell lines, making them attractive candidates for future investigation. These novel candidates for cisplatin resistance could prove to be important prognostic markers or targets for tailored combined therapy in the future.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Genoma/efeitos dos fármacos , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
9.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073721

RESUMO

Epigenetic therapy using histone deacetylase (HDAC) inhibitors has become an attractive project in new drug development. However, DNA methylation and histone acetylation are important epigenetic ways to regulate the occurrence and development of leukemia. Given previous studies, N-(2-aminophenyl)benzamide acridine (8a), as a histone deacetylase 1 (HDAC1) inhibitor, induces apoptosis and shows significant anti-proliferative activity against histiocytic lymphoma U937 cells. HDAC1 plays a role in the nucleus, which we confirmed by finding that 8a entered the nucleus. Subsequently, we verified that 8a mainly passes through the endogenous (mitochondrial) pathway to induce cell apoptosis. From the protein interaction data, we found that 8a also affected the expression of DNA methyltransferase 1 (DNMT1). Therefore, an experiment was performed to assess the binding of 8a to DNMT1 at the molecular and cellular levels. We found that the binding strength of 8a to DNMT1 enhanced in a dose-dependent manner. Additionally, 8a inhibits the expression of DNMT1 mRNA and its protein. These findings suggested that the anti-proliferative and pro-apoptotic activities of 8a against leukemia cells were achieved by targeting HDAC1 and DNMT1.


Assuntos
Apoptose , Proliferação de Células , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Histona Desacetilase 1/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1/genética , Regulação Neoplásica da Expressão Gênica , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Células K562 , Simulação de Acoplamento Molecular , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Células U937
10.
Nat Commun ; 12(1): 3377, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099716

RESUMO

Animal models of human diseases are classically fed purified diets that contain casein as the unique protein source. We show that provision of a mixed protein source mirroring that found in the western diet exacerbates diet-induced obesity and insulin resistance by potentiating hepatic mTORC1/S6K1 signaling as compared to casein alone. These effects involve alterations in gut microbiota as shown by fecal microbiota transplantation studies. The detrimental impact of the mixed protein source is also linked with early changes in microbial production of branched-chain fatty acids (BCFA) and elevated plasma and hepatic acylcarnitines, indicative of aberrant mitochondrial fatty acid oxidation. We further show that the BCFA, isobutyric and isovaleric acid, increase glucose production and activate mTORC1/S6K1 in hepatocytes. Our findings demonstrate that alteration of dietary protein source exerts a rapid and robust impact on gut microbiota and BCFA with significant consequences for the development of obesity and insulin resistance.


Assuntos
Proteínas na Dieta/efeitos adversos , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Obesidade/etiologia , Ração Animal/efeitos adversos , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Sacarose na Dieta/efeitos adversos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Vida Livre de Germes , Gluconeogênese , Hepatócitos , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais
11.
Nat Commun ; 12(1): 3414, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099731

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) patients have a 5-year survival rate of only 8% largely due to late diagnosis and insufficient therapeutic options. Neutrophils are among the most abundant immune cell type within the PDAC tumor microenvironment (TME), and are associated with a poor clinical prognosis. However, despite recent advances in understanding neutrophil biology in cancer, therapies targeting tumor-associated neutrophils are lacking. Here, we demonstrate, using pre-clinical mouse models of PDAC, that lorlatinib attenuates PDAC progression by suppressing neutrophil development and mobilization, and by modulating tumor-promoting neutrophil functions within the TME. When combined, lorlatinib also improves the response to anti-PD-1 blockade resulting in more activated CD8 + T cells in PDAC tumors. In summary, this study identifies an effect of lorlatinib in modulating tumor-associated neutrophils, and demonstrates the potential of lorlatinib to treat PDAC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Lactamas Macrocíclicas/farmacologia , Neutrófilos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Lactamas Macrocíclicas/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Neutrófilos/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
12.
Nat Commun ; 12(1): 3448, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103496

RESUMO

Safeguards against excess DNA replication are often dysregulated in cancer, and driving cancer cells towards over-replication is a promising therapeutic strategy. We determined DNA synthesis patterns in cancer cells undergoing partial genome re-replication due to perturbed regulatory interactions (re-replicating cells). These cells exhibited slow replication, increased frequency of replication initiation events, and a skewed initiation pattern that preferentially reactivated early-replicating origins. Unlike in cells exposed to replication stress, which activated a novel group of hitherto unutilized (dormant) replication origins, the preferred re-replicating origins arose from the same pool of potential origins as those activated during normal growth. Mechanistically, the skewed initiation pattern reflected a disproportionate distribution of pre-replication complexes on distinct regions of licensed chromatin prior to replication. This distinct pattern suggests that circumventing the strong inhibitory interactions that normally prevent excess DNA synthesis can occur via at least two pathways, each activating a distinct set of replication origins.


Assuntos
Replicação do DNA , Origem de Replicação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Genoma Humano , Humanos , Mitose/efeitos dos fármacos , Modelos Biológicos , Pirimidinas/farmacologia , Origem de Replicação/genética
13.
Nat Commun ; 12(1): 3427, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103518

RESUMO

Partially unfolded alpha-lactalbumin forms the oleic acid complex HAMLET, with potent tumoricidal activity. Here we define a peptide-based molecular approach for targeting and killing tumor cells, and evidence of its clinical potential (ClinicalTrials.gov NCT03560479). A 39-residue alpha-helical peptide from alpha-lactalbumin is shown to gain lethality for tumor cells by forming oleic acid complexes (alpha1-oleate). Nuclear magnetic resonance measurements and computational simulations reveal a lipid core surrounded by conformationally fluid, alpha-helical peptide motifs. In a single center, placebo controlled, double blinded Phase I/II interventional clinical trial of non-muscle invasive bladder cancer, all primary end points of safety and efficacy of alpha1-oleate treatment are reached, as evaluated in an interim analysis. Intra-vesical instillations of alpha1-oleate triggers massive shedding of tumor cells and the tumor size is reduced but no drug-related side effects are detected (primary endpoints). Shed cells contain alpha1-oleate, treated tumors show evidence of apoptosis and the expression of cancer-related genes is inhibited (secondary endpoints). The results are especially encouraging for bladder cancer, where therapeutic failures and high recurrence rates create a great, unmet medical need.


Assuntos
Peptídeos/química , Peptídeos/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Determinação de Ponto Final , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Oleicos/química , Peptídeos/farmacologia , Placebos , Conformação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Termodinâmica , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
14.
Nat Commun ; 12(1): 3428, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103526

RESUMO

Dysregulated extravillous trophoblast invasion and proliferation are known to increase the risk of recurrent spontaneous abortion (RSA); however, the underlying mechanism remains unclear. Herein, in our retrospective observational case-control study we show that villous samples from RSA patients, compared to healthy controls, display reduced succinate dehydrogenase complex iron sulfur subunit (SDHB) DNA methylation, elevated SDHB expression, and reduced succinate levels, indicating that low succinate levels correlate with RSA. Moreover, we find high succinate levels in early pregnant women are correlated with successful embryo implantation. SDHB promoter methylation recruited MBD1 and excluded c-Fos, inactivating SDHB expression and causing intracellular succinate accumulation which mimicked hypoxia in extravillous trophoblasts cell lines JEG3 and HTR8 via the PHD2-VHL-HIF-1α pathway; however, low succinate levels reversed this effect and increased the risk of abortion in mouse model. This study reveals that abnormal metabolite levels inhibit extravillous trophoblast function and highlights an approach for RSA intervention.


Assuntos
Aborto Habitual/metabolismo , Vilosidades Coriônicas/metabolismo , Ácido Succínico/metabolismo , Aborto Habitual/enzimologia , Aborto Habitual/genética , Animais , Estudos de Casos e Controles , Hipóxia Celular , Linhagem Celular Tumoral , Ilhas de CpG/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metaboloma , Camundongos Endogâmicos C57BL , Gravidez , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Risco , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Genética , Trofoblastos/metabolismo , Trofoblastos/patologia
15.
Nat Commun ; 12(1): 3444, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103528

RESUMO

AKT is involved in a number of key cellular processes including cell proliferation, apoptosis and metabolism. Hyperactivation of AKT is associated with many pathological conditions, particularly cancers. Emerging evidence indicates that arginine methylation is involved in modulating AKT signaling pathway. However, whether and how arginine methylation directly regulates AKT kinase activity remain unknown. Here we report that protein arginine methyltransferase 5 (PRMT5), but not other PRMTs, promotes AKT activation by catalyzing symmetric dimethylation of AKT1 at arginine 391 (R391). Mechanistically, AKT1-R391 methylation cooperates with phosphatidylinositol 3,4,5 trisphosphate (PIP3) to relieve the pleckstrin homology (PH)-in conformation, leading to AKT1 membrane translocation and subsequent activation by phosphoinositide-dependent kinase-1 (PDK1) and the mechanistic target of rapamycin complex 2 (mTORC2). As a result, deficiency in AKT1-R391 methylation significantly suppresses AKT1 kinase activity and tumorigenesis. Lastly, we show that PRMT5 inhibitor synergizes with AKT inhibitor or chemotherapeutic drugs to enhance cell death. Altogether, our study suggests that R391 methylation is an important step for AKT activation and its oncogenic function.


Assuntos
Arginina/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antineoplásicos/farmacologia , Biocatálise/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Metilação/efeitos dos fármacos , Camundongos Nus , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína-Arginina N-Metiltransferases/deficiência , Proteínas Proto-Oncogênicas c-akt/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Int J Nanomedicine ; 16: 3679-3694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093012

RESUMO

Introduction: Photodynamic therapy (PDT) has been widely researched by cancer therapists in recent years. This study aims to establish a drug delivery system combining PDT and chemotherapy to show that chemotherapeutic drugs provide oxygen to PDT, while PDT promotes the release of chemotherapeutic drug. Methods: Firstly, poly(ethylene glycol)-lysine(Ce6)-block-poly(L-glutamate)-imidazole (mPEG-lys(Ce6)-PGA-AIM) was synthesized and self-assembled into micelles that exhibited pH- and ROS-responsiveness and buffering capacity. Perfluorohexanoate-modified cisplatin (FCP), as oxygen carriers, was encapsulated into mPEG-lys(Ce6)-PGA-AIM micelles. Then, the properties of micelles and their biological functions in vivo and in vitro were investigated. Results: The micelles exhibited remarkabe stability, pH regulated drug release, good biocompatibility and effective tumor penetration. Cellular uptake demonstrated the efficient endosome/lysosome escape of CFMs, which facilitates the intracellular drug release. Both in vitro and in vivo experiments reflected that CFMs with laser irradiation showed significantly improved therapeutic activity compared with single PDT or chemotherapy. Conclusion: Chemotherapy and PDT were combined in the form of mutual assistance to provide a promising strategy for clinical treatment.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Animais , Caproatos/química , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/química , Cisplatino/farmacocinética , Liberação Controlada de Fármacos , Fluorcarbonetos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Terapia a Laser , Masculino , Camundongos Nus , Micelas , Oxigênio/administração & dosagem , Polímeros/química , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 37(6): 520-526, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34060447

RESUMO

Objective To explore the effect of glucose-6-phsophatase, catalytic subunit (G6PC) on the proliferation, migration and invasion of cervical cancer HeLa cells and the possible molecular mechanism. Methods RNA interfering (RNAi) was used to knockdown the expression of G6PC in HeLa cells, and the silencing effect of protein was confirmed by Western blotting. MTT assay and plate clony formation assay were performed to detect the effect of G6PC knockdown on the proliferation of HeLa cells; scratch healing assay and TranswellTM chamber assay were applied to observe the effect of G6PC knockdown on the invasion and migration abilities of HeLa cells; the tube-formation assay was used to detect the effect of G6PC knockdown on the angiogenesis ability of HeLa cells; the expression levels of epithelial-mesenchymal transition (EMT)-related proteins and AKT/mTOR signaling pathway-related proteins were determined by Western blotting. Results The expression of G6PC was effectively silenced by RNAi technology. G6PC knockdown obviously inhibited the proliferation, migration and angiogenesis of HeLa cells. Meanwhile, G6PC knockdown suppressed the EMT process, the phosphorylation of AKT and mTOR proteins. Conclusion G6PC knockdown can effectively inhibit the proliferation, migration, angiogenesis and EMT process of HeLa cells, which is related to the blocked AKT/mTOR signaling pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias do Colo do Útero , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Glucose , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/genética
18.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065900

RESUMO

Within the last decades cancer treatment improved by the availability of more specifically acting drugs that address molecular target structures in cancer cells. However, those target-sensitive drugs suffer from ongoing resistances resulting from mutations and moreover they are affected by the cancer phenomenon of multidrug resistance. A multidrug resistant cancer can hardly be treated with the common drugs, so that there have been long efforts to develop drugs to combat that resistance. Transmembrane efflux pumps are the main cause of the multidrug resistance in cancer. Early inhibitors disappointed in cancer treatment without a proof of expression of a respective efflux pump. Recent studies in efflux pump expressing cancer show convincing effects of those inhibitors. Based on the molecular symmetry of the efflux pump multidrug resistant protein (MRP) 4 we synthesized symmetric inhibitors with varied substitution patterns. They were evaluated in a MRP4-overexpressing cancer cell line model to prove structure-dependent effects on the inhibition of the efflux pump activity in an uptake assay of a fluorescent MRP4 substrate. The most active compound was tested to resentisize the MRP4-overexpressing cell line towards a clinically relevant anticancer drug as proof-of-principle to encourage for further preclinical studies.


Assuntos
Antineoplásicos/farmacologia , Di-Hidropiridinas/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Neoplasias Pancreáticas/genética , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Neoplasias Pancreáticas/tratamento farmacológico , Relação Estrutura-Atividade , Regulação para Cima/efeitos dos fármacos
19.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065977

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most frequent and aggressive primary brain tumor, and macrophages account for 30-40% of its composition. Most of these macrophages derive from bone marrow monocytes playing a crucial role in tumor progression. Unraveling the mechanisms of macrophages-GBM crosstalk in an appropriate model will contribute to the development of specific and more successful therapies. We investigated the interaction of U87MG human GBM cells with primary human CD14+ monocytes or the THP-1 cell line with the aim of establishing a physiologically relevant heterotypic culture model. METHODS: primary monocytes and THP-1 cells were cultured in the presence of U87MG conditioned media or co-cultured together with previously formed GBM spheroids. Monocyte differentiation was determined by flow cytometry. RESULTS: primary monocytes differentiate to M2 macrophages when incubated with U87MG conditioned media in 2-dimensional culture, as determined by the increased percentage of CD14+CD206+ and CD64+CD206+ populations in CD11b+ cells. Moreover, the mitochondrial protein p32/gC1qR is expressed in monocytes exposed to U87MG conditioned media. When primary CD14+ monocytes or THP-1 cells are added to previously formed GBM spheroids, both invade and establish within them. However, only primary monocytes differentiate and acquire a clear M2 phenotype characterized by the upregulation of CD206, CD163, and MERTK surface markers on the CD11b+CD14+ population and induce alterations in the sphericity of the cell cultures. CONCLUSION: our results present a new physiologically relevant model to study GBM/macrophage interactions in a human setting and suggest that both soluble GBM factors, as well as cell-contact dependent signals, are strong inducers of anti-inflammatory macrophages within the tumor niche.


Assuntos
Neoplasias Encefálicas/metabolismo , Técnicas de Cocultura/métodos , Glioblastoma/metabolismo , Macrófagos/citologia , Monócitos/citologia , Biomarcadores/metabolismo , Proteínas de Transporte/metabolismo , Comunicação Celular , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Mitocondriais/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Cultura Primária de Células , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Células THP-1
20.
J Int Med Res ; 49(6): 3000605211013207, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34102907

RESUMO

OBJECTIVE: To study the relationship between the circular RNA vesicle-associated membrane protein-associated protein A (circVAPA) and the pathogenesis of oral squamous cell carcinoma. METHODS: The expression of circVAPA was detected by RT-qPCR. In vitro loss-of-function experiments were performed in Cal-27 cells. The malignant phenotype of cells was evaluated by cell counting kit-8, clone formation and transwell assays. Luciferase reporter assays were used to assess the circVAPA/miR-132/homeobox A (HOXA) regulatory axis. RESULTS: circVAPA expression was significantly increased in oral cancer tissues and cells. The overall survival and progression-free survival of patients with oral cancer who exhibited high circVAPA expression were significantly shorter compared with those with low expression. circVAPA expression was closely related to tumor size, TNM stage and distant metastasis. circVAPA knockdown reduced the proliferation, invasion and migration of Cal-27 cells. MiR-132 was identified as a target of circVAPA in Cal-27 cells. Cotransfection with si-circVAPA and miR-132 inhibitor reversed the inhibitory effect of circVAPA knockdown on cell malignant phenotypes. HOXA7 was further identified as a downstream target of miR-132. CONCLUSION: circVAPA is highly expressed in oral cancer, and its abnormal expression might affect the proliferation, invasion and migration of oral cancer cells by modulating the miR-132/HOXA7 signaling axis.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias Bucais , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio , Humanos , MicroRNAs/genética , Neoplasias Bucais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...