Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81.909
Filtrar
1.
ACS Chem Neurosci ; 12(18): 3387-3396, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469122

RESUMO

Quercitrin (Qc) is a well-known flavonoid compound that exerts anti-inflammation effects on various diseases. The present study aimed to investigate the antidepressant-like response of Qc and its underlying mechanisms concerning neuroinflammation and neuroplasticity in mice with lipopolysaccharide (LPS)-induced depression-like behaviors. The results showed a single dose of Qc (10 mg/kg) produced an antidepressant-like effect at 2 h postadministration and lasted for at least 3 days. The expressions of neuroplasticity signaling molecules of pCREB/BDNF/PSD95/Synapsin1 were upregulated at 2 h, and ERK signaling was upregulated for 3 days in the hippocampus after a single administration of Oc or ketamine. A 5-day treatment of LPS led to depression-like behaviors, including reduced sucrose preference and increased immobility in the tail suspension test or forced swim test, which were all reversed by a single dose of Qc. In LPS-treated mice, Qc reduced the levels of inflammation-related factors including IL-10, IL-1ß, and TNF-α in serum, as well as the activations of PI3K/AKT/NF-κB and MEK/ERK pathways in the hippocampus. Moreover, Qc restored the expressions of pCREB/BDNF/PSD95/Synapsin1 signaling in the hippocampus that were impaired by LPS. LY294002, a PI3K inhibitor, but not PD98059, a MEK inhibitor, produced effects similar to Qc. LY294002 also restored the expressions of pCREB/BDNF/PSD95/Synapsin1 signaling in the hippocampus impaired by LPS. Additionally, subeffective doses of Qc and LY294002 induced behavioral and molecular synergism. Together, the depression-like behaviors in LPS-treated mice were alleviated by a single dose of Qc likely via inhibition of the activations PI3K/AKT/NF-κB inflammation signaling and subsequent improvement of neuroplasticity.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Hipocampo/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/análogos & derivados
2.
Mol Syst Biol ; 17(9): e10426, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34486798

RESUMO

Although 15-20% of COVID-19 patients experience hyper-inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein substantially induces multiple inflammatory molecules in myeloid cells and human PBMCs. Using a combination of phenotypic screening with machine learning-based modeling, we identified and experimentally validated several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD-induced cytokine production, implicating the role of multiple signaling pathways in cytokine release. Further, we found several FDA-approved drugs, including ponatinib, and cobimetinib as potent inhibitors of the NTD-mediated cytokine release. Treatment with ponatinib outperforms other drugs, including dexamethasone and baricitinib, inhibiting all cytokines in response to the NTD from SARS-CoV-2 and emerging variants. Finally, ponatinib treatment inhibits lipopolysaccharide-mediated cytokine release in myeloid cells in vitro and lung inflammation mouse model. Together, we propose that agents targeting multiple kinases required for SARS-CoV-2-mediated cytokine release, such as ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID-19.


Assuntos
Antivirais/farmacologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Animais , Azetidinas/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Janus Quinase 1/metabolismo , Lipopolissacarídeos/toxicidade , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/virologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Pirazóis/farmacologia , Piridazinas/farmacologia , Células RAW 264.7 , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Sulfonamidas/farmacologia
3.
Shanghai Kou Qiang Yi Xue ; 30(3): 225-231, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34476435

RESUMO

PURPOSE: To explore the effects of eicosapentaenoic acid (EPA) on biological activity and inflammatory factor expression of human gingival fibroblasts (HGFs). METHODS: The effects of EPA on the activity, morphology and cell cycle of HGFs were observed by living and dead cell staining, immunofluorescence staining and flow cytometry, respectively. HGFs were stimulated by lipopolysaccharides (LPS) of Porphyromonas gingivalis (P. gingivalis) or heat inactivated P. gingivalis, after which the effects of EPA on mRNA and protein expression of IL-6, IL-8 and IL-1ß were observed by real-time PCR and ELISA, respectively. The gene and protein expression of heme oxygenase-1(HO-1) was also detected by real-time PCR and Western blotting, respectively. The data were analyzed with SPSS 22.0 software package. RESULTS: 200 µmol/L EPA inhibited cell activity of HGFs; 100 µmol/L EPA did not affect cell activity and morphology of HGFs, and had no significant effect on cell cycle (P>0.05). EPA significantly downregulated gene expression of IL-6 and IL-1ß, and protein expression of IL-6 stimulated by P. gingivalis LPS and heat-killed P.gingivalis(P<0.05), in a dose-dependent manner. EPA increased gene expression of HO-1 in a dose dependent manner(P<0.05), and upregulated HO-1 protein expression. CONCLUSIONS: EPA significantly inhibits the expression of inflammatory factors without affecting the biological activity of HGFs, which may be related to the induction of HO-1, suggesting the potential role of EPA in the prevention and treatment of periodontitis.


Assuntos
Ácido Eicosapentaenoico , Gengiva , Células Cultivadas , Ácido Eicosapentaenoico/farmacologia , Fibroblastos , Humanos , Lipopolissacarídeos , Porphyromonas gingivalis
4.
Shanghai Kou Qiang Yi Xue ; 30(3): 232-236, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34476436

RESUMO

PURPOSE: To explore whether resveratrol dependents on the production of suppressor of cytokine signaling suppressor 3 (SOCS-3) in inhibiting mRNA production of macrophage inflammatory protein-2 (MIP-2) in osteoblasts induced by lipopolysaccharides(LPS) extracted from Porphyromonas endodontalis(P.e). METHODS: MC3T3-E1 cells were treated with different concentrations of resveratrol (0, 5, 10 and 20 µmol/L) and 20 µmol/L resveratrol for different time( 0, 10, 30, 60, 120 and 180 min). The expression of SOCS-3 protein was detected by Western blot. MC3T3-E1 cells were transfected with mouse SOCS3 siRNA (si-SOCS-3) and control siRNA(si-control). Reverse transcription real-time PCR(real-time RT-PCR) and Western blot was used to detect the silencing efficiency of SOCS-3. Cells were stimulated by 20 µg/mL P.e-LPS for 24 h after transfection, in the absence or presence of 20 µmol/L resveratrol for 1 h , and the changes of MIP-2 mRNA were determined by real-time RT-PCR. Statistical analysis was performed using one-way ANOVA and Dunnett t test with SPSS 13.0 software package. RESULTS: Treatment of MC3T3-El cells with different concentrations of resveratrol caused a significant increase in SOCS-3 protein expression in a dose-dependent manner. During the observation time of 180 min, SOCS-3 protein expression was the highest at 20 µmol/L resveratrol-treated osteoblasts for 60 min. The silencing efficiency of SOCS-3 mRNA was 63.7%. Transfection with SOCS-3 siRNA increased MIP-2 mRNA expression in LPS-stimulated MC3T3-E1 cells and negated the inhibitory effects of resveratrol on LPS-induced MIP-2 mRNA expression(P<0.05). CONCLUSIONS: Resveratrol inhibits the expression of MIP-2 mRNA in osteoblasts induced by P.e-LPS by up-regulating the expression of SOCS-3 protein.


Assuntos
Lipopolissacarídeos , Porphyromonas endodontalis , Animais , Lipopolissacarídeos/farmacologia , Camundongos , Osteoblastos , RNA Mensageiro , Resveratrol/farmacologia
5.
Chemosphere ; 282: 131149, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470174

RESUMO

Formaldehyde (FA) is widely used in chemical industry, which is also known as a common indoor air pollutant. Exposure of FA has been associated with multiple detrimental health effects. Our previous study showed that FA could inhibit the development of T lymphocytes in mice, leading to impaired immune functions. Macrophages are important innate immune cells which trigger inflammatory responses in tissues. In the present study, FA exposure at 2.0 mg/m3 was found to enhance the pro-inflammatory responses of macrophages in male BALB/c mice, which was confirmed by elevated pro-inflammatory cytokine release and NO secretion in macrophages isolated from the FA-exposed mice and in vitro macrophage models upon lipopolysaccharide stimulation. Glycolysis is the key metabolic process for the classical activation of macrophages, which was found to be elevated in the in vitro macrophage models treated with FA at 50 and 100 µM concentrations for 18 h. HIF-1α and the associated proteins in its signaling cascade, which are known to mediate glycolytic metabolism and inflammatory responses, were found to be upregulated by 50 and 100 µM FA in THP-1 derived and RAW264.7 macrophage models, and the enhanced pro-inflammatory responses induced by 100 µM FA were reversed by inhibitory compounds interfering with glucose metabolism or suppressing HIF-1α activity. Collectively, the results in this study revealed that FA could enhance the pro-inflammatory responses of macrophages through the induction of glycolysis, which outlined the FA-triggered metabolic and functional alterations in immune cells.


Assuntos
Glicólise , Macrófagos , Animais , Formaldeído/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C
6.
Ann Palliat Med ; 10(8): 8827-8836, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488371

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) is one of the main causes of myocardial injury. Dioscin has a protective effect on myocardial injury induced by LPS; however, the biological function and mechanism remain unclear. The purpose of this study was to investigate the effect of dioscin on myocardial injury induced by LPS. METHODS: The myocardial injury model was constructed through LPS treatment of primary rat cardiomyocytes. Cardiomyocytes were treated with different concentrations of dioscin (50, 100, and 200 ng/mL). MTT was used to detect the activity of cardiomyocytes; flow cytometry and TUNEL assay were used to detect apoptosis; and enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). The release of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) was detected according to the kit instructions. The levels of apoptosis-related proteins (Bax, caspase-3, and Bcl 2) and the Nrf2-Keap1 pathway proteins were detected by western blot. RESULTS: Dioscin significantly reduced LPS-induced cardiomyocyte injury in neonatal rats in a concentration- and time-dependent manner. Dioscin also significantly inhibited cardiomyocyte inflammation and apoptosis induced by LPS. With the increase of dioscin concentration, reactive oxygen species (ROS) and MDA were downregulated, and SOD and GSH were upregulated. Moreover, dioscin inhibited LPS-induced myocardial injury by inhibiting the Nrf2-Keap1 pathway. CONCLUSIONS: Our study suggests that dioscin attenuates LPS-induced myocardial injury through oxidative stress-related pathways.


Assuntos
Lipopolissacarídeos , Fator 2 Relacionado a NF-E2 , Animais , Diosgenina/análogos & derivados , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos
7.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445410

RESUMO

Development of novel therapeutics to treat antibiotic-resistant infections, especially those caused by ESKAPE pathogens, is urgent. One of the most critical pathogens is P. aeruginosa, which is able to develop a large number of factors associated with antibiotic resistance, including high level of impermeability. Gram-negative bacteria are protected from the environment by an asymmetric Outer Membrane primarily composed of lipopolysaccharides (LPS) at the outer leaflet and phospholipids in the inner leaflet. Based on a large hemi-synthesis program focusing on amphiphilic aminoglycoside derivatives, we extend the antimicrobial activity of 3',6-dinonyl neamine and its branched isomer, 3',6-di(dimethyloctyl) neamine on clinical P. aeruginosa, ESBL, and carbapenemase strains. We also investigated the capacity of 3',6-homodialkyl neamine derivatives carrying different alkyl chains (C7-C11) to interact with LPS and alter membrane permeability. 3',6-Dinonyl neamine and its branched isomer, 3',6-di(dimethyloctyl) neamine showed low MICs on clinical P. aeruginosa, ESBL, and carbapenemase strains with no MIC increase for long-duration incubation. In contrast from what was observed for membrane permeability, length of alkyl chains was critical for the capacity of 3',6-homodialkyl neamine derivatives to bind to LPS. We demonstrated the high antibacterial potential of the amphiphilic neamine derivatives in the fight against ESKAPE pathogens and pointed out some particular characteristics making the 3',6-dinonyl- and 3',6-di(dimethyloctyl)-neamine derivatives the best candidates for further development.


Assuntos
Compostos Alílicos/farmacologia , Antibacterianos/farmacologia , Framicetina/química , Bactérias Gram-Negativas/crescimento & desenvolvimento , Lipopolissacarídeos/metabolismo , Compostos Alílicos/síntese química , Compostos Alílicos/química , Antibacterianos/síntese química , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo
8.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445416

RESUMO

The antioxidant and anti-inflammatory potentials of polyphenols contained in Gynura procumbens (GP) extract were systematically analyzed. Polyphenols in GP were analyzed for nine peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS), and quantitatively determined through each standard. A total of nine polyphenolic compounds were identified in the samples and their MS data were tabulated. To determine the potential of bioactive ingredients targeting DPPH and COX-2, we analyzed them by ultrafiltration combined with LC. The results identified the major compounds exhibiting binding affinity for DPPH and COX-2. Caffeic acid, kynurenic acid, and chlorogenic acid showed excellent binding affinity to DPPH and COX-2, suggesting that they can be considered as major active compounds. Additionally, the anti-inflammatory effect of GP was confirmed in vitro. This study will not only be used to provide basic data for the application of GP to the food and pharmaceutical industries, but will also provide information on effective screening methods for other medicinal plants.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Asteraceae/química , Ciclo-Oxigenase 2/metabolismo , Polifenóis/análise , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Compostos de Bifenilo/metabolismo , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Lipopolissacarídeos/efeitos adversos , Espectrometria de Massas , Camundongos , Picratos/metabolismo , Extratos Vegetais/química , Polifenóis/farmacologia , Células RAW 264.7
9.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(4): 393-396, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34374259

RESUMO

Objective: To observe changes of Friend leukemia virus integration 1 (FLI-1) protein expression of pulmonary tissue in mice with pulmonary endothelial barrier dysfunction following acute lung injury (ALI) induced by lipopolysaccharide (LPS). Methods: The mouse model of ALI was established by injection of LPS (7.5 mg/kg, i.p. ). At 0 h, 12 h, 24 h and 48 h after LPS injection, pulmonary microvascular endothelial permeability and lung wet/dry weight ratio (W/D) were assessed. The contents of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF) were detected by ELISA method. The protein levels of FLI-1 and Src protein tyrosine kinase (SRC) were analyzed by Western blotting.Results: ①Pulmonary microvascular endothelial permeability at 12 h and 24 h were significantly higher than those of 0 h by 74.3% and 162.4%, respectively, while that of 48 h was lower than that of 24 h by 27.0% (P<0.05). The W/D at 12 h and 24 h were significantly higher than those of 0 h by 50.1% and 122.9%, respectively, while that of 48 h was lower than that of 24 h by 10.7% (P<0.05). ②The contents of IL-6 and TNF-α in BALF at 12 h and 24 h were significantly higher than those of 0 h, while those of 48 h were significantly lower than those of 24 h by 28.3% and 21.6% (P<0.05), respectively. ③The protein level of FLI-1 in lung at 12 h and 24 h were down-regulated than those of 0 h by 20.4% and 56.9%, respectively, while that of 48 h was up-regulated than that of 24 h by 18.2% (P<0.05). The protein level of SRC in lung at 12 h and 24 h were up-regulated than those of 0 h by 76.8% and 176.7%, respectively, while that of 48 h was down-regulated than that of 24 h by 33.4% (P<0.05).④Same as the protein level of FLI-1 with the protein level of SRC in lung, pulmonary microvascular endothelial permeability was significantly negative correlated with the protein level of FLI-1 in lung, while it was significantly positive correlated with the protein level of SRC (P<0.01). Conclusion: FLI-1 participates in the pathological proceeding of pulmonary endothelial barrier dysfunction following ALI induced by LPS.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar , Pulmão , Camundongos , Camundongos Endogâmicos C57BL
10.
J Med Food ; 24(8): 852-859, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34382871

RESUMO

CYJ-27, a synthetic analog of decursin, prevents the generation of proinflammatory cytokines and oxidative stress. In this study, the effects of CYJ-27 on the regulation of inducible nitric oxide synthase (iNOS), heme oxygenase (HO)-1, and cyclooxygenase (COX-)2 were characterized in lipopolysaccharide (LPS)-treated human umbilical vein endothelial cells (HUVECs). In addition, the effects of CYJ-27 on the production of iNOS and representative proinflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1ß, were tested in the lung tissues of LPS-treated mice. CYJ-27 promoted the expression of HO-1, suppressed NF-κB-luciferase activity, and reduced COX-2/PGE2 and iNOS/NO, resulting in a diminution in phosphorylated-STAT-1. Furthermore, CYJ-27 promoted the nuclear translocation of Nrf2, enhanced the combination of Nrf2 to antioxidant response elements, and diminished IL-1ß production in LPS-activated HUVECs. CYJ-27-downregulated iNOS/NO expression was rescued after the RNAi suppression of HO-1. In LPS-treated mice, CYJ-27 significantly diminished iNOS production in the lung tissues and TNF-α expression in the bronchoalveolar lavage fluid. These findings indicate that CYJ-27 exerts anti-inflammatory activities by regulating iNOS through downregulation of both NF-κB activation and phosphorylated-STAT-1. Hence, it can act as a template for the development of novel substances to treat inflammatory diseases.


Assuntos
Inflamação , NF-kappa B , Animais , Benzopiranos , Butiratos , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Lipopolissacarídeos , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
11.
J Leukoc Biol ; 110(3): 511-524, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342041

RESUMO

Periodontitis is one of the most common oral diseases worldwide, and it is associated with various systemic diseases, including cognitive diseases. STAT3 regulates the inflammatory cascade and influences adaptive immunity by modulating Th17/Treg cell differentiation. In this study, we aimed to explore the effect of adaptive immunity inside and outside the brain on the association between periodontitis and cognitive impairment and understand the role of the STAT3 signaling pathway. We established Porphyromonas gingivalis LPS-induced periodontitis mice models by injecting P. gingivalis LPS into the gingival sulcus of mice. Behavioral tests showed that learning and memory abilities were impaired. The flow cytometry data showed an imbalance in the Th17/Treg ratio in the blood and brain samples of the mice. The expression of Th17-related cytokines (IL-1ß, IL-17A, IL-21, and IL-22) increased, whereas that of Treg-related cytokines (IL-2 and IL-10) decreased in both the blood and the brain. The level of LPS increased and the STAT3 signaling pathway was activated during this process. These effects were reversed by C188-9, a STAT3 inhibitor. In conclusion, P. gingivalis LPS-induced periodontitis may promote the occurrence and progression of cognitive impairment by modulating the Th17/Treg balance inside and outside the brain. The STAT3 signaling pathway may have immunoregulatory effects on the mouth-to-brain axis.


Assuntos
Disfunção Cognitiva/imunologia , Disfunção Cognitiva/microbiologia , Periodontite/imunologia , Periodontite/microbiologia , Porphyromonas gingivalis/fisiologia , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Processo Alveolar/patologia , Animais , Astrócitos/patologia , Reabsorção Óssea/complicações , Reabsorção Óssea/imunologia , Reabsorção Óssea/microbiologia , Reabsorção Óssea/patologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/diagnóstico por imagem , Citocinas/metabolismo , Gengiva/patologia , Lipopolissacarídeos , Memória , Camundongos , Microglia/patologia , Periodontite/complicações , Periodontite/diagnóstico por imagem , Transdução de Sinais , Aprendizagem Espacial
12.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360998

RESUMO

Candida albicans, an opportunistic fungus, causes dental caries and contributes to mucosal bacterial dysbiosis leading to a second infection. Furthermore, C.albicans forms biofilms that are resistant to medicinal treatment. To make matters worse, antifungal resistance has spread (albeit slowly) in this species. Thus, it has been imperative to develop novel, antifungal drug compounds. Herein, a peptide was engineered with the sequence of RRFSFWFSFRR-NH2; this was named P19. This novel peptide has been observed to exert disruptive effects on fungal cell membrane physiology. Our results showed that P19 displayed high binding affinity to lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the plasma membrane phosphatidylinositol (PI), phosphatidylserine (PS), cardiolipin, and phosphatidylglycerol (PG), further indicating that the molecular mechanism of P19 was not associated with the receptor recognition, but rather related to competitive interaction with the plasma membrane. In addition, compared with fluconazole and amphotericin B, P19 has been shown to have a lower potential for resistance selection than established antifungal agents.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Oligopeptídeos/farmacologia , Antifúngicos/química , Candida albicans/fisiologia , Cardiolipinas/metabolismo , Membrana Celular/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Oligopeptídeos/química , Fosfatidilgliceróis/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo , Ácidos Teicoicos/metabolismo , Triptofano/química
13.
Braz J Med Biol Res ; 54(11): e11215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34431873

RESUMO

This study investigated the acute blockade of endogenous melatonin (MLT) using Luzindole with or without systemic lipopolysaccharide (LPS) challenge and evaluated changes in inflammatory and oxidative stress markers in the mouse jejunum. Luzindole is an MT1/MT2 MLT receptor antagonist. Both receptors occur in the small intestine. Swiss mice were treated with either saline (0.35 mg/kg, ip), Luzindole (0.35 mg/kg, ip), LPS (1.25 mg/kg, ip), or Luzindole+LPS (0.35 and 1.25 mg/kg, ip, respectively). Jejunum samples were evaluated regarding intestinal morphometry, histopathological crypt scoring, and PAS-positive villus goblet cell counting. Inflammatory Iba-1, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, nuclear factor (NF)-kB, myeloperoxidase (MPO), and oxidative stress (NP-SHs, catalase, MDA, nitrate/nitrite) markers were assessed. Mice treated with Luzindole, LPS, and Luzindole+LPS showed villus height shortening. Crypt damage was worse in the LPS group. Luzindole, LPS, and Luzindole+LPS reduced the PAS-goblet cell labeling and increased Iba-1-immunolabelled cells compared to the saline group. Immunoblotting for IL-1ß, TNF-α, and NF-kB was greater in the Luzindole group. The LPS-challenged group showed higher MPO activity than the saline and Luzindole groups. Catalase was reduced in the Luzindole and Luzindole+LPS groups compared to saline. The Luzindole group showed an increase in NP-SHs, an effect related to compensatory GSH activity. The acute blockade of endogenous MLT with Luzindole induced early changes in inflammatory markers with altered intestinal morphology. The other non-detectable deleterious effects of Luzindole may be balanced by the unopposed direct action of MLT in immune cells bypassing the MT1/MT2 receptors.


Assuntos
Lipopolissacarídeos , Melatonina , Animais , Inflamação/induzido quimicamente , Jejuno , Camundongos , Triptaminas
14.
Sensors (Basel) ; 21(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451050

RESUMO

Oxidative stress, an excess of endogenous or exogenous reactive oxygen species (ROS) in the human body, is closely aligned with inflammatory responses. ROS such as hydrogen peroxide (H2O2), superoxide, and radical hydroxyl ions serve essential functions in fighting infection; however, chronic elevation of these species irreversibly damages cellular components. Given the central role of inflammation in a variety of diseases, including Alzheimer's disease and rheumatoid arthritis, a low-cost, extracellular, non-invasive assay of H2O2 measurement is needed. This work reports the use of a platinum microelectrode array (Pt MEA)-based ceramic probe to detect time- and concentration-dependent variations in H2O2 production by activated RAW 264.7 macrophages. First, these cells were activated by lipopolysaccharide (LPS) to induce oxidative stress. Chronoamperometry was then employed to detect the quantity of H2O2 released by cells at various time intervals up to 48 h. The most stimulatory concentration of LPS was identified. Further experiments assessed the anti-inflammatory effect of dexamethasone (Dex), a commonly prescribed steroid medication. As expected, the probe detected significantly increased H2O2 production by LPS-doped macrophages, subsequently diminishing the pro-inflammatory effect in LPS-doped cells treated with Dex. These results strongly support the use of this probe as a non-invasive, robust, point-of-care test of inflammation, with a high potential for multiplexing in further studies.


Assuntos
Peróxido de Hidrogênio , Platina , Humanos , Lipopolissacarídeos , Macrófagos , Microeletrodos , Estresse Oxidativo , Espécies Reativas de Oxigênio
15.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360675

RESUMO

In recent decades, interest in natural compounds has increased exponentially due to their numerous beneficial properties in the treatment of various acute and chronic diseases. A group of plant derivatives with great scientific interest is terpenic compounds. Among the plants richest in terpenes, the genus Ferula L. is one of the most representative, and ferutinin, the most common sesquiterpene, is extracted from the leaves, rhizome, and roots of this plant. As reported in the scientific literature, ferutinin possesses antioxidant and anti-inflammatory properties, as well as valuable estrogenic properties. Neurodegenerative and demyelinating diseases are devastating conditions for which a definite cure has not yet been established. The mechanisms involved in these diseases are still poorly understood, and oxidative stress is considered to be both a key modulator and a common denominator. In the proposed experimental system, co-cultured human neurons (SH-SY5Y) and human oligodendrocytes (MO3.13) were treated with the pro-inflammatory agent lipopolysaccharide at a concentration of 1 µg/mL for 24 h or pretreated with ferutinin (33 nM) for 24 h and subsequently exposed to lipopolysaccharide 1 µg/mL for 24 h. Further studies would, however, be needed to establish whether this natural compound can be used as a support strategy in pathologies characterized by progressive inflammation and oxidative stress phenomena.


Assuntos
Benzoatos/farmacologia , Cicloeptanos/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo , Sesquiterpenos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Linhagem Celular , Técnicas de Cocultura , Escherichia coli , Humanos , Inflamação/induzido quimicamente , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Substâncias Protetoras/farmacologia
16.
Nat Commun ; 12(1): 4741, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362923

RESUMO

Biologic therapies have transformed the management of psoriasis, but clinical outcome is variable leaving an unmet clinical need for predictive biomarkers of response. Here we perform in-depth immunomonitoring of blood immune cells of 67 patients with psoriasis, before and during therapy with the anti-TNF drug adalimumab, to identify immune mediators of clinical response and evaluate their predictive value. Enhanced NF-κBp65 phosphorylation, induced by TNF and LPS in type-2 dendritic cells (DC) before therapy, significantly correlates with lack of clinical response after 12 weeks of treatment. The heightened NF-κB activation is linked to increased DC maturation in vitro and frequency of IL-17+ T cells in the blood of non-responders before therapy. Moreover, lesional skin of non-responders contains higher numbers of dermal DC expressing the maturation marker CD83 and producing IL-23, and increased numbers of IL-17+ T cells. Finally, we identify and clinically validate LPS-induced NF-κBp65 phosphorylation before therapy as a predictive biomarker of non-response to adalimumab, with 100% sensitivity and 90.1% specificity in an independent cohort. Our study uncovers important molecular and cellular mediators underpinning adalimumab mechanisms of action in psoriasis and we propose a blood biomarker for predicting clinical outcome.


Assuntos
Adalimumab/uso terapêutico , Células Dendríticas/metabolismo , NF-kappa B/metabolismo , Psoríase/imunologia , Transdução de Sinais , Antígeno B7-H1 , Terapia Biológica , Biomarcadores/sangue , Células Dendríticas/efeitos dos fármacos , Humanos , Interleucina-17 , Lipopolissacarídeos/efeitos adversos , Linfócitos , Fosforilação , Sensibilidade e Especificidade , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa
17.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(7): 861-865, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34412758

RESUMO

OBJECTIVE: To study the inhibitory effect of overexpression of mitofusion 2 (Mfn2) protein on acute respiratory distress syndrome (ARDS) pulmonary fibrosis and its mechanism. METHODS: Human embryo lung fibroblasts (HELF) were cultured in vitro, and digested and passaged when the adherent rate of HELF reached 80%, and then the cells in good condition were selected for experiment. The ARDS cell model was reproduced by 5 mg/L of lipopolysaccharide (LPS, LPS group); 75 mol/L adenovirus vector carrying mitofusion 2 (Adv-Mfn2) was transfected into HELF (Adv-Mfn2+LPS group); at the same time, blank control group (complete medium culture) and Adv-vector+LPS group were set as controls. The cell proliferation was observed by sulforhodamine B (SRB) method at 0, 12, 24, 36 and 48 hours. After Hoechst 33342 staining, the morphological changes were observed under confocal microscope. Western blotting was used to detect the protein expressions of Bcl-2 and caspase-3. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expressions of Bcl-2 and caspase-3. RESULTS: After LPS stimulation for 12-48 hours, the cell proliferation rates in the LPS group increased gradually, which were significantly higher than those in the blank control group [12 hours: (10.75±1.51)% vs. (0.73±1.22)%, 24 hours: (20.09±1.71)% vs. (1.15±1.12)%, 36 hours: (20.58±1.55)% vs. (1.20±1.12)%, 48 hours: (21.30±1.51)% vs. (1.23±1.10)%, all P < 0.01]. There was no statistically significant difference in the cell proliferation rate between the LPS group and the Adv-vector+LPS group. After overexpression of Mfn2, the cell proliferation rates at 12, 24, 36, 48 hours in the Adv-Mfn2+LPS group were (8.93±1.14)%, (10.52±1.24)%, (10.72±1.30)%, and (10.91±1.20)%, which were significantly lower than those in the LPS group (all P < 0.05). Confocal microscopy showed that some cells in the blank control group had nuclei of different sizes, and some nuclei fragmented or shrank to form apoptotic bodies. The nuclei of the cells in the LPS and Adv-vector+LPS groups were round or oval in size, and only a few apoptotic cells appeared. When Mfn2 was overexpressed, there were more apoptotic cells in the visual field in the Adv-Mfn2+LPS group than LPS group. Western blotting and RT-qPCR results showed that Bcl-2 expressions increased significantly after LPS stimulation in the LPS group as compared with the blank control group [Bcl-2 protein (Bcl-2/GAPDH): 0.68±0.01 vs. 0.29±0.01, Bcl-2 mRNA (2-ΔΔCT): 2.23±0.34 vs. 1.00±0.00, both P < 0.01], and caspase-3 expressions decreased significantly [caspase-3 protein (caspase-3/GAPDH): 0.37±0.02 vs. 0.66±0.02, caspase-3 mRNA (2-ΔΔCT): 0.31±0.05 vs. 1.00±0.00, both P < 0.01]. Compared with LPS group, the expressions of Bcl-2 after overexpression of Mfn2 in the Adv-Mfn2+LPS group were down-regulated [Bcl-2 protein (Bcl-2/GAPDH): 0.46±0.01 vs. 0.68±0.01, Bcl-2 mRNA (2-ΔΔCT): 1.45±0.14 vs. 2.23±0.34, both P < 0.01], and the expressions of caspase-3 were up-regulated [caspase-3 protein (caspase-3/GAPDH): 0.54±0.02 vs. 0.37±0.02, caspase-3 mRNA (2-ΔΔCT): 0.88±0.10 vs. 0.31±0.05, both P < 0.01]. CONCLUSIONS: Mfn2 protein is involved in ARDS pulmonary fibrosis, which may be related to mitochondrial mediated inhibition of cell proliferation.


Assuntos
Fibrose Pulmonar , Síndrome do Desconforto Respiratório , Humanos , Lipopolissacarídeos , Pulmão , Mitocôndrias , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/terapia
18.
Nutrients ; 13(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34444918

RESUMO

Mild cognitive impairment (MCI) designates the boundary area between cognitive function in natural aging and dementia, and this is viewed as a therapeutic window to prevent the occurrence of dementia. The current study investigated the neurocognitive effects of oral creatine (Cr) supplementation in young female Wistar rats that received intracerebroventricular injections of lipopolysaccharide (LPS) to mimic MCI. Neuromolecular changes within the dentate gyrus were analyzed following behavioral testing. We also investigated both neurocognitive and neuromolecular changes following Cr supplementation in the absence of LPS in young female Wistar rats to further investigate mechanisms. Interestingly, based on trial 2 of Barnes maze test, Cr supplementation ameliorated spatial learning and memory deficit induced by LPS, shown by decreased latency time and errors to reach the escape box (p < 0.0001, n = 12). Cr supplementation also attenuated recognition memory deficit induced by LPS, shown by increased amount of time taken to explore the new object (p = 0.002, n = 12) during novel object recognition testing. Within the dentate gyrus, Cr supplementation in LPS injected rats upregulated mTORC1 signaling (p = 0.026 for mTOR phosphorylation, p = 0.002 for p70S6K phosphorylation, n = 8) as well as the synapsin (p = 0.008) and PSD-95 synaptic proteins (p = 0.015), in comparisons to LPS injected rats. However, Cr supplementation failed to further enhance spatial memory and recognition memory in the absence of LPS. In conclusion, Cr ameliorates LPS-induced cognitive impairment in a rodent MCI model. Mechanistically, these phenotypic effects may, in part, be mitigated via an upregulation of mTORC1 signaling, and an enhancement in synaptogenesis in the dentate gyrus. While preliminary, these findings may inform future research investigating neurocognitive effects of Cr for MCI patients.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Creatina/administração & dosagem , Giro Denteado/metabolismo , Suplementos Nutricionais , Transtornos da Memória/tratamento farmacológico , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos , Aprendizagem em Labirinto , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transtornos da Memória/induzido quimicamente , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445223

RESUMO

Increasing evidence suggests that systemic inflammation triggers a neuroinflammatory response that involves sustained microglia activation. This response has deleterious consequences on memory and learning capability in experimental animal models and in patients. However, the mechanisms connecting systemic inflammation and microglia activation remain poorly understood. Here, we identify the autotaxin (ATX)/lysophosphatidic acid (LPA)/LPA-receptor axis as a potential pharmacological target to modulate the LPS-mediated neuroinflammatory response in vitro (the murine BV-2 microglia cell line) and in vivo (C57BL/6J mice receiving a single i.p. LPS injection). In LPS-stimulated (20 ng/mL) BV-2 cells, we observed increased phosphorylation of transcription factors (STAT1, p65, and c-Jun) that are known to induce a proinflammatory microglia phenotype. LPS upregulated ATX, TLR4, and COX2 expression, amplified NO production, increased neurotoxicity of microglia conditioned medium, and augmented cyto-/chemokine concentrations in the cellular supernatants. PF8380 (a type I ATX inhibitor, used at 10 and 1 µM) and AS2717638 (an LPA5 antagonist, used at 1 and 0.1 µM) attenuated these proinflammatory responses, at non-toxic concentrations, in BV-2 cells. In vivo, we demonstrate accumulation of PF8380 in the mouse brain and an accompanying decrease in LPA concentrations. In vivo, co-injection of LPS (5 mg/kg body weight) and PF8380 (30 mg/kg body weight), or LPS/AS2717638 (10 mg/kg body weight), significantly attenuated LPS-induced iNOS, TNFα, IL-1ß, IL-6, and CXCL2 mRNA expression in the mouse brain. On the protein level, PF8380 and AS2717638 significantly reduced TLR4, Iba1, GFAP and COX2 expression, as compared to LPS-only injected animals. In terms of the communication between systemic inflammation and neuroinflammation, both inhibitors significantly attenuated LPS-mediated systemic TNFα and IL-6 synthesis, while IL-1ß was only reduced by PF8380. Inhibition of ATX and LPA5 may thus provide an opportunity to protect the brain from the toxic effects that are provoked by systemic endotoxemia.


Assuntos
Benzoxazóis/farmacologia , Encéfalo/metabolismo , Endotoxemia , Isoquinolinas/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Piperazinas/farmacologia , Piperidinas/farmacologia , Receptores de Ácidos Lisofosfatídicos , Animais , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Microglia/patologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo
20.
Ecotoxicol Environ Saf ; 223: 112566, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34340153

RESUMO

Artemisia ordosica is one of the main shrubby perennials belonging to Artemisia species of Asteraceae and could be used in folk Chinese/Mongolian medicine to treat symptoms of various inflammatory ailments. The present study was conducted to investigate the protective effects of dietary Artemisia ordosica polysaccharide (AOP) against lipopolysaccharide (LPS) induced oxidative stress in broilers via Nrf2/Keap1 and TLR4/NF-κB pathway. A total of 192 1-day-old Arbor Acres male broilers were randomly allotted to four treatments with 6 replicates (n = 8): (1) CON group, non-challenged broilers fed basal diet; (2) LPS group, LPS-challenged broilers fed basal diet; (3) AOP group, non-challenged broilers fed basal diet supplemented with 750 mg/kg AOP; (4) LPS+AOP group, LPS-challenged broilers fed basal diet supplemented with 750 mg/kg AOP. The trial included starter phase (d 1-14), stress period Ⅰ (d 15-21), convalescence Ⅰ (d 22-28), stress period Ⅱ (d 29-35) and convalescence Ⅱ (d 36-42). During stress period Ⅰ (on d 15, 17, 19 and 21) and stress period Ⅱ (on d 29, 31, 33 and 35), broilers were injected intra-abdominally either with LPS solution or with an equal amount of sterile saline. The results showed that dietary AOP supplementation alleviated LPS-induced reduction in antioxidant enzyme activity and excessive production of ROS, 8-OHdG and PC in serum of broilers challenged with LPS. Moreover, dietary AOP supplementation alleviated the decrease of T-AOC and activities of SOD, CAT and GPx in liver of broilers challenged with LPS by increasing expression of Nrf2, and inhibiting over-expression of Keap1 both at gene and protein level. Additionally, dietary AOP supplementation decreased the over-production of IL-1ß and IL-6 in liver of broilers challenged by LPS through decreasing mRNA expression of TLR4, MyD88, NF-κB P65, IL-1ß and IL-6, and alleviating the increase of protein expression of TLR4, IKKß, NF-κB P65, IL-1ß, IL-6, and the decrease of protein expression of IkBα. In conclusion, dietary AOP supplementation could alleviate LPS-induced oxidative stress through Nrf2/Keap1 and TLR4/NF-κB pathway.


Assuntos
Artemisia , Lipopolissacarídeos , Ração Animal/análise , Animais , Artemisia/metabolismo , Galinhas/metabolismo , Dieta , Suplementos Nutricionais , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Lipopolissacarídeos/toxicidade , Masculino , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Polissacarídeos , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...