Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 571
Filtrar
1.
Mol Med Rep ; 20(5): 4367-4375, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31545425

RESUMO

Infection is a frequent complication of liver transplantation or partial hepatectomy (PH) and sometimes results in cholestasis. We examined factors involved in infection­induced cholestasis after PH, employing a rat PH model and lipopolysaccharide (LPS) as a bacterial toxin. Male Sprague­Dawley rats were subjected to 70% PH and/or LPS injection, and tissues were harvested at 0, 24, 72 and 168 h. Gene expression was analyzed by microarray analysis and reverse transcription­quantitative polymerase chain reaction, and protein levels and localization were analyzed by western blotting and immunohistochemistry, respectively. Plasma bile acid levels were significantly higher in the LPS + PH group than in the PH group. Ribonucleotide reductase regulatory subunit M2 and proliferating cell nuclear antigen peaked at 24 and 72 h in the PH group and LPS + PH group, respectively, indicating a delay in cell proliferation in the latter group. The sodium­dependent taurocholate cotransporting polypeptide and organic­anion­transporting polypeptide 1a1 and 1a2 were reduced in the PH group at 24 h, and were not further decreased in the LPS + PH group. Chemokine ligand 9 (Cxcl9), a chemokine involved in M2 macrophage polarization, increased after 24 h in the LPS and the LPS + PH groups. The number and shape of Cxcl9­positive cells were similar to CD163­positive cells, suggesting that such cells produced the chemokine. Hematopoietic prostaglandin D2 synthase (Ptgds2) was only detected in hepatocytes of the LPS + PH group exhibiting a delay in cell proliferation. Thus, Kupffer cells activated with LPS were suggested to be responsible for a delay in hepatocyte proliferation after PH.


Assuntos
Colestase/etiologia , Colestase/metabolismo , Endotoxinas/efeitos adversos , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Animais , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Bilirrubina/sangue , Biomarcadores , Proliferação de Células , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Modelos Animais de Doenças , Hepatectomia , Imuno-Histoquímica , Oxirredutases Intramoleculares/metabolismo , Macrófagos do Fígado/metabolismo , Lipocalinas/metabolismo , Masculino , RNA Mensageiro/genética , Ratos
2.
Neurobiol Dis ; 127: 482-491, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30954702

RESUMO

Dysfunctional regulation of inflammation may contribute to the progression of neurodegenerative diseases. The results of this study revealed that DJ-1, a Parkinson's disease (PD) gene, regulated expression of prostaglandin D2 synthase (PTGDS) and production of prostaglandin D2 (PGD2), by which DJ-1 enhanced anti-inflammatory function of astrocytes. In injured DJ-1 knockout (KO) brain, expression of tumor necrosis factor-alpha (TNF-α) was more increased, but that of anti-inflammatory heme oxygenase-1 (HO-1) was less increased compared with that in injured wild-type (WT) brain. Similarly, astrocyte-conditioned media (ACM) prepared from DJ-1-KO astrocytes less induced HO-1 expression and less inhibited expression of inflammatory mediators in microglia. With respect to the underlying mechanism, we found that PTGDS that induced expression of HO-1 was lower in DJ-1 KO astrocytes and brains compared with their WT counterparts. In addition, PTGDS levels increased in the injured brain of WT mice, but barely in that of KO mice. We also found that DJ-1 regulated PTGDS expression through Sox9. Thus, Sox9 siRNAs reduced PTGDS expression in WT astrocytes, and Sox9 overexpression rescued PTGDS expression in DJ-1 KO astrocytes. In agreement with these results, ACM from Sox9 siRNA-treated astrocytes and that from Sox9-overexpression astrocytes exerted opposite effects on HO-1 expression and anti-inflammation. These findings suggest that DJ-1 positively regulates anti-inflammatory functions of astrocytes, and that DJ-1 dysfunction contributes to the excessive inflammatory response in PD development.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Proteína Desglicase DJ-1/genética , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
PLoS One ; 14(3): e0213206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840684

RESUMO

The Lipocalin family is a group of homologous proteins characterized by its big array of functional capabilities. As extracellular proteins, they can bind small hydrophobic ligands through a well-conserved ß-barrel folding. Lipocalins evolutionary history sprawls across many different taxa and shows great divergence even within chordates. This variability is also found in their heterogeneous tissue expression pattern. Although a handful of promoter regions have been previously described, studies on UTR regulatory roles in Lipocalin gene expression are scarce. Here we report a comprehensive bioinformatic analysis showing that complex post-transcriptional regulation exists in Lipocalin genes, as suggested by the presence of alternative UTRs with substantial sequence conservation in mammals, alongside a high diversity of transcription start sites and alternative promoters. Strong selective pressure could have operated upon Lipocalins UTRs, leading to an enrichment in particular sequence motifs that limit the choice of secondary structures. Mapping these regulatory features to the expression pattern of early and late diverging Lipocalins suggests that UTRs represent an additional phylogenetic signal, which may help to uncover how functional pleiotropy originated within the Lipocalin family.


Assuntos
Simulação por Computador , Evolução Molecular , Lipocalinas/genética , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , Regiões não Traduzidas/genética , Animais , Biologia Computacional , Humanos , Lipocalinas/metabolismo , Mamíferos , Filogenia , Proteínas/genética , Sítio de Iniciação de Transcrição
4.
Hum Genomics ; 13(1): 11, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782214

RESUMO

Lipocalins (LCNs) are members of a family of evolutionarily conserved genes present in all kingdoms of life. There are 19 LCN-like genes in the human genome, and 45 Lcn-like genes in the mouse genome, which include 22 major urinary protein (Mup) genes. The Mup genes, plus 29 of 30 Mup-ps pseudogenes, are all located together on chromosome (Chr) 4; evidence points to an "evolutionary bloom" that resulted in this Mup cluster in mouse, syntenic to the human Chr 9q32 locus at which a single MUPP pseudogene is located. LCNs play important roles in physiological processes by binding and transporting small hydrophobic molecules -such as steroid hormones, odorants, retinoids, and lipids-in plasma and other body fluids. LCNs are extensively used in clinical practice as biochemical markers. LCN-like proteins (18-40 kDa) have the characteristic eight ß-strands creating a barrel structure that houses the binding-site; LCNs are synthesized in the liver as well as various secretory tissues. In rodents, MUPs are involved in communication of information in urine-derived scent marks, serving as signatures of individual identity, or as kairomones (to elicit fear behavior). MUPs also participate in regulation of glucose and lipid metabolism via a mechanism not well understood. Although much has been learned about LCNs and MUPs in recent years, more research is necessary to allow better understanding of their physiological functions, as well as their involvement in clinical disorders.


Assuntos
Evolução Molecular , Lipocalinas/genética , Animais , Genoma Humano , Humanos , Lipocalinas/metabolismo , Camundongos , Família Multigênica
5.
Cancer Cell ; 35(1): 64-80.e7, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30612941

RESUMO

Triple-negative breast cancer (TNBC) patients have the worst prognosis and distant metastasis-free survival among all major subtypes of breast cancer. The poor clinical outlook is further exacerbated by a lack of effective targeted therapies for TNBC. Here we show that ectopic expression and therapeutic delivery of the secreted protein Tubulointerstitial nephritis antigen-like 1 (Tinagl1) suppresses TNBC progression and metastasis through direct binding to integrin α5ß1, αvß1, and epidermal growth factor receptor (EGFR), and subsequent simultaneous inhibition of focal adhesion kinase (FAK) and EGFR signaling pathways. Moreover, Tinagl1 protein level is associated with good prognosis and reversely correlates with FAK and EGFR activation status in TNBC. Our results suggest Tinagl1 as a candidate therapeutic agent for TNBC by dual inhibition of integrin/FAK and EGFR signaling pathways.


Assuntos
Proteínas da Matriz Extracelular/genética , Integrina alfa5beta1/metabolismo , Lipocalinas/genética , Neoplasias Pulmonares/terapia , Receptores de Vitronectina/metabolismo , Neoplasias de Mama Triplo Negativas/terapia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Receptores ErbB/metabolismo , Proteínas da Matriz Extracelular/administração & dosagem , Proteínas da Matriz Extracelular/metabolismo , Feminino , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Lipocalinas/administração & dosagem , Lipocalinas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Prognóstico , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
6.
Int J Mol Med ; 43(3): 1531-1541, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30664181

RESUMO

Dogs are a major source of indoor allergens. However, the prevalence of dog allergies in China remains unclear, especially in children. In the present study, Can f 7, a canine allergen belonging to the Niemann pick type C2 protein family, was selected to study its sensitization rate in Chinese children with dog allergies. The Can f 7 gene was subcloned into a pET­28a vector and expressed in Escherichia coli BL21 (DE3) cells. Recombinant Can f 7 was purified by nickel affinity chromatography, identified by SDS­PAGE electrophoresis, and had its allergenicity assessed by western blot, ELISA and basophil activation tests. Through a series of bioinformatical approaches, B­cell epitopes, secondary structures, and 3 dimensional (3D) homology modeling of Can f 7 were predicted. The activity of the B cell epitopes was verified by ELISA. The recombinant Can f 7 showed a distinct band with a molecular weight of 14 kDa. Six of 20 sera from dog­allergic children reacted positively to the Can f 7. Can f 7 induced an ~4.0­fold increase in cluster of differentiation 63 and C­C motif chemokine receptor R3 expression in basophils sensitized with the serum of dog­allergic children compared with those of non­allergic controls. The secondary structure analysis showed that Can f 7 contains 6 ß­sheets. Five B cell epitopes of Can f 7 were predicted, and two of these were confirmed by ELISA. These results indicate that Can f 7 is an important canine allergen in Chinese children and provide novel data for further research concerning the use of Can f 7 in the diagnosis and treatment of Chinese children with canine allergy symptoms.


Assuntos
Alérgenos/genética , Alérgenos/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Expressão Gênica , Lipocalinas/genética , Lipocalinas/imunologia , Adolescente , Alérgenos/química , Alérgenos/isolamento & purificação , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Códon , Cães , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B/química , Feminino , Humanos , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Lactente , Lipocalinas/química , Lipocalinas/isolamento & purificação , Masculino , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes
7.
Reprod Domest Anim ; 54(7): 939-948, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30246506

RESUMO

Brazilian Somalis is a locally-adapted breed of rams raised in tropical climate and native pastures. The present study was conducted to evaluate gene expression and proteome of the reproductive tract of such rams. Samples were collected from testes, epididymides, seminal vesicles and bulbourethral glands of four rams. Expression of clusterin (CLU), osteopontin (OPN) and prostaglandin D2 synthase (PGDS) genes were evaluated in all samples by real-time PCR. Shotgun proteomic analysis was performed using samples from the head, corpus and cauda epididymides and from all other structures as well. Gene ontology terms and protein interactions were obtained from UniProtKB databases and MetaCore v.6.8 platform. CLU trasncripts were detected in the testes, epididymides, seminal vesicles and bulbourethral glands of the Somalis rams. The initial region and body of the epididymis had the greatest CLU expression. OPN mRNA was localized in all tissues of the ram reproductive tract. PGDS mRNA was detected in the testes and epididymides. Lable-free mass spectrometry allowed the identification of 137 proteins in all samples. Proteins of the epididymis head mainly participate in cellular processes and response to stimulus, participating in catalityc activity and binding. Proteins of epididymis body acted as regulatory proteins and in cellular processes, with binding and catalytic activity. Cauda epididymis molecules were associated with cellular processes and regulation, with binding function and catalytic activity as well. Testis proteins were mainly linked to cell processes and response to stimuli, and had catalytic function. Seminal vesicle proteins were involved in regulation and mainly with binding functions. Most bulbourethral gland proteins participated in cellular processes. The present study is the first to evaluate the proteome and gene expressions in the reproductive tract of Brazilian Somalis rams. Such pieces of information bring significant cointribution for the understanding of the reproductive physiology of locally-adapted livestock.


Assuntos
Genitália Masculina/metabolismo , Proteoma/análise , Carneiro Doméstico/genética , Carneiro Doméstico/metabolismo , Adaptação Fisiológica , Animais , Brasil , Clusterina/genética , Clusterina/metabolismo , Expressão Gênica , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Masculino , Osteopontina/genética , Osteopontina/metabolismo , Clima Tropical
8.
Biosci Rep ; 39(1)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30393234

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common hematologic malignancy, however, specific tumor-associated genes and signaling pathways are yet to be deciphered. Differentially expressed genes (DEGs) were computed based on gene expression profiles from GSE32018, GSE56315, and The Cancer Genome Atlas (TCGA) DLBC. Overlapping DEGs were then evaluated for gene ontology (GO), pathways enrichment, DNA methylation, protein-protein interaction (PPI) network analysis as well as survival analysis. Seventy-four up-regulated and 79 down-regulated DEGs were identified. From PPI network analysis, majority of the DEGs were involved in cell cycle, oocyte meiosis, and epithelial-to-mesenchymal transition (EMT) pathways. Six hub genes including CDC20, MELK, PBK, prostaglandin D2 synthase (PTGDS), PCNA, and CDK1 were selected using the Molecular Complex Detection (MCODE). CDC20 and PTGDS were able to predict overall survival (OS) in TCGA DLBC and in an additional independent cohort GSE31312. Furthermore, CDC20 DNA methylation negatively regulated CDC20 expression and was able to predict OS in DLBCL. A two-gene panel consisting of CDC20 and PTGDS had a better prognostic value compared with CDC20 or PTGDS alone in the TCGA cohort (P=0.026 and 0.039). Overall, the present study identified a set of novel genes and pathways that may play a significant role in the initiation and progression of DLBCL. In addition, CDC20 and PTGDS will provide useful guidance for therapeutic applications.


Assuntos
Biomarcadores Tumorais/genética , Proteínas Cdc20/genética , Regulação Neoplásica da Expressão Gênica , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Atlas como Assunto , Biomarcadores Tumorais/metabolismo , Proteínas Cdc20/metabolismo , Ciclo Celular/genética , Biologia Computacional , Metilação de DNA , Conjuntos de Dados como Assunto , Transição Epitelial-Mesenquimal/genética , Ontologia Genética , Humanos , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/patologia , Meiose , Anotação de Sequência Molecular , Oócitos/metabolismo , Oócitos/patologia , Prognóstico , Mapeamento de Interação de Proteínas , Análise de Sobrevida , Transcriptoma
9.
ESC Heart Fail ; 6(1): 89-97, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30367561

RESUMO

AIMS: Cachexia is a severe consequence of cancer. Although cancer-induced heart atrophy leads to cardiac dysfunction and heart failure (HF), biomarkers for their diagnosis have not been identified. Neutrophil gelatinase-associated lipocalin (NGAL) is an aldosterone-responsive gene increased in HF. We studied NGAL and its association with aldosterone levels in a model of cancer cachexia-induced cardiomyopathy. METHODS AND RESULTS: Rats were injected with Yoshida 108 AH-130 hepatoma cells to induce tumour. Cachectic rats were treated daily, for 16 days, with placebo or with 5 or 50 mg/kg/day of spironolactone. Cardiac function was analysed by echocardiography at baseline and at Day 11. Weight loss and atrophy of lean body and fat mass of cachectic rats were significantly attenuated by spironolactone. Cardiac dysfunction of tumour-bearing rats was improved by spironolactone. Plasma aldosterone was up-regulated from 337 ± 7 pg/mL in sham animals to 591 ± 31 pg/mL in the cachectic rats (P < 0.001 vs. sham). Treatment with 50 or 5 mg/kg/day of spironolactone reduced plasma aldosterone to 396 ± 22 and 391 ± 25 pg/mL (P < 0.01 vs. placebo). Plasma levels of NGAL were also increased in cachectic rats (1.462 ± 0.3603 µg/mL) than in controls (0.0936 ± 6 µg/mL, P < 0.001). Spironolactone treatment (50 mg/kg/day) significantly reduced cardiac mRNA and protein NGAL levels (P < 0.05 and P < 0.001 vs. placebo, respectively). NGAL mRNA and protein levels were overexpressed in cachectic animal hearts treated with placebo, compared with control (P < 0.05 and P < 0.01 vs. sham). Spironolactone treatment at 50 mg/kg/day reduced significantly cardiac NGAL (P < 0.05 and P < 0.001 vs. placebo). CONCLUSIONS: Cancer cachexia induced increased levels of aldosterone and NGAL, contributing to worsening cardiac damage in cancer cachexia-induced cardiomyopathy. Spironolactone treatment may greatly attenuate cardiac dysfunction and lean mass atrophy associated with cancer cachexia.


Assuntos
Proteínas da Fase Aguda/genética , Caquexia/complicações , Cardiomiopatias/genética , Regulação Neoplásica da Expressão Gênica , Lipocalinas/genética , Miocárdio/metabolismo , Neoplasias Experimentais , Proteínas Proto-Oncogênicas/genética , Proteínas da Fase Aguda/biossíntese , Animais , Western Blotting , Caquexia/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Lipocalinas/biossíntese , Masculino , Proteínas Proto-Oncogênicas/biossíntese , RNA Neoplásico/genética , Distribuição Aleatória , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Elife ; 72018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398151

RESUMO

Stable mutualism between a host and its resident bacteria requires a moderated immune response to control bacterial population size without eliciting excessive inflammation that could harm both partners. Little is known about the specific molecular mechanisms utilized by bacterial mutualists to temper their hosts' responses and protect themselves from aggressive immune attack. Using a gnotobiotic larval zebrafish model, we identified an Aeromonas secreted immunomodulatory protein, AimA. AimA is required during colonization to prevent intestinal inflammation that simultaneously compromises both bacterial and host survival. Administration of exogenous AimA prevents excessive intestinal neutrophil accumulation and protects against septic shock in models of both bacterially and chemically induced intestinal inflammation. We determined the molecular structure of AimA, which revealed two related calycin-like domains with structural similarity to the mammalian immune modulatory protein, lipocalin-2. As a secreted bacterial protein required by both partners for optimal fitness, AimA is an exemplar bacterial mutualism factor.


Assuntos
Aeromonas/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Simbiose/genética , Animais , Interações Hospedeiro-Patógeno/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Larva/imunologia , Larva/microbiologia , Lipocalinas/genética , Lipocalinas/imunologia , Domínios Proteicos/genética , Simbiose/imunologia , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia
11.
J Pharmacol Exp Ther ; 367(3): 425-432, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30305427

RESUMO

Prostaglandin (PG) D2 is formed by two distinct PGD synthases (PGDS): lipocalin-type PGDS (L-PGDS), which acts as a PGD2-producing enzyme and as extracellular lipophilic transporter, and hematopoietic PGDS (H-PGDS), a σ glutathione-S-transferase. PGD2 plays an important role in the maintenance of vascular function; however, the relative contribution of L-PGDS- and H-PGDS-dependent formation of PGD2 in this setting is unknown. To gain insight into the function played by these distinct PGDS, we assessed systemic blood pressure (BP) and thrombogenesis in L-Pgds and H-Pgds knockout (KO) mice. Deletion of L-Pgds depresses urinary PGD2 metabolite (PGDM) by ∼35%, whereas deletion of H-Pgds does so by ∼90%. Deletion of L-Pgds, but not H-Pgds, elevates BP and accelerates the thrombogenic occlusive response to a photochemical injury to the carotid artery. HQL-79, a H-PGDS inhibitor, further depresses PGDM in L-Pgds KO mice, but has no effect on BP or on the thrombogenic response. Gene expression profiling reveals that pathways relevant to vascular function are dysregulated in the aorta of L-Pgds KOs. These results indicate that the functional impact of L-Pgds deletion on vascular homeostasis may result from an autocrine effect of L-PGDS-dependent PGD2 on the vasculature and/or the L-PGDS function as lipophilic carrier protein.


Assuntos
Hipertensão/genética , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Prostaglandina D2/genética , Deleção de Sequência/genética , Animais , Artérias Carótidas/patologia , Glutationa Transferase/genética , Masculino , Camundongos , Camundongos Knockout
12.
Bioorg Med Chem ; 26(16): 4726-4734, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30121213

RESUMO

Hematopoietic prostaglandin D synthase (H-PGDS) is one of the two enzymes that catalyze prostaglandin D2 synthesis and a potential therapeutic target of allergic and inflammatory responses. To reveal key molecular interactions between a high-affinity ligand and H-PGDS, we designed and synthesized a potent new inhibitor (KD: 0.14 nM), determined the crystal structure in complex with human H-PGDS, and quantitatively analyzed the ligand-protein interactions by the fragment molecular orbital calculation method. In the cavity, 10 water molecules were identified, and the interaction energy calculation indicated their stable binding to the surface amino acids in the cavity. Among them, 6 water molecules locating from the deep inner cavity to the peripheral part of the cavity contributed directly to the ligand binding by forming hydrogen bonding interactions. Arg12, Gly13, Gln36, Asp96, Trp104, Lys112 and an essential co-factor glutathione also had strong interactions with the ligand. A strong repulsive interaction between Leu199 and the ligand was canceled out by forming a hydrogen bonding network with the adjacent conserved water molecule. Our quantitative studies including crystal water molecules explained that compounds with an elongated backbone structure to fit from the deep inner cavity to the peripheral part of the cavity would have strong affinity to human H-PGDS.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Água/química , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/genética , Ligantes , Lipocalinas/antagonistas & inibidores , Lipocalinas/genética , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ressonância de Plasmônio de Superfície , Termodinâmica , Água/metabolismo
13.
Proc Biol Sci ; 285(1883)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30051867

RESUMO

Social communication among castes is a crucial component of insect societies. However, the genes involved in soldier determination through the regulation of inter-individual interactions are largely unknown. In an incipient colony of the damp-wood termite Zootermopsis nevadensis, the first larva to develop into a third instar always differentiates into a soldier via frequent trophallactic feeding from the reproductives. Here, by performing RNA-seq analysis of third instar larvae, a homologue of Neural Lazarillo (named ZnNLaz1) was found to be the most differentially expressed gene in these soldier-destined larvae, compared with worker-destined larvae. This gene encodes a lipocalin protein related to the transport of small hydrophobic molecules. RNAi-induced knockdown of ZnNLaz1 significantly inhibited trophallactic interactions with the queen and decreased the soldier differentiation rates. This protein is localized in the gut, particularly in the internal wall, of soldier-destined larvae, suggesting that it is involved in the integration of social signals from the queen through frequent trophallactic behaviours. Based on molecular phylogenetic analysis, we suggest that a novel function of termite NLaz1 has contributed to social evolution from the cockroach ancestors of termites. These results indicated that a high larval NLaz1 expression is crucial for soldier determination through social communication in termites.


Assuntos
Proteínas de Insetos/genética , Isópteros/fisiologia , Lipocalinas/genética , Animais , Feminino , Expressão Gênica , Proteínas de Insetos/metabolismo , Isópteros/genética , Isópteros/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Lipocalinas/metabolismo , Masculino , Dinâmica Populacional , Comportamento Social
14.
BioDrugs ; 32(3): 233-243, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29748739

RESUMO

Anticalin proteins are an emerging class of clinical-stage biopharmaceuticals with high potential as an alternative to antibodies. Anticalin molecules are generated by combinatorial design from natural lipocalins, which are abundant plasma proteins in humans, and reveal a simple, compact fold dominated by a central ß-barrel, supporting four structurally variable loops that form a binding site. Reshaping of this loop region results in Anticalin proteins that can recognize and tightly bind a wide range of medically relevant targets, from small molecules to peptides and proteins, as validated by X-ray structural analysis. Their robust format allows for modification in several ways, both as fusion proteins and by chemical conjugation, for example, to tune plasma half-life. Antagonistic Anticalin therapeutics have been developed for systemic administration (e.g., PRS-080: anti-hepcidin) or pulmonary delivery (e.g. PRS-060/AZD1402: anti-interleukin [IL]-4-Rα). Moreover, Anticalin proteins allow molecular formatting as bi- and even multispecific fusion proteins, especially in combination with antibodies that provide a second specificity. For example, PRS-343, which has recently entered clinical-stage development, combines an agonistic Anticalin targeting the costimulatory receptor 4-1BB with an antibody directed against the cancer antigen human epidermal growth factor receptor 2 (HER2), thus offering a novel treatment option in immuno-oncology.


Assuntos
Doença , Tratamento Farmacológico/métodos , Lipocalinas/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Biofarmácia , Humanos , Lipocalinas/química , Lipocalinas/genética , Terapia de Alvo Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Tecnologia Farmacêutica
15.
Lipids ; 53(3): 353-360, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29668081

RESUMO

Lipocalin-type prostaglandin D synthase (L-PGDS; EC:5.3.99.2) is an enzyme with dual functional roles as a prostaglandin D2 -synthesizing enzyme and as an extracellular transporter for diverse lipophilic compounds in the cerebrospinal fluid (CSF). Transport of hydrophobic endocannabinoids is mediated by serum albumin in the blood and intracellularly by the fatty acid binding proteins, but no analogous transport mechanism has yet been described in CSF. L-PGDS has been reported to promiscuously bind a wide variety of lipophilic ligands and is among the most abundant proteins found in the CSF. Here, we examine the binding of several classes of endogenous and synthetic ligands to L-PGDS. Endocannabinoids exhibited low affinity toward L-PGDS, while cannabinoid metabolites and synthetic cannabinoids displayed higher affinities for L-PGDS. These results indicate that L-PGDS is unlikely to function as a carrier for endocannabinoids in the CSF, but it may bind and transport a subset of cannabinoids.


Assuntos
Canabinoides/metabolismo , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Prostaglandinas/metabolismo , Triptofano/química , Encéfalo/enzimologia , Química Encefálica , Canabinoides/química , Clonagem Molecular , Compostos de Dansil/química , Compostos de Dansil/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Expressão Gênica , Biblioteca Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/isolamento & purificação , Cinética , Lipocalinas/genética , Lipocalinas/isolamento & purificação , Nitrobenzenos/química , Nitrobenzenos/metabolismo , Oxidiazóis/química , Oxidiazóis/metabolismo , Prostaglandinas/química , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Soluções , Espectrometria de Fluorescência
16.
PLoS One ; 13(3): e0194953, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566052

RESUMO

Oral sensitivity to fats varies in individuals influencing nutritional status and health. Variations in oleic acid perception are associated with CD36 and odorant binding protein (OBPIIa) polymorphisms, and 6-n-propylthiouracil (PROP) sensitivity, which is mediated by TAS2R38 receptor. L-Arginine (L-Arg) supplementation was shown to modify the perception of the five taste qualities. Here we analyzed the effect of three concentrations (5, 10, 15 mmol/L) of L-Arg on oral perception of oleic acid in forty-six subjects classified for PROP taster status and genotyped for TAS2R38, CD36 and OBPIIa polymorphisms. L-Arg supplementation was effective in increasing the perceived intensity of oleic acid in most subjects. The lowest concentration was the most effective, especially in PROP non-tasters or medium tasters, and in subjects with at least an allele A in CD36 and OBPIIa loci. Density Functional Theory (DFT) calculations were exploited to characterize the chemical interaction between L-Arg and oleic acid, showing that a stable 1:1 oleate·ArgH+ adduct can be formed, stabilized by a pair of hydrogen bonds. Results indicate that L-Arg, acting as a 'carrier' of fatty acids in saliva, can selectively modify taste response, and suggest that it may to be used in personalized dietetic strategies to optimize eating behaviors and health.


Assuntos
Arginina/farmacologia , Antígenos CD36/genética , Lipocalinas/genética , Ácido Oleico/farmacologia , Polimorfismo de Nucleotídeo Único , Propiltiouracila/farmacologia , Percepção Gustatória/genética , Paladar/efeitos dos fármacos , Adulto , Interações Medicamentosas , Feminino , Humanos , Masculino , Locos de Características Quantitativas/genética , Receptores Acoplados a Proteínas-G/genética , Papilas Gustativas/metabolismo , Percepção Gustatória/efeitos dos fármacos , Adulto Jovem
17.
J Pharmacol Exp Ther ; 365(2): 368-378, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29463608

RESUMO

Since it was recently reported that an antibody for proprotein convertase subtilisin/kexin type 9 (PCSK9) reduces the risk of cardiovascular events in a clinical context, PCSK9 inhibition is thought to be an attractive therapy for dyslipidemia. In the present study, we created a novel small biologic alternative to PCSK9 antibodies called DS-9001a, comprising an albumin binding domain fused to an artificial lipocalin mutein (ABD-fused Anticalin protein), which can be produced by a microbial production system. DS-9001a strongly interfered with PCSK9 binding to low-density-lipoprotein receptor (LDL-R) and PCSK9-mediated degradation of LDL-R. In cynomolgus monkeys, single DS-9001a administration significantly reduced the serum LDL-C level up to 21 days (62.4% reduction at the maximum). Moreover, DS-9001a reduced plasma non-high-density-lipoprotein cholesterol and oxidized LDL levels, and their further reductions were observed when atorvastatin and DS-9001a were administered in combination in human cholesteryl ester transfer protein/ApoB double transgenic mice. Additionally, their reductions on the combination of atorvastatin and DS-9001a were more pronounced than those on the combination of atorvastatin and anacetrapib. Besides its favorable pharmacologic profile, DS-9001a has a lower molecular weight (about 22 kDa), yielding a high stoichiometric drug concentration that might result in a smaller administration volume than that in existing antibody therapy. Since bacterial production systems are viewed as more suited to mass production at low cost, DS-9001a may provide a new therapeutic option to treat patients with dyslipidemia. In addition, considering the growing demand for antibody-like drugs, ABD-fused Anticalin proteins could represent a promising new class of small biologic molecules.


Assuntos
Albuminas/metabolismo , Lipocalinas/genética , Pró-Proteína Convertase 9/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Atorvastatina/farmacologia , Proteínas de Transferência de Ésteres de Colesterol , Interações Medicamentosas , Células Hep G2 , Humanos , Lipocalinas/química , Lipoproteínas LDL/sangue , Macaca fascicularis , Masculino , Camundongos , Oxazolidinonas/farmacologia , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Receptores de LDL/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
18.
PLoS Negl Trop Dis ; 12(2): e0006243, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462134

RESUMO

Triatomines are hematophagous arthropod vectors of Trypanosoma cruzi, the causative agent of Chagas Disease. Panstrongylus lignarius, also known as Panstrongylus herreri, is considered one of the most versatile triatomines because it can parasitize different hosts, it is found in different habitats and countries, it has sylvatic, peridomestic and domestic behavior and it is a very important vector of Chagas disease, especially in Peru. Molecules produced and secreted by salivary glands and fat body are considered of important adaptational value for triatomines because, among other functions, they subvert the host haemostatic, inflammatory and immune systems and detoxify or protect them against environmental aggressors. In this context, the elucidation of the molecules produced by these tissues is highly valuable to understanding the ability of this species to adapt and transmit pathogens. Here, we use high-throughput sequencing techniques to assemble and describe the coding sequences resulting from the transcriptome of the fat body and salivary glands of P. lignarius. The final assembly of both transcriptomes together resulted in a total of 11,507 coding sequences (CDS), which were mapped from a total of 164,676,091 reads. The CDS were subdivided according to their 10 folds overexpression on salivary glands (513 CDS) or fat body (2073 CDS). Among the families of proteins found in the salivary glands, lipocalins were the most abundant. Other ubiquitous families of proteins present in other sialomes were also present in P. lignarius, including serine protease inhibitors, apyrase and antigen-5. The unique transcriptome of fat body showed proteins related to the metabolic function of this organ. Remarkably, nearly 20% of all reads mapped to transcripts coded by Triatoma virus. The data presented in this study improve the understanding on triatomines' salivary glands and fat body function and reveal important molecules used in the interplay between vectors and vertebrate hosts.


Assuntos
Corpo Adiposo/metabolismo , Panstrongylus/genética , Glândulas Salivares/metabolismo , Transcriptoma , Animais , Doença de Chagas/transmissão , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/metabolismo , Lipocalinas/genética , Panstrongylus/anatomia & histologia , Panstrongylus/metabolismo , Peru , Proteômica , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/metabolismo
19.
Genome Biol Evol ; 10(1): 249-268, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293976

RESUMO

Amphinomids, more commonly known as fireworms, are a basal lineage of marine annelids characterized by the presence of defensive dorsal calcareous chaetae, which break off upon contact. It has long been hypothesized that amphinomids are venomous and use the chaetae to inject a toxic substance. However, studies investigating fireworm venom from a morphological or molecular perspective are scarce and no venom gland has been identified to date, nor any toxin characterized at the molecular level. To investigate this question, we analyzed the transcriptomes of three species of fireworms-Eurythoe complanata, Hermodice carunculata, and Paramphinome jeffreysii-following a venomics approach to identify putative venom compounds. Our venomics pipeline involved de novo transcriptome assembly, open reading frame, and signal sequence prediction, followed by three different homology search strategies: BLAST, HMMER sequence, and HMMER domain. Following this pipeline, we identified 34 clusters of orthologous genes, representing 13 known toxin classes that have been repeatedly recruited into animal venoms. Specifically, the three species share a similar toxin profile with C-type lectins, peptidases, metalloproteinases, spider toxins, and CAP proteins found among the most highly expressed toxin homologs. Despite their great diversity, the putative toxins identified are predominantly involved in three major biological processes: hemostasis, inflammatory response, and allergic reactions, all of which are commonly disrupted after fireworm stings. Although the putative fireworm toxins identified here need to be further validated, our results strongly suggest that fireworms are venomous animals that use a complex mixture of toxins for defense against predators.


Assuntos
Anelídeos/genética , Transcriptoma , Peçonhas/genética , Animais , Cistatinas/genética , Lectinas Tipo C/genética , Lipocalinas/genética , Neurotoxinas/genética , Peptídeo Hidrolases/genética , Fosfolipases/genética , Filogenia , Serpinas/genética
20.
J Pathol ; 244(1): 84-96, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29124765

RESUMO

Endothelial cells (ECs) are a key component of the tumor microenvironment. They have abnormal characteristics compared to the ECs in normal tissues. Here, we found a marked increase in lipocalin-type prostaglandin D synthase (L-PGDS) mRNA (Ptgds) expression in ECs isolated from mouse melanoma. Immunostaining of mouse melanoma revealed expression of L-PGDS protein in the ECs. In situ hybridization also showed L-PGDS (PTGDS) mRNA expression in the ECs of human melanoma and oral squamous cell carcinoma. In vitro experiments showed that stimulation with tumor cell-derived IL-1 and TNF-α increased L-PGDS mRNA expression and its product prostaglandin D2 (PGD2 ) in human normal ECs. We also investigated the contribution of L-PGDS-PGD2 to tumor growth and vascularization. Systemic or EC-specific deficiency of L-PGDS accelerated the growth of melanoma in mice, whereas treatment with an agonist of the PGD2 receptor, DP1 (BW245C, 0.1 mg/kg, injected intraperitoneally twice daily), attenuated it. Morphological and in vivo studies showed that endothelial L-PGDS deficiency resulted in functional changes of tumor ECs such as accelerated vascular hyperpermeability, angiogenesis, and endothelial-to-mesenchymal transition (EndMT) in tumors, which in turn reduced tumor cell apoptosis. These observations suggest that tumor cell-derived inflammatory cytokines increase L-PGDS expression and subsequent PGD2 production in the tumor ECs. This PGD2 acts as a negative regulator of the tumorigenic changes in tumor ECs. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Inibidores da Angiogênese/metabolismo , Carcinoma de Células Escamosas/patologia , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Melanoma/patologia , Neoplasias/prevenção & controle , Prostaglandina D2/metabolismo , Animais , Apoptose , Permeabilidade Capilar , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Neovascularização da Córnea , Citocinas/metabolismo , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Humanos , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA