Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.015
Filtrar
1.
Life Sci ; 258: 118240, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781072

RESUMO

As a dicarboxylic acid with the structural formula HOOCCH (OH) COOH, tartronic acid is considered as an inhibitor of the transformation of carbohydrates into fat under fat-deficient diet conditions. However, the effect of tartronic acid on lipogenesis under high-fat diet conditions has yet to be established. In this work, we investigated the regulatory role of tartronic acid in lipogenesis in 3T3-L1 adipocytes and C57BL/6J mice. The results confirmed that tartronic acid promoted weight gain (without affecting food intake) and induced adipocyte hypertrophy in epididymal white adipose tissue and lipid accumulation in the livers of high-fat diet-induced obese mice. In vitro, tartronic acid promoted 3T3-L1 adipocyte differentiation by increasing the protein expression of FABP-4, PPARγ and SREBP-1. Moreover, the contents of both acetyl-CoA and malonyl-CoA were significantly upregulated by treatment with tartronic acid, while the protein expression of CPT-1ß were inhibited. In summary, we proved that tartronic acid promotes lipogenesis by serving as substrates for fatty acid synthesis and inhibiting CPT-1ß, providing a new perspective for the study of tartronic acid.


Assuntos
Acetilcoenzima A/biossíntese , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Lipogênese/efeitos dos fármacos , Malonil Coenzima A/biossíntese , Tartronatos/farmacologia , Regulação para Cima/efeitos dos fármacos , Células 3T3-L1 , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipogênese/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/fisiologia
2.
Nat Commun ; 11(1): 4056, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792483

RESUMO

Autophagy has been associated with oncogenesis with one of its emerging key functions being its contribution to the metabolism of tumors. Therefore, deciphering the mechanisms of how autophagy supports tumor cell metabolism is essential. Here, we demonstrate that the inhibition of autophagy induces an accumulation of lipid droplets (LD) due to a decrease in fatty acid ß-oxidation, that leads to a reduction of oxidative phosphorylation (OxPHOS) in acute myeloid leukemia (AML), but not in normal cells. Thus, the autophagic process participates in lipid catabolism that supports OxPHOS in AML cells. Interestingly, the inhibition of OxPHOS leads to LD accumulation with the concomitant inhibition of autophagy. Mechanistically, we show that the disruption of mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) phenocopies OxPHOS inhibition. Altogether, our data establish that mitochondria, through the regulation of MERCs, controls autophagy that, in turn finely tunes lipid degradation to fuel OxPHOS supporting proliferation and growth in leukemia.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia/metabolismo , Mitocôndrias/metabolismo , Animais , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Citometria de Fluxo , Humanos , Leucemia/genética , Leucemia Mieloide Aguda/patologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Lipogênese/fisiologia , Camundongos , Mitocôndrias/genética , Oxirredução , Fosforilação Oxidativa
3.
PLoS One ; 15(8): e0231364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804943

RESUMO

Phosphoinositides (PIPs) and their regulatory enzymes are key players in many cellular processes and are required for aspects of vertebrate development. Dysregulated PIP metabolism has been implicated in several human diseases, including a subset of skeletal myopathies that feature structural defects in the triad. The role of PIPs in skeletal muscle formation, and particularly triad biogenesis, has yet to be determined. CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) catalyzes the formation of phosphatidylinositol, which is the base of all PIP species. Loss of CDIPT should, in theory, result in the failure to produce PIPs, and thus provide a strategy for establishing the requirement for PIPs during embryogenesis. In this study, we generated cdipt mutant zebrafish and determined the impact on skeletal myogenesis. Analysis of cdipt mutant muscle revealed no apparent global effect on early muscle development. However, small but significant defects were observed in triad size, with T-tubule area, inter terminal cisternae distance and gap width being smaller in cdipt mutants. This was associated with a decrease in motor performance. Overall, these data suggest that myogenesis in zebrafish does not require de novo PIP synthesis but does implicate a role for CDIPT in triad formation.


Assuntos
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/metabolismo , Animais , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/biossíntese , Fosfatos de Inositol/metabolismo , Lipogênese , Desenvolvimento Muscular/genética , Músculos/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 40(9): 2227-2243, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640901

RESUMO

OBJECTIVE: Perivascular adipose tissue (PVAT) surrounding arteries supports healthy vascular function. During obesity, PVAT loses its vasoprotective effect. We study pathological conversion of PVAT, which involves molecular changes in protein profiles and functional changes in adipocytes. Approach and Results: C57BL6/J mice were fed a 60% high-fat diet for 12 weeks or a cardioprotective 30% calorie-restricted diet for 5 weeks. Proteomic analysis identified PVAT as a molecularly distinct adipose depot, and novel markers for thermogenic adipocytes, such as GRP75 (stress-70 protein, mitochondrial), were identified. High-fat diet increased the similarity of protein signatures in PVAT and brown adipose, suggesting activation of a conserved whitening pathway. The whitening phenotype was characterized by suppression of UCP1 (uncoupling protein 1) and increased lipid deposition, leptin, and inflammation, and specifically in PVAT, elevated Notch signaling. Conversely, PVAT from calorie-restricted mice had decreased Notch signaling and less lipid. Using the Adipoq-Cre strain, we constitutively activated Notch1 signaling in adipocytes, which phenocopied the changes in PVAT caused by a high-fat diet, even on a standard diet. Preadipocytes from mouse PVAT expressed Sca1, CD140a, Notch1, and Notch2, but not CD105, showing differences compared with preadipocytes from other depots. Inhibition of Notch signaling during differentiation of PVAT-derived preadipocytes reduced lipid deposition and adipocyte marker expression. CONCLUSIONS: PVAT shares features with other adipose depots, but has a unique protein signature that is regulated by dietary stress. Increased Notch signaling in PVAT is sufficient to initiate the pathological conversion of PVAT by promoting adipogenesis and lipid accumulation and may thus prime the microenvironment for vascular disease.


Assuntos
Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Lipogênese , Obesidade/metabolismo , Receptores Notch/metabolismo , Adipócitos Brancos/patologia , Tecido Adiposo Branco/patologia , Adiposidade , Animais , Ataxina-1/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Restrição Calórica , Dieta Hiperlipídica , Modelos Animais de Doenças , Endoglina/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/patologia , Fenótipo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Proteômica , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Notch/genética , Transdução de Sinais
5.
Bioresour Technol ; 315: 123833, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32683286

RESUMO

In this study, the cross-talk between gama-aminobutyric acid (GABA) and calcium ion (Ca2+) signalling in the regulation of lipid production and cell growth in microalgae under fulvic acid and salinity stress (FA-salinity treatment) was investigated. GABA enhanced the lipid content and lipid productivity rate considerably, which were 1.27 and 1.29 times higher than those of the control, respectively. The levels of biosynthetic gene transcription, GSH, Ca2+ and cellular GABA were promoted by GABA addition, but decreased the ROS levels. Furthermore, the application of Ca2+ also increased lipid synthesis by regulating ROS and GABA signalling and lipogenesis-related genes. These results indicated that cytosolic GABA and Ca2+ levels exert crucial cross-talk in the modulation of cell growth and lipid accumulation induced by FA-salinity treatment. Collectively, this study demonstrated the beneficial effects caused by induction of the combination of chemical compounds on lipid production and provided new insights into lipid synthesis in microalgae.


Assuntos
Cálcio , Microalgas , Aminobutiratos , Benzopiranos , Lipídeos , Lipogênese , Salinidade , Estresse Salino
6.
Clin Sci (Lond) ; 134(12): 1537-1553, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32556103

RESUMO

Hyperuricaemia (HUA) significantly increases the risk of metabolic syndrome and is strongly associated with the increased prevalence of high serum free fatty acids (FFAs) and insulin resistance. However, the underlying mechanisms are not well established, especially the effect of uric acid (UA) on adipose tissue, a vital organ in regulating whole-body energy and FFA homeostasis. In the present study, we noticed that adipocytes from the white adipose tissue of patients with HUA were hypertrophied and had decreased UCP1 expression. To test the effects of UA on adipose tissue, we built both in vitro and in vivo HUA models and elucidated that a high level of UA could induce hypertrophy of adipocytes, inhibit their hyperplasia and reduce their beige-like characteristics. According to mRNA-sequencing analysis, UA significantly decreased the expression of leptin in adipocytes, which was closely related to fatty acid metabolism and the AMPK signalling pathway, as indicated by KEGG pathway analysis. Moreover, lowering UA using benzbromarone (a uricosuric agent) or metformin-induced activation of AMPK expression significantly attenuated UA-induced FFA metabolism impairment and adipose beiging suppression, which subsequently alleviated serum FFA elevation and insulin resistance in HUA mice. Taken together, these observations confirm that UA is involved in the aetiology of metabolic abnormalities in adipose tissue by regulating leptin-AMPK pathway, and metformin could lessen HUA-induced serum FFA elevation and insulin resistance by improving adipose tissue function via AMPK activation. Therefore, metformin could represent a novel treatment strategy for HUA-related metabolic disorders.


Assuntos
Adipócitos/patologia , Tecido Adiposo Bege/patologia , Tecido Adiposo Branco/patologia , Ácidos Graxos não Esterificados/sangue , Hiperuricemia/sangue , Hiperuricemia/tratamento farmacológico , Resistência à Insulina , Metformina/uso terapêutico , Células 3T3-L1 , Adenilato Quinase/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Adulto , Animais , Ativação Enzimática , Feminino , Humanos , Hipertrofia , Leptina/metabolismo , Lipogênese , Lipólise , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transdução de Sinais , Triglicerídeos/metabolismo , Ácido Úrico/sangue
7.
Arch Biochem Biophys ; 689: 108440, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485154

RESUMO

Iron is essential for all the lives on earth but may trigger a switch toward ferroptosis, a novel form of regulated necrosis. Carbonic anhydrases (CAs) are ubiquitous enzymes from microbes to humans. The primary function of CAs is to regulate cellular pH by hydrating carbon dioxide (CO2) to protons (H+) and bicarbonate ions (HCO3-). Furthermore, CAs play roles in biosynthetic reactions, such as gluconeogenesis, lipogenesis, ureagenesis and are also associated with tumor metabolism, suggesting that CAs may be a potential target for the treatment of cancers. We have recently revealed a novel function of CA IX in ferroptosis-resistance by using human malignant mesothelioma cells. Herein, we aim to review the potential molecular association between ferroptosis and CAs, from the viewpoint of iron-metabolism, lipogenesis and signaling pathways both under physiological and pathological contexts.


Assuntos
Anidrases Carbônicas/metabolismo , Ferroptose , Animais , Humanos , Ferro/metabolismo , Lipogênese , Neoplasias/metabolismo , Transdução de Sinais
8.
PLoS Med ; 17(6): e1003102, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32530938

RESUMO

BACKGROUND: De novo lipogenesis (DNL) is the primary metabolic pathway synthesizing fatty acids from carbohydrates, protein, or alcohol. Our aim was to examine associations of in vivo levels of selected fatty acids (16:0, 16:1n7, 18:0, 18:1n9) in DNL with incidence of type 2 diabetes (T2D). METHODS AND FINDINGS: Seventeen cohorts from 12 countries (7 from Europe, 7 from the United States, 1 from Australia, 1 from Taiwan; baseline years = 1970-1973 to 2006-2010) conducted harmonized individual-level analyses of associations of DNL-related fatty acids with incident T2D. In total, we evaluated 65,225 participants (mean ages = 52.3-75.5 years; % women = 20.4%-62.3% in 12 cohorts recruiting both sexes) and 15,383 incident cases of T2D over the 9-year follow-up on average. Cohort-specific association of each of 16:0, 16:1n7, 18:0, and 18:1n9 with incident T2D was estimated, adjusted for demographic factors, socioeconomic characteristics, alcohol, smoking, physical activity, dyslipidemia, hypertension, menopausal status, and adiposity. Cohort-specific associations were meta-analyzed with an inverse-variance-weighted approach. Each of the 4 fatty acids positively related to incident T2D. Relative risks (RRs) per cohort-specific range between midpoints of the top and bottom quintiles of fatty acid concentrations were 1.53 (1.41-1.66; p < 0.001) for 16:0, 1.40 (1.33-1.48; p < 0.001) for 16:1n-7, 1.14 (1.05-1.22; p = 0.001) for 18:0, and 1.16 (1.07-1.25; p < 0.001) for 18:1n9. Heterogeneity was seen across cohorts (I2 = 51.1%-73.1% for each fatty acid) but not explained by lipid fractions and global geographical regions. Further adjusted for triglycerides (and 16:0 when appropriate) to evaluate associations independent of overall DNL, the associations remained significant for 16:0, 16:1n7, and 18:0 but were attenuated for 18:1n9 (RR = 1.03, 95% confidence interval (CI) = 0.94-1.13). These findings had limitations in potential reverse causation and residual confounding by imprecisely measured or unmeasured factors. CONCLUSIONS: Concentrations of fatty acids in the DNL were positively associated with T2D incidence. Our findings support further work to investigate a possible role of DNL and individual fatty acids in the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos/metabolismo , Lipogênese , Idoso , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Ácidos Graxos/sangue , Feminino , Humanos , Incidência , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Estudos Prospectivos
9.
Viruses ; 12(6)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532085

RESUMO

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signals an urgent need for an expansion in treatment options. In this study, we investigated the anti-SARS-CoV-2 activities of 22 antiviral agents with known broad-spectrum antiviral activities against coronaviruses and/or other viruses. They were first evaluated in our primary screening in VeroE6 cells and then the most potent anti-SARS-CoV-2 antiviral agents were further evaluated using viral antigen expression, viral load reduction, and plaque reduction assays. In addition to remdesivir, lopinavir, and chloroquine, our primary screening additionally identified types I and II recombinant interferons, 25-hydroxycholesterol, and AM580 as the most potent anti-SARS-CoV-2 agents among the 22 antiviral agents. Betaferon (interferon-ß1b) exhibited the most potent anti-SARS-CoV-2 activity in viral antigen expression, viral load reduction, and plaque reduction assays among the recombinant interferons. The lipogenesis modulators 25-hydroxycholesterol and AM580 exhibited EC50 at low micromolar levels and selectivity indices of >10.0. Combinational use of these host-based antiviral agents with virus-based antivirals to target different processes of the SARS-CoV-2 replication cycle should be evaluated in animal models and/or clinical trials.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Animais , Antígenos Virais/imunologia , Betacoronavirus/imunologia , Betacoronavirus/metabolismo , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Humanos , Interferons/metabolismo , Lipogênese/efeitos dos fármacos , Pandemias , Pneumonia Viral/virologia , Transdução de Sinais/efeitos dos fármacos , Células Vero , Carga Viral/efeitos dos fármacos , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
10.
Life Sci ; 256: 117997, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32585242

RESUMO

AIMS: Non-alcoholic fatty liver disease (NAFLD) characterized by excessive hepatic fat deposition is an increasing public health issue worldwide. Insulin resistance is a pivotal factor in NAFLD progression. Studies have found that IGFBP5 was related to insulin sensitivity. Nevertheless, the role of IGFBP5 in NAFLD remains unclear. MATERIALS AND METHODS: NAFLD models were established in vitro and in vivo by treating HepG2 cells with free fatty acids (FFA) and feeding mice with high-fat diet (HFD), respectively. IGFBP5 expression was then analyzed in these models. The effects and mechanism of IGFBP5 on lipid lipogenesis, fatty acid ß-oxidation, and insulin resistance were investigated following IGFBP5 overexpression. Additionally, AMPK inhibitor compound C was used to treat HepG2 cells to confirm whether IGFBP5 functioned via activating AMPK pathway. KEY FINDINGS: IGFBP5 expression was decreased in both NAFLD models. IGFBP5 overexpression reduced levels of lipogenesis-associated proteins (SREBP-1c, FAS and ACC1), elevated expression of fatty acid ß-oxidation-related genes (PPARα, CPT1A and ACOX1), decreased intracellular lipid droplets, promoted glucose uptake and glycogenesis, and activated IRS1/Akt and AMPK pathways. Administration of IGFBP5 vectors also decreased body weight and relieved liver damage in HFD-treated mice. In contrast, compound C abrogated the influences of IGFBP5 overexpression on cell models. SIGNIFICANCE: IGFBP5 dampened hepatic lipid accumulation and insulin resistance in NAFLD development via activating AMPK pathway. This study indicates that IGFBP5 may be a novel therapeutic agent for NAFLD.


Assuntos
Resistência à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Metabolismo dos Lipídeos/genética , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Transporte/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/administração & dosagem , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Lipogênese/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética
11.
Life Sci ; 256: 118012, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32593710

RESUMO

AIMS: Bisphenol (BP)-A exposure can impair glucose and lipid metabolism. However, it is unclear whether this endocrine disruptor (ED) modulates these processes in postmenopause, a period with organic changes that increase the risk for metabolic diseases. Herein, we evaluated the effects of BPA exposure on adiposity, glucose homeostasis and hepatic steatosis in ovariectomized (OVX) mice fed on a high-fat diet (HFD). MAIN METHODS: Adult Swiss female mice were OVX and submitted to a normolipidic diet or HFD and drinking water without [control (OVX CTL) and OVX HFD groups, respectively] or with 1 µg/mL BPA (OVX CBPA and OVX HBPA groups, respectively), for 3 months. KEY FINDINGS: OVX HFD females displayed increased adiposity, glucose intolerance, insulin resistance and moderate hepatic steatosis. This effect was associated with a high hepatic expression of genes involved in lipogenesis (Srebf1 and Scd1), ß-oxidation (Cpt1a) and endoplasmic reticulum (ER) stress (Hspa5 and Hyou1). BPA did not alter adiposity or glucose homeostasis disruptions induced by HFD. However, this ED triggered severe steatosis, exacerbating hepatic fat and collagen depositions in OVX HBPA, in association with a reduction in Mttp mRNA, and up-regulation of genes involved in ß-oxidation (Acox1 and Acadvl), mitochondrial uncoupling (Ucp2), ER stress (Hyou1 and Atf6) and chronic liver injury (Tgfb1and Casp8). Furthermore, BPA caused mild steatosis in OVX CBPA females, increasing the hepatic total lipids and mRNAs for Srebf1, Scd1, Hspa5, Hyou1 and Atf6. SIGNIFICANCE: BPA aggravated hepatic steatosis in OVX mice. Especially when combined with a HFD, BPA caused NAFLD progression, which was partly mediated by chronic ER stress and the TGF-ß1 pathway.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Fenóis/toxicidade , Adiposidade/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Glucose/metabolismo , Resistência à Insulina , Lipogênese/efeitos dos fármacos , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Ovariectomia
12.
Chemosphere ; 258: 127360, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32554016

RESUMO

Environmental pollutants are thought to be a risk factor for the prevalence of hepatic steatosis. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, and human exposure is inevitable. In the present study, phenanthrene (Phe) was used as a representative PAH to investigate the effects of in utero exposure to PAH on hepatic lipid metabolism and the toxicological mechanism involved. Pregnant mice (C57BL/6J) were orally administered Phe (0, 60, 600 and 6000 µg kg-1 body weight) once every 3 days with 6 doses in total. F1 female mice aged 125 days showed significantly elevated hepatic lipid levels in the liver. The protein expression of hepatic peroxisome proliferator-activated receptors (PPARß and PPARγ) and retinoid X receptors (RXRs) was upregulated; the transcription of genes related to lipogenesis, such as srebp1 (encoding sterol regulatory element binding proteins), acca (acetyl-CoA carboxylase), fasn (fatty acid synthase) and pcsk9 (proprotein convertase subtilisin/kexin type 9), showed an upregulation, while the mRNA levels of the lipolysis gene lcat (encoding lecithin cholesterol acyl transferase) were downregulated. These results could be responsible for lipid accumulation. The promoter methylation levels of pparγ were reduced and were the lowest in the 600 µg kg-1 group, and the promoter methylation levels of lcat were significantly increased in all the Phe treatments. These changes were matched with the alterations in their mRNA levels, suggesting that prenatal Phe exposure could induce abnormal lipid metabolism in later life via epigenetic modification.


Assuntos
Poluentes Ambientais/toxicidade , Epigênese Genética/efeitos dos fármacos , Fígado Gorduroso/virologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenantrenos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/virologia , Idoso de 80 Anos ou mais , Animais , Fígado Gorduroso/embriologia , Fígado Gorduroso/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos/genética , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Lipólise/efeitos dos fármacos , Lipólise/genética , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Transcrição Genética/genética
13.
Metabolism ; 108: 154261, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32407726

RESUMO

BACKGROUND: Fibronectin type IIIdomain-containing protein 4 (FNDC4) constitutes a secreted factor showing a high homology in the fibronectin type III and transmembrane domains with the exercise-associated myokine irisin (FNDC5). We sought to evaluate whether FNDC4 mimics the anti-obesity effects of FNDC5/irisin in human adipose tissue. METHODS: Plasma and adipose tissue samples of 78 patients with morbid obesity undergoing bariatric surgery and 26 normal-weight individuals were used in the present study. RESULTS: Plasma FNDC4 was decreased in patients with morbid obesity, related to obesity-associated systemic inflammation and remained unchanged six months after bariatric surgery. Visceral adipose tissue from patients with morbid obesity showed higher expression of FNDC4 and its putative receptor GPR116 regardless of the degree of insulin resistance. FNDC4 content was regulated by lipogenic, lipolytic and proinflammatory stimuli in human visceral adipocytes. FNDC4 reduced intracytosolic lipid accumulation and stimulated a brown-like pattern in human adipocytes, as evidenced by an upregulated expression of UCP-1 and the brown/beige adipocyte markers PRDM16, TMEM26 and CD137. Moreover, FNDC4 treatment upregulated mitochondrial DNA content and factors involved in mitochondrial biogenesis (TFAM, NRF1 and NRF2). Human FNDC4-knockdown adipocytes exhibited an increase in lipogenesis and a reduction of brown/beige-specific fat markers as well as factors involved in mitochondrial biogenesis. CONCLUSIONS: Taken together, the novel adipokine FNDC4 reduces lipogenesis and increases fat browning in human visceral adipocytes. The upregulation of FNDC4 in human visceral fat might constitute an attempt to attenuate the adipocyte hypertrophy, inflammation and impaired beige adipogenesis in the obese state.


Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Tecido Adiposo Marrom/metabolismo , Lipogênese/fisiologia , Proteínas/metabolismo , Adipócitos Bege/metabolismo , Células Cultivadas , Estudos Transversais , Feminino , Humanos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Gordura Intra-Abdominal/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas-G/metabolismo , Proteína Desacopladora 1/metabolismo , Regulação para Cima/fisiologia
14.
Nature ; 580(7804): 530-535, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322062

RESUMO

Cancer cells increase lipogenesis for their proliferation and the activation of sterol regulatory element-binding proteins (SREBPs) has a central role in this process. SREBPs are inhibited by a complex composed of INSIG proteins, SREBP cleavage-activating protein (SCAP) and sterols in the endoplasmic reticulum. Regulation of the interaction between INSIG proteins and SCAP by sterol levels is critical for the dissociation of the SCAP-SREBP complex from the endoplasmic reticulum and the activation of SREBPs1,2. However, whether this protein interaction is regulated by a mechanism other than the abundance of sterol-and in particular, whether oncogenic signalling has a role-is unclear. Here we show that activated AKT in human hepatocellular carcinoma (HCC) cells phosphorylates cytosolic phosphoenolpyruvate carboxykinase 1 (PCK1), the rate-limiting enzyme in gluconeogenesis, at Ser90. Phosphorylated PCK1 translocates to the endoplasmic reticulum, where it uses GTP as a phosphate donor to phosphorylate INSIG1 at Ser207 and INSIG2 at Ser151. This phosphorylation reduces the binding of sterols to INSIG1 and INSIG2 and disrupts the interaction between INSIG proteins and SCAP, leading to the translocation of the SCAP-SREBP complex to the Golgi apparatus, the activation of SREBP proteins (SREBP1 or SREBP2) and the transcription of downstream lipogenesis-related genes, proliferation of tumour cells, and tumorigenesis in mice. In addition, phosphorylation of PCK1 at Ser90, INSIG1 at Ser207 and INSIG2 at Ser151 is not only positively correlated with the nuclear accumulation of SREBP1 in samples from patients with HCC, but also associated with poor HCC prognosis. Our findings highlight the importance of the protein kinase activity of PCK1 in the activation of SREBPs, lipogenesis and the development of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Gluconeogênese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipogênese , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/patologia , Proliferação de Células , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Membrana/química , Camundongos , Camundongos Nus , Oxisteróis/metabolismo , Fosforilação , Prognóstico , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
15.
Metabolism ; 107: 154222, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246987

RESUMO

Fructose over-consumption contributes to the development of liver steatosis in part by stimulating ChREBPα-driven de novo lipogenesis. However, the mechanisms by which fructose activates ChREBP pathway remain largely undefined. Here we performed affinity purification of ChREBPα followed by mass spectrometry and identified DDB1 as a novel interaction protein of ChREBPα in the presence of fructose. Depletion and overexpression of Ddb1 showed opposite effects on the ChREBPα stability in hepatocytes. We next tested the impact of hepatic Ddb1 deficiency on the fructose-induced ChREBP pathway. After 3-week high-fructose diet feeding, both Ddb1 liver-specific knockout and AAV-TBG-Cre-injected Ddb1flox/flox mice showed significantly reduced ChREBPα, lipogenic enzymes, as well as triglycerides in the liver. Mechanistically, DDB1 stabilizes ChREBPα through CRY1, a known ubiquitination target of DDB1 E3 ligase. Finally, overexpression of a degradation-resistant CRY1 mutant (CRY1-585KA) reduces ChREBPα and its target genes in the mouse liver following high-fructose diet feeding. Our data revealed DDB1 as an intracellular sensor of fructose intake to promote hepatic de novo lipogenesis and liver steatosis by stabilizing ChREBPα in a CRY1-dependent manner.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Criptocromos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Carboidratos da Dieta/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Frutose/farmacologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Membrana/metabolismo , Animais , Hepatócitos/metabolismo , Proteínas Imediatamente Precoces/genética , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Cultura Primária de Células , Ubiquitinação
16.
Nat Commun ; 11(1): 1891, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312974

RESUMO

Hepatic steatosis is associated with poor cardiometabolic health, with de novo lipogenesis (DNL) contributing to hepatic steatosis and subsequent insulin resistance. Hepatic saturated fatty acids (SFA) may be a marker of DNL and are suggested to be most detrimental in contributing to insulin resistance. Here, we show in a cross-sectional study design (ClinicalTrials.gov ID: NCT03211299) that we are able to distinguish the fractions of hepatic SFA, mono- and polyunsaturated fatty acids in healthy and metabolically compromised volunteers using proton magnetic resonance spectroscopy (1H-MRS). DNL is positively associated with SFA fraction and is elevated in patients with non-alcoholic fatty liver and type 2 diabetes. Intriguingly, SFA fraction shows a strong, negative correlation with hepatic insulin sensitivity. Our results show that the hepatic lipid composition, as determined by our 1H-MRS methodology, is a measure of DNL and suggest that specifically the SFA fraction may hamper hepatic insulin sensitivity.


Assuntos
Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Lipogênese/fisiologia , Fígado/metabolismo , Tecido Adiposo , Adulto , Idoso , Estudos Transversais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Lipídeos , Fígado/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo
17.
Environ Pollut ; 263(Pt B): 114420, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32244122

RESUMO

Lipid metabolism could be used as a biomarker for environmental monitoring of metal pollution, including Cu. Given the potential role of the Wnt/ß-catenin signaling pathway and acetylation in lipid metabolism, the aim of this study was to investigate the mechanism of Wnt signaling and acetylation mediating Cu-induced lipogenesis. Grass carp Ctenopharyngodon idella, widely distributed freshwater teleost, were used as the model. We found that waterborne Cu exposure increased the accumulation of Cu and lipid, up-regulated lipogenesis, suppressed Wnt signaling, reduced ß-catenin protein level and its nuclear location, reduced the sirt1 mRNA levels and up-regulated the ß-catenin acetylation level. Further investigation found that Cu up-regulated lipogenesis through Wnt/ß-catenin pathway; Cu regulated the ß-catenin acetylation, and K311 was the key acetylated residue after Cu incubation. SIRT1 mediated Cu-induced changes of acetylated ß-catenin and played an essential role in nuclear accumulation of ß-catenin and Cu-induced lipogenesis. Cu facilitated lipid accumulation via the regulation of Wnt pathway by SIRT1. For the first time, our study uncovered the novel mechanism for Wnt/ß-catenin pathway and ß-catenin acetylation levels mediating Cu-induced lipid deposition, which provided insights into the association between Cu exposure and lipid metabolism in fish and had important environmental implications for monitoring metal pollution in the water by using new biomarkers involved in lipid metabolism.


Assuntos
Carpas , beta Catenina , Acetilação , Animais , Lipídeos , Lipogênese , Via de Sinalização Wnt
18.
Nat Rev Urol ; 17(4): 214-231, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32112053

RESUMO

Anabolic metabolism mediated by aberrant growth factor signalling fuels tumour growth and progression. The first biochemical descriptions of the altered metabolic nature of solid tumours were reported by Otto Warburg almost a century ago. Now, the study of tumour metabolism is being redefined by the development of new molecular tools, tumour modelling systems and precise instrumentation together with important advances in genetics, cell biology and spectroscopy. In contrast to Warburg's original hypothesis, accumulating evidence demonstrates a critical role for mitochondrial metabolism and substantial variation in the way in which different tumours metabolize nutrients to generate biomass. Furthermore, computational and experimental approaches suggest a dominant influence of the tissue-of-origin in shaping the metabolic reprogramming that enables tumour growth. For example, the unique metabolic properties of prostate adenocarcinoma are likely to stem from the distinct metabolism of the prostatic epithelium from which it emerges. Normal prostatic epithelium employs comparatively glycolytic metabolism to sustain physiological citrate secretion, whereas prostate adenocarcinoma consumes citrate to power oxidative phosphorylation and fuel lipogenesis, enabling tumour progression through metabolic reprogramming. Current data suggest that the distinct metabolic aberrations in prostate adenocarcinoma are driven by the androgen receptor, providing opportunities for functional metabolic imaging and novel therapeutic interventions that will be complementary to existing diagnostic and treatment options.


Assuntos
Adenocarcinoma/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Proliferação de Células , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Glicólise , Humanos , Lipogênese , Masculino , Redes e Vias Metabólicas , Fosforilação Oxidativa , Microambiente Tumoral
19.
PLoS One ; 15(3): e0229864, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155177

RESUMO

BACKGROUND & AIM: Accumulated evidence indicates that the elevation of lipid metabolism is an essential step in colorectal cancer (CRC) development, and analysis of the key lipogenic mediators may lead to identifying the new clinically useful prognostic gene signatures. METHODS: The expression pattern of 61 lipogenic genes was assessed between CRC tumors and matched adjacent normal tissues in a training set (n = 257) with the Mann-Whitney U test. Cox's proportional hazards model and the Kaplan-Meier method were used to identifying a lipogenic-biomarkers signature associated with the prognosis of CRC. The biomarkers signature was then confirmed in two independent validation groups, including a set of 223 CRC samples and an additional set of 203 COAD profiles retrieving from the Cancer Genome Atlas (TCGA). RESULTS: Five genes, including ACOT8, ACSL5, FASN, HMGCS2, and SCD1, were significantly enhanced in CRC tumors. Using the cutoff value 0.493, the samples were classified into high risk and low risk. The AUC of panel for discriminating of all, early (I-II stages), and advanced CRC (III-IV stages) were 0.8922, 0.8446, and 0.9162 (Training set), along with 0.8800, 0.8205, and 0.7351 (validation set I), and 0.9071, 0.8946, and 0.9107 (Validation set II), respectively. There was a reverse correlation between the high predicted point of panel and worse OS of CRC patients in training set (HR (95% CI): 0.1096 (0.07089-0.1694), P < 0.001), validation set I (HR (95% CI): 0.3350 (0.2116-0.5304), P < 0.001), and validation set II (HR (95% CI): 0.1568 (0.1090-0.2257), P < 0.001). CONCLUSION: Our study showed that the panel of ACOT8/ACSL5/FASN/HMGBCS2/SCD1 genes had a better prognostic performance than validated clinical risk scales and is applicable for early detection of CRC and tumor recurrence.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Perfilação da Expressão Gênica/métodos , Lipogênese/genética , Recidiva Local de Neoplasia/diagnóstico , Adulto , Idoso , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Valor Preditivo dos Testes , Prognóstico , Curva ROC
20.
Electron. j. biotechnol ; 44: 60-68, Mar. 2020. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1087705

RESUMO

Background: Oleaginous yeasts can be grown on different carbon sources, including lignocellulosic hydrolysate containing a mixture of glucose and xylose. However, not all yeast strains can utilize both the sugars for lipogenesis. Therefore, in this study, efforts were made to isolate dual sugar-utilizing oleaginous yeasts from different sources. Results: A total of eleven isolates were obtained, which were screened for their ability to utilize various carbohydrates for lipogenesis. One promising yeast isolate Trichosporon mycotoxinivorans S2 was selected based on its capability to use a mixture of glucose and xylose and produce 44.86 ± 4.03% lipids, as well as its tolerance to fermentation inhibitors. In order to identify an inexpensive source of sugars, nondetoxified paddy straw hydrolysate (saccharified with cellulase), supplemented with 0.05% yeast extract, 0.18% peptone, and 0.04% MgSO4 was used for growth of the yeast, resulting in a yield of 5.17 g L−1 lipids with conversion productivity of 0.06 g L−1 h−1 . Optimization of the levels of yeast extract, peptone, and MgSO4 for maximizing lipid production using Box­Behnken design led to an increase in lipid yield by 41.59%. FAME analysis of single cell oil revealed oleic acid (30.84%), palmitic acid (18.28%), and stearic acid (17.64%) as the major fatty acids. Conclusion: The fatty acid profile illustrates the potential of T. mycotoxinivorans S2 to produce single cell oil as a feedstock for biodiesel. Therefore, the present study also indicated the potential of selected yeast to develop a zero-waste process for the complete valorization of paddy straw hydrolysate without detoxification


Assuntos
Trichosporon/metabolismo , Oryza , Xilose/isolamento & purificação , Trichosporon/química , Óleos/química , Lipogênese , Biocombustíveis , Fermentação , Glucose/isolamento & purificação , Hidrólise , Lignina/metabolismo , Lipídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA