Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.615
Filtrar
1.
Nat Commun ; 12(1): 5018, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465789

RESUMO

Chocolate manufacture includes a complex tempering procedure to direct the crystallization of cocoa butter towards the formation of fat crystal networks with specific polymorphism, nano- and microstructure, melting behavior, surface gloss and mechanical properties. Here we investigate the effects of adding various minor non-triglyceride lipidic components to refined cocoa butter and chocolate on their physical properties. We discover that addition of saturated phosphatidylcholine and phosphatidylethanolamine to neutralized and bleached cocoa butter or molten and recrystallized commercial chocolate at 0.1% (w/w) levels, followed by rapid cooling to 20 °C in the absence of shear, accelerates crystallization, stabilizes the desirable Form V polymorph and induces the formation of chocolate with an optimal microstructure, surface gloss and mechanical strength. Final chocolate structure and properties are comparable to those of a commercial tempered chocolate. Minor lipidic component addition represents an effective way to engineer chocolate material properties at different length scales, thus simplifying the entire tempering process.


Assuntos
Chocolate/análise , Gorduras na Dieta/análise , Aditivos Alimentares/química , Lipídeos/química , Cacau/química , Cristalização , Manipulação de Alimentos
2.
BMC Plant Biol ; 21(1): 404, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488625

RESUMO

BACKGROUND: Brassica carinata (A) Braun has recently gained increased attention across the world as a sustainable biofuel crop. B. carinata is grown as a summer crop in many regions where high temperature is a significant stress during the growing season. However, little research has been conducted to understand the mechanisms through which this crop responds to high temperatures. Understanding traits that improve the high-temperature adaption of this crop is essential for developing heat-tolerant varieties. This study investigated lipid remodeling in B. carinata in response to high-temperature stress. A commercial cultivar, Avanza 641, was grown under sunlit-controlled environmental conditions in Soil-Plant-Atmosphere-Research (SPAR) chambers under optimal temperature (OT; 23/15°C) conditions. At eight days after sowing, plants were exposed to one of the three temperature treatments [OT, high-temperature treatment-1 (HT-1; 33/25°C), and high-temperature treatment-2 (HT-2; 38/30°C)]. The temperature treatment period lasted until the final harvest at 84 days after sowing. Leaf samples were collected at 74 days after sowing to profile lipids using electrospray-ionization triple quadrupole mass spectrometry. RESULTS: Temperature treatment significantly affected the growth and development of Avanza 641. Both high-temperature treatments caused alterations in the leaf lipidome. The alterations were primarily manifested in terms of decreases in unsaturation levels of membrane lipids, which was a cumulative effect of lipid remodeling. The decline in unsaturation index was driven by (a) decreases in lipids that contain the highly unsaturated linolenic (18:3) acid and (b) increases in lipids containing less unsaturated fatty acids such as oleic (18:1) and linoleic (18:2) acids and/or saturated fatty acids such as palmitic (16:0) acid. A third mechanism that likely contributed to lowering unsaturation levels, particularly for chloroplast membrane lipids, is a shift toward lipids made by the eukaryotic pathway and the channeling of eukaryotic pathway-derived glycerolipids that are composed of less unsaturated fatty acids into chloroplasts. CONCLUSIONS: The lipid alterations appear to be acclimation mechanisms to maintain optimal membrane fluidity under high-temperature conditions. The lipid-related mechanisms contributing to heat stress response as identified in this study could be utilized to develop biomarkers for heat tolerance and ultimately heat-tolerant varieties.


Assuntos
Brassica/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Folhas de Planta/metabolismo , Estresse Fisiológico , Temperatura Alta
3.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445796

RESUMO

Obesity and metabolic syndrome are associated with cognitive decline and dementia. Palmitic acid (PA) is increased in the cerebrospinal fluid of obese patients with cognitive impairment. This study was therefore designed to examine fatty acid (FA) lipotoxicity in BV2 microglia cells. We found that PA induced time- and dose-dependent decrease in cell viability and increase in cell death without affecting the cell cycle profile and that PA lipotoxicity did not depend on cell surface free fatty acid receptors but rather on FA uptake. Treatment with sulfosuccinimidyl oleate (SSO), an irreversible inhibitor of fatty acid translocase CD36, significantly inhibited FA uptake in BSA- and PA-treated cells and blocked PA-induced decrease in cell viability. Inhibition of ER stress or treatment with N-acetylcysteine was not able to rescue PA lipotoxicity. Our study also showed that unsaturated fatty acids (UFAs), such as linoleic acid (LA), oleic acid (OA), α-linolenic acid (ALA), and docosahexaenoic acid (DHA), were not lipotoxic but instead protected microglia against PA-induced decrease in cell viability. Co-treatment of PA with LA, OA, and DHA significantly inhibited FA uptake in PA-treated cells. All UFAs tested induced the incorporation of FAs into and the amount of neutral lipids, while PA did not significantly affect the amount of neutral lipids compared with BSA control.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Microglia/metabolismo , Ácido Palmítico/metabolismo , Animais , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Ácidos Graxos não Esterificados/metabolismo , Lipídeos/química , Camundongos
4.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443491

RESUMO

Glycyrrhetic acid (GA) and stearyl glycyrrhetinate (SG) are two interesting compounds from Glycyrrhiza glabra, showing numerous biological properties widely applied in the pharmaceutical and cosmetic fields. Despite these appreciable benefits, their potential therapeutic properties are strongly compromised due to unfavourable physical-chemical features. The strategy exploited in the present work was to develop solid lipid nanoparticles (SLNs) as carrier systems for GA and SG delivery. Both formulations loaded with GA and SG (GA-SLNs and SG-SLNs, respectively) were prepared by the high shear homogenization coupled to ultrasound (HSH-US) method, and we obtained good technological parameters. DSC was used to evaluate their thermotropic behaviour and ability to act as carriers for GA and SG. The study was conducted by means of a biomembrane model (multilamellar vesicles; MLVs) that simulated the interaction of the carriers with the cellular membrane. Unloaded and loaded SLNs were incubated with the biomembranes, and their interactions were evaluated over time through variations in their calorimetric curves. The results of these studies indicated that GA and SG interact differently with MLVs and SLNs; the interactions of SG-SLNs and GA-SLNs with the biomembrane model showed different variations of the MLVs calorimetric curve and suggest the potential use of SLNs as delivery systems for GA.


Assuntos
Calorimetria , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Lipídeos/química , Nanopartículas/química , Ácido Glicirretínico/química , Cinética , Membranas , Eletricidade Estática , Temperatura de Transição
5.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361735

RESUMO

Biofilms, the predominant growth mode of microorganisms, pose a significant risk to human health. The protective biofilm matrix, typically composed of exopolysaccharides, proteins, nucleic acids, and lipids, combined with biofilm-grown bacteria's heterogenous physiology, leads to enhanced fitness and tolerance to traditional methods for treatment. There is a need to identify biofilm inhibitors using diverse approaches and targeting different stages of biofilm formation. This review discusses discovery strategies that successfully identified a wide range of inhibitors and the processes used to characterize their inhibition mechanism and further improvement. Additionally, we examine the structure-activity relationship (SAR) for some of these inhibitors to optimize inhibitor activity.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Antibacterianos/biossíntese , Antibacterianos/síntese química , Antibacterianos/isolamento & purificação , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/antagonistas & inibidores , GMP Cíclico/química , GMP Cíclico/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Farmacorresistência Bacteriana/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/patogenicidade , Lipídeos/antagonistas & inibidores , Lipídeos/química , Testes de Sensibilidade Microbiana , Ácidos Nucleicos/antagonistas & inibidores , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Polissacarídeos Bacterianos/antagonistas & inibidores , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Relação Estrutura-Atividade
6.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443456

RESUMO

Guanidinyl tryptophan derivatives TGN1, TGN2, TGN3, and TGN4 were synthesized, and these compounds were shown to possess in vitro inhibitory activity for amyloid aggregation in a previous study. Nevertheless, the influence of the TGN series of compounds on the binding and permeation behaviors of an Aß monomer to the cell membranes was not elucidated. In this study, we investigated the effect of compounds in the TGN series on the behavior of an Aß monomer regarding its toxicity toward the bilayer lipid membrane using molecular dynamics (MD) simulation. MD simulations suggest that TGN4 is a potential agent that can interfere with the movement of the Aß monomer into the membrane. The MM-GBSA result demonstrated that TGN4 exhibits the highest affinity to the Aß1-42 monomer but has the lowest affinity to the bilayer. Moreover, TGN4 also contributes to a decrease in the binding affinity between the Aß1-42 monomer and the POPC membrane. Regarding the results of the binding mode and conformational analyses, a high number of amino-acid residues were shown to provide the binding interactions between TGN4 and the Aß1-42 monomer. TGN4 also reduces the conformational transition of the Aß1-42 monomer by means of interacting with the monomer. The present study presents molecular-level insights into how the TGN series of compounds affect the membrane adsorption and the conformational transition of the Aß1-42 monomer, which could be valuable for the further development of new anti-Alzheimer agents.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Membrana Celular/metabolismo , Guanidina/uso terapêutico , Triptofano/uso terapêutico , Adesividade , Adsorção , Guanidina/química , Humanos , Ligantes , Bicamadas Lipídicas/química , Lipídeos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Conformação Proteica , Estrutura Secundária de Proteína , Triptofano/química , Água/química
7.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361084

RESUMO

Skin may be affected by many disorders that can be treated by topical applications of drugs on the action site. With the advent of nanotechnologies, new efficient delivery systems have been developed. Particularly, lipid-based nanosystems such as liposomes, ethosomes, transferosomes, solid lipid nanoparticles, nanostructured lipid carriers, cubosomes, and monoolein aqueous dispersions have been proposed for cutaneous application, reaching in some cases the market or clinical trials. This review aims to provide an overview of the different lipid-based nanosystems, focusing on their use for topical application. Particularly, biocompatible nanosystems able to dissolve lipophilic compounds and to control the release of carried drug, possibly reducing side effects, are described. Notably, the rationale to topically administer antioxidant molecules by lipid nanocarriers is described. Indeed, the structural similarity between the nanosystem lipid matrix and the skin lipids allows the achievement of a transdermal effect. Surely, more research is required to better understand the mechanism of interaction between lipid-based nanosystems and skin. However, this attempt to summarize and highlight the possibilities offered by lipid-based nanosystems could help the scientific community to take advantage of the benefits derived from this kind of nanosystem.


Assuntos
Permeabilidade da Membrana Celular , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas/administração & dosagem , Pele/metabolismo , Animais , Humanos , Nanopartículas/química
8.
Molecules ; 26(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361825

RESUMO

Lipid-based nanocarriers (LNs) have made it possible to prolong corneal residence time and improve the ocular bioavailability of ophthalmic drugs. In order to investigate how the LNs interact with the ocular mucosa and reach the posterior eye segment, we have formulated lipid nanocarriers that were designed to bear a traceable fluorescent probe in the present work. The chosen fluorescent probe was obtained by a conjugation reaction between fluoresceinamine and the solid lipid excipient stearic acid, forming a chemically synthesized adduct (ODAF, N-(3',6'-dihydroxy-3-oxospiro [isobenzofuran-1(3H),9'-[9H] xanthen]-5-yl)-octadecanamide). The novel formulation (LN-ODAF) has been formulated and characterized in terms of its technological parameters (polydispersity index, mean particle size and zeta potential), while an in vivo study was carried out to assess the ability of LN-ODAF to diffuse through different ocular compartments. LN-ODAF were in nanometric range (112.7 nm ± 0.4), showing a good homogeneity and long-term stability. A TEM (transmission electron microscopy) study corroborated these results of characterization. In vivo results pointed out that after ocular instillation, LN ODAF were concentrated in the cornea (two hours), while at a longer time (from the second hour to the eighth hour), the fluorescent signals extended gradually towards the back of the eye. From the results obtained, LN-ODAF demonstrated a potential use of lipid-based nanoparticles as efficient carriers of an active pharmaceutical ingredient (API) involved in the management of retinal diseases.


Assuntos
Córnea/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas/administração & dosagem , Segmento Posterior do Olho/metabolismo , Compostos de Espiro/administração & dosagem , Animais , Córnea/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Segmento Posterior do Olho/efeitos dos fármacos , Coelhos , Compostos de Espiro/química
9.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360733

RESUMO

Mesoporous silica nanomaterials have emerged as promising vehicles in controlled drug delivery systems due to their ability to selectively transport, protect, and release pharmaceuticals in a controlled and sustained manner. One drawback of these drug delivery systems is their preparation procedure that usually requires several steps including the removal of the structure-directing agent (surfactant) and the later loading of the drug into the porous structure. Herein, we describe the preparation of mesoporous silica nanoparticles, as drug delivery systems from structure-directing agents based on the kidney-protector drug cilastatin in a simple, fast, and one-step process. The concept of drug-structure-directing agent (DSDA) allows the use of lipidic derivatives of cilastatin to direct the successful formation of mesoporous silica nanoparticles (MSNs). The inherent pharmacological activity of the surfactant DSDA cilastatin-based template permits that the MSNs can be directly employed as drug delivery nanocarriers, without the need of extra steps. MSNs thus synthesized have shown good sphericity and remarkable textural properties. The size of the nanoparticles can be adjusted by simply selecting the stirring speed, time, and aging temperature during the synthesis procedure. Moreover, the release experiments performed on these materials afforded a slow and sustained drug release over several days, which illustrates the MSNs potential utility as drug delivery system for the cilastatin cargo kidney protector. While most nanotechnology strategies focused on combating the different illnesses this methodology emphasizes on reducing the kidney toxicity associated to cancer chemotherapy.


Assuntos
Cilastatina , Sistemas de Liberação de Medicamentos , Lipídeos , Nanopartículas/química , Cilastatina/química , Cilastatina/farmacocinética , Cilastatina/farmacologia , Humanos , Rim , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Dióxido de Silício
10.
Commun Biol ; 4(1): 956, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381159

RESUMO

Lipid Nanoparticles (LNPs) are used to deliver siRNA and COVID-19 mRNA vaccines. The main factor known to determine their delivery efficiency is the pKa of the LNP containing an ionizable lipid. Herein, we report a method that can predict the LNP pKa from the structure of the ionizable lipid. We used theoretical, NMR, fluorescent-dye binding, and electrophoretic mobility methods to comprehensively measure protonation of both the ionizable lipid and the formulated LNP. The pKa of the ionizable lipid was 2-3 units higher than the pKa of the LNP primarily due to proton solvation energy differences between the LNP and aqueous medium. We exploited these results to explain a wide range of delivery efficiencies in vitro and in vivo for intramuscular (IM) and intravascular (IV) administration of different ionizable lipids at escalating ionizable lipid-to-mRNA ratios in the LNP. In addition, we determined that more negatively charged LNPs exhibit higher off-target systemic expression of mRNA in the liver following IM administration. This undesirable systemic off-target expression of mRNA-LNP vaccines could be minimized through appropriate design of the ionizable lipid and LNP.


Assuntos
Expressão Gênica , Íons/química , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/química , RNA Mensageiro/genética , Administração Intravenosa , Animais , Composição de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Injeções Intramusculares , Camundongos , Estrutura Molecular , Nanopartículas/ultraestrutura , RNA Mensageiro/administração & dosagem , RNA Mensageiro/farmacocinética , Análise Espectral , Distribuição Tecidual , Transfecção
11.
Molecules ; 26(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299550

RESUMO

Sulfoquinovosyldiacylglycerol (SQDG) is a glycolipid ubiquitously found in photosynthetically active organisms. It has attracted much attention in recent years due to its biological activities. Similarly, the increasing demand for vegan and functional foods has led to a growing interest in micronutrients such as sulfolipids and their physiological influence on human health. To study this influence, reference materials are needed for developing new analytical methods and providing enough material for model studies on the biological activity. However, the availability of these materials is limited by the difficulty to isolate and purify sulfolipids from natural sources and the unavailability of chemical standards on the market. Consequently, an alternative synthetic route for the comprehensive preparation of sulfolipids was established. Here, the synthesis of a sulfolipid with two identical saturated fatty acids is described exemplarily. The method opens possibilities for the preparation of a diverse range of interesting derivatives with different saturated and unsaturated fatty acids.


Assuntos
Glicolipídeos/química , Glicolipídeos/síntese química , Diglicerídeos/química , Ácidos Graxos/química , Lipídeos/química
12.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209023

RESUMO

Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological destructive effects, and functional activity improvement. This approach is of special importance in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This review highlights current progress in the use of lipid systems to deliver active substances to the human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic compounds, peptide molecules and alternative target ligands are discussed. Liposome modification also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica are beginning to acquire no less relevance due to their unique features, such as advanced porous properties, well-proven drug delivery efficiency and their versatility for creating highly efficient nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid inorganic-polymer platforms are the subject of discussion in this review, with current challenges emphasized.


Assuntos
Lipídeos/química , Nanopartículas/química , Disponibilidade Biológica , Portadores de Fármacos , Composição de Medicamentos , Ligantes , Porosidade , Dióxido de Silício
13.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208209

RESUMO

Encapsulation can be a suitable strategy to protect natural antimicrobial substances against some harsh conditions of processing and storage and to provide efficient formulations for antimicrobial delivery. Lipid-based nanostructures, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanocarriers (NLCs), are valuable systems for the delivery and controlled release of natural antimicrobial substances. These nanostructures have been used as carriers for bacteriocins and other antimicrobial peptides, antimicrobial enzymes, essential oils, and antimicrobial phytochemicals. Most studies are conducted with liposomes, although the potential of SLNs and NLCs as antimicrobial nanocarriers is not yet fully established. Some studies reveal that lipid-based formulations can be used for co-encapsulation of natural antimicrobials, improving their potential to control microbial pathogens.


Assuntos
Anti-Infecciosos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Lipídeos/química , Lipossomos/química , Nanoestruturas/química , Anti-Infecciosos/química , Lipossomos/administração & dosagem , Nanoestruturas/administração & dosagem
14.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299360

RESUMO

Nonviral vectors for gene therapy such as lipoplexes are characterized by low toxicity, high biocompatibility, and good transfection efficiency. Specifically, lipoplexes based on polymeric surfactants and phospholipids have great potential as gene carriers due to the increased ability to bind genetic material (multiplied positive electric charge) while lowering undesirable effects (the presence of lipids makes the system more like natural membranes). This study aimed to test the ability to bind and release genetic material by lipoplexes based on trimeric surfactants and lipid formulations of different compositions and to characterize formed complexes by circular dichroism (CD) spectroscopy and atomic force microscopy (AFM). The cytotoxicity of studied lipoplexes was tested on HeLa cells by the MTT cell viability assay and the dye exclusion test (trypan blue). The presence of lipids in the system lowered the surfactant concentration required for complexation (higher efficiency) and reduced the cytotoxicity of lipoplexes. Surfactant/lipids/DNA complexes were more stable than surfactant/DNA complexes. Surfactant molecules induced the genetic material condensation, but the presence of lipids significantly intensified this process. Systems based on trimeric surfactants and lipid formulations, particularly TRI_N and TRI_IMI systems, could be used as delivery carrier, and have proven to be highly effective, nontoxic, and universal for DNA of various lengths.


Assuntos
Vetores Genéticos/genética , Fosfolipídeos/química , Tensoativos/química , Linhagem Celular Tumoral , Dicroísmo Circular/métodos , DNA/química , Técnicas de Transferência de Genes , Células HeLa , Humanos , Lipídeos/química , Microscopia de Força Atômica/métodos
15.
Biomed Pharmacother ; 138: 111537, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311535

RESUMO

Aging of the skin is a complicated bioprocess that is affected by constant exposure to ultraviolet irradiation. The application of herbal-based anti-aging creams is still the best choice for treatment. In the present study, Citrus sinensis L. fruit peels ethanolic extract (CSPE) was formulated into lipid nanoparticles (LNPs) anti-aging cream. Eight different formulations of CSEP-LNPs were prepared and optimized using 23 full factorial designs. In vivo antiaging effect of the best formula was tested in Swiss albino mice where photo-aging was induced by exposure to UV radiation. HPLC-QToF-MS/MS metabolic profiling of CSPE led to the identification of twenty-nine metabolites. CSPE was standardized to a hesperidin content of 15.53 ± 0.152 mg% using RP-HPLC. It was suggested that the optimized formulation (F7) had (245 nm) particle size, (91.065%) EE, and (91.385%) occlusive effect with a spherical and smooth surface. The visible appearance of UV-induced photoaging in mice was significantly improved after topical application on CSPE-NLC cream for 5 weeks, levels of collagen and SOD were significantly increased in CSPE- NLC group, while levels of PGE2, COX2, JNK, MDA, and elastin was reduced. Finally, The prepared anti-aging CSPE-NLC cream represents a safe, convenient, and promising skincare cosmetic product.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Citrus sinensis , Metaloproteinase 13 da Matriz/metabolismo , Extratos Vegetais/administração & dosagem , Envelhecimento da Pele/efeitos dos fármacos , Creme para a Pele/administração & dosagem , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Citrus sinensis/química , Colágeno/metabolismo , Regulação para Baixo , Composição de Medicamentos , Feminino , Frutas , Lipídeos/química , Metaloproteinase 13 da Matriz/genética , Camundongos , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pele/enzimologia , Pele/patologia , Pele/efeitos da radiação , Creme para a Pele/química , Creme para a Pele/isolamento & purificação , Superóxido Dismutase/metabolismo , Raios Ultravioleta
16.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209900

RESUMO

Adult human cardiomyocytes have an extremely limited proliferative capacity, which poses a great barrier to regenerative medicine and research. Human embryonic stem cells (hESCs) have been proposed as an alternative source to generate large numbers of clinical grade cardiomyocytes (CMs) that can have potential therapeutic applications to treat cardiac diseases. Previous studies have shown that bioactive lipids are involved in diverse cellular responses including cardiogenesis. In this study, we explored the novel function of the chemically synthesized bioactive lipid O-cyclic phytosphingosine-1-phosphate (cP1P) as an inducer of cardiac differentiation. Here, we identified cP1P as a novel factor that significantly enhances the differentiation potential of hESCs into cardiomyocytes. Treatment with cP1P augments the beating colony number and contracting area of CMs. Furthermore, we elucidated the molecular mechanism of cP1P regulating SMAD1/5/8 signaling via the ALK3/BMP receptor cascade during cardiac differentiation. Our result provides a new insight for cP1P usage to improve the quality of CM differentiation for regenerative therapies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Esfingosina/análogos & derivados , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Lipídeos/química , Lipídeos/farmacologia , Miócitos Cardíacos/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esfingosina/química , Esfingosina/farmacologia
17.
Nat Commun ; 12(1): 4343, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267224

RESUMO

Aberrant sterol lipid metabolism is associated with physiological dysfunctions in the aging brain and aging-dependent disorders such as neurodegenerative diseases. There is an unmet demand to comprehensively profile sterol lipids spatially and temporally in different brain regions during aging. Here, we develop an ion mobility-mass spectrometry based four-dimensional sterolomics technology leveraged by a machine learning-empowered high-coverage library (>2000 sterol lipids) for accurate identification. We apply this four-dimensional technology to profile the spatially resolved landscapes of sterol lipids in ten functional regions of the mouse brain, and quantitatively uncover ~200 sterol lipids uniquely distributed in specific regions with concentrations spanning up to 8 orders of magnitude. Further spatial analysis pinpoints age-associated differences in region-specific sterol lipid metabolism, revealing changes in the numbers of altered sterol lipids, concentration variations, and age-dependent coregulation networks. These findings will contribute to our understanding of abnormal sterol lipid metabolism and its role in brain diseases.


Assuntos
Química Encefálica , Encéfalo/metabolismo , Lipídeos/química , Esteróis/análise , Envelhecimento/fisiologia , Animais , Feminino , Isomerismo , Lipidômica/métodos , Lipídeos/análise , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Esteróis/química , Esteróis/metabolismo , Espectrometria de Massas em Tandem/métodos
18.
Biomed Pharmacother ; 139: 111494, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243595

RESUMO

This study set out to optimize simvastatin (SV) in lipid nanoparticles (SLNs) to improve bioavailability, efficacy and alleviate adverse effects. Simvastatin-loaded solid lipid nanoparticles (SV-SLNs) were prepared by hot-melt ultrasonication method and optimized by box-Behnken experimental design. Sixty Wister albino rats were randomly assigned into six groups and treated daily for 16 weeks: control group, the group fed with 20 g of high-fat diet (HFD), group treated with vehicle (20 mg/kg, P.O.) for last four weeks, group treated with HFD and SV (20 mg/kg, P.O.) / or SV-SLNs (20 mg/kg/day, P.O.) / or SV-SLNs (5 mg/kg, P.O.) at last four weeks. Blood, liver tissues, and quadriceps muscles were collected for biochemical analysis, histological and immunohistochemical assays. The optimized SV-SLNS showed a particle-size 255.2 ± 7.7 nm, PDI 0.31 ± 0.09, Zeta-potential - 19.30 ± 3.25, and EE% 89.81 ± 2.1%. HFD showed severe changes in body weight liver functions, lipid profiles, atherogenic index (AIX), albumin, glucose, insulin level, alkaline phosphatase as well as muscle injury, oxidative stress biomarkers, and protein expression of caspase-3. Simvastatin treatment in animals feed with HFD showed a significant improvement of all tested parameters, but it was associated with hepatotoxicity, myopathy, and histological changes in quadriceps muscles. SV-SLNs exhibited a significant improvement of all biochemical, histological examinations, and immunohistochemical assays. SV-SLNs (5 mg/kg) treatment returns all measured parameters to control itself. These results represent that SV-SLNs is a promising candidate as a drug carrier for delivering SV with maximum efficacy and limited adverse reaction.


Assuntos
Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Lipídeos/química , Doenças Musculares/tratamento farmacológico , Nanopartículas/química , Sinvastatina/farmacologia , Animais , Disponibilidade Biológica , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Tamanho da Partícula , Ratos , Ratos Wistar
19.
Int J Nanomedicine ; 16: 4373-4390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234432

RESUMO

Current treatments for Alzheimer's disease (AD) attenuate the progression of symptoms and aim to improve the patient's quality of life. Licensed medicines are mostly for oral administration and are limited by the difficulty in crossing the blood-brain barrier (BBB). Here in, the nasal route has been explored as an alternative pathway that allows drugs to be directly delivered to the brain via the nasal cavity. However, clearance mechanisms in the nasal cavity impair the delivery of drugs to the brain and limit their bioavailability. To optimize nose-to-brain delivery, formulations of lipid-based nanosystems, namely nanoemulsions and nanostructured lipid carriers (NLC), formulated in situ gelling hydrogels have been proposed as approaches for nose-to-brain delivery. These formulations possess characteristics that facilitate drug transport directly to the brain, minimizing side effects and maximizing therapeutic benefits. It has been recommended that the manufacture of these drug delivery systems follows the quality by design (QbD) approach based on nasal administration requirements. This review provides an insight into the current knowledge of the AD, highlighting the need for an effective drug delivery to the brain. Considering the mounting interest in the use of nanoemulsions and NLC for nose-to-brain delivery, a description of drug transport pathways in the nasal cavity and the application of these nanosystems and their in situ hydrogels through the intranasal route are presented. Relevant preclinical studies are summarised, and the future prospects for the use of lipid-based nanosystems in the treatment of AD are emphasized.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Portadores de Fármacos/química , Hidrogéis/química , Lipídeos/química , Nanoestruturas/química , Nariz , Doença de Alzheimer/tratamento farmacológico , Animais , Emulsões , Humanos
20.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199292

RESUMO

Giant unilamellar vesicles (GUV) are powerful tools to explore physics and biochemistry of the cell membrane in controlled conditions. For example, GUVs were extensively used to probe cell adhesion, but often using non-physiological linkers, due to the difficulty of incorporating transmembrane adhesion proteins into model membranes. Here we describe a new protocol for making GUVs incorporating the transmembrane protein integrin using gel-assisted swelling. We report an optimised protocol, enumerating the pitfalls encountered and precautions to be taken to maintain the robustness of the protocol. We characterise intermediate steps of small proteoliposome formation and the final formed GUVs. We show that the integrin molecules are successfully incorporated and are functional.


Assuntos
Géis/química , Integrinas/metabolismo , Lipossomas Unilamelares/química , Adesão Celular , Fluorescência , Humanos , Bicamadas Lipídicas/metabolismo , Lipídeos/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...