Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.498
Filtrar
1.
Chemosphere ; 282: 131149, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470174

RESUMO

Formaldehyde (FA) is widely used in chemical industry, which is also known as a common indoor air pollutant. Exposure of FA has been associated with multiple detrimental health effects. Our previous study showed that FA could inhibit the development of T lymphocytes in mice, leading to impaired immune functions. Macrophages are important innate immune cells which trigger inflammatory responses in tissues. In the present study, FA exposure at 2.0 mg/m3 was found to enhance the pro-inflammatory responses of macrophages in male BALB/c mice, which was confirmed by elevated pro-inflammatory cytokine release and NO secretion in macrophages isolated from the FA-exposed mice and in vitro macrophage models upon lipopolysaccharide stimulation. Glycolysis is the key metabolic process for the classical activation of macrophages, which was found to be elevated in the in vitro macrophage models treated with FA at 50 and 100 µM concentrations for 18 h. HIF-1α and the associated proteins in its signaling cascade, which are known to mediate glycolytic metabolism and inflammatory responses, were found to be upregulated by 50 and 100 µM FA in THP-1 derived and RAW264.7 macrophage models, and the enhanced pro-inflammatory responses induced by 100 µM FA were reversed by inhibitory compounds interfering with glucose metabolism or suppressing HIF-1α activity. Collectively, the results in this study revealed that FA could enhance the pro-inflammatory responses of macrophages through the induction of glycolysis, which outlined the FA-triggered metabolic and functional alterations in immune cells.


Assuntos
Glicólise , Macrófagos , Animais , Formaldeído/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C
2.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445223

RESUMO

Increasing evidence suggests that systemic inflammation triggers a neuroinflammatory response that involves sustained microglia activation. This response has deleterious consequences on memory and learning capability in experimental animal models and in patients. However, the mechanisms connecting systemic inflammation and microglia activation remain poorly understood. Here, we identify the autotaxin (ATX)/lysophosphatidic acid (LPA)/LPA-receptor axis as a potential pharmacological target to modulate the LPS-mediated neuroinflammatory response in vitro (the murine BV-2 microglia cell line) and in vivo (C57BL/6J mice receiving a single i.p. LPS injection). In LPS-stimulated (20 ng/mL) BV-2 cells, we observed increased phosphorylation of transcription factors (STAT1, p65, and c-Jun) that are known to induce a proinflammatory microglia phenotype. LPS upregulated ATX, TLR4, and COX2 expression, amplified NO production, increased neurotoxicity of microglia conditioned medium, and augmented cyto-/chemokine concentrations in the cellular supernatants. PF8380 (a type I ATX inhibitor, used at 10 and 1 µM) and AS2717638 (an LPA5 antagonist, used at 1 and 0.1 µM) attenuated these proinflammatory responses, at non-toxic concentrations, in BV-2 cells. In vivo, we demonstrate accumulation of PF8380 in the mouse brain and an accompanying decrease in LPA concentrations. In vivo, co-injection of LPS (5 mg/kg body weight) and PF8380 (30 mg/kg body weight), or LPS/AS2717638 (10 mg/kg body weight), significantly attenuated LPS-induced iNOS, TNFα, IL-1ß, IL-6, and CXCL2 mRNA expression in the mouse brain. On the protein level, PF8380 and AS2717638 significantly reduced TLR4, Iba1, GFAP and COX2 expression, as compared to LPS-only injected animals. In terms of the communication between systemic inflammation and neuroinflammation, both inhibitors significantly attenuated LPS-mediated systemic TNFα and IL-6 synthesis, while IL-1ß was only reduced by PF8380. Inhibition of ATX and LPA5 may thus provide an opportunity to protect the brain from the toxic effects that are provoked by systemic endotoxemia.


Assuntos
Benzoxazóis/farmacologia , Encéfalo/metabolismo , Endotoxemia , Isoquinolinas/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Piperazinas/farmacologia , Piperidinas/farmacologia , Receptores de Ácidos Lisofosfatídicos , Animais , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Microglia/patologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/metabolismo
3.
J Int Med Res ; 49(8): 3000605211037495, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34407684

RESUMO

OBJECTIVE: This study aimed to clarify the mechanism by which the long non-coding RNA cancer susceptibility candidate 9 (CASC9) alleviates sepsis-related acute kidney injury (S-AKI). METHODS: A lipopolysaccharide (LPS)-induced AKI model was established to simulate S-AKI. HK-2 human renal tubular epithelial cells were treated with LPS to establish an in vitro model, and mice were intraperitoneally injected with LPS to generate an in vivo model. Subsequently, the mRNA expression of inflammatory and antioxidant factors was validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Reactive oxygen species (ROS) production was assessed using an assay kit. Apoptosis was detected by western blotting and fluorescence-activated cell sorting. RESULTS: CASC9 was significantly downregulated in the LPS-induced AKI model. CASC9 attenuated cell inflammation and apoptosis and enhanced the antioxidant capacity of cells. Regarding the mechanism, miR-424-5p was identified as the downstream target of CASC9, and the interaction between CASC9 and miR-424-5p promoted thioredoxin-interacting protein (TXNIP) expression. CONCLUSIONS: CASC9 alleviates LPS-induced AKI in vivo and in vitro, and CASC9 directly targets miR-424-5p and further promotes the expression of TXNIP. We have provided a possible reference strategy for the treatment of S-AKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , RNA Longo não Codificante , Sepse , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Animais , Proteínas de Transporte , Humanos , Lipopolissacarídeos/toxicidade , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética , Sepse/induzido quimicamente , Sepse/genética , Tiorredoxinas
4.
Int J Mol Sci ; 22(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34360700

RESUMO

Maternal infection-induced early pregnancy complications arise from perturbation of the immune environment at the uterine early blastocyst implantation site (EBIS), yet the underlying mechanisms remain unclear. Here, we demonstrated in a mouse model that the progression of normal pregnancy from days 4 to 6 induced steady migration of leukocytes away from the uterine decidual stromal zone (DSZ) that surrounds the implanted blastocyst. Uterine macrophages were found to be CD206+ M2-polarized. While monocytes were nearly absent in the DSZ, DSZ cells were found to express monocyte marker protein Ly6C. Systemic endotoxic lipopolysaccharide (LPS) exposure on day 5 of pregnancy led to: (1) rapid (at 2 h) induction of neutrophil chemoattractants that promoted huge neutrophil infiltrations at the EBISs by 24 h; (2) rapid (at 2 h) elevation of mRNA levels of MyD88, but not Trif, modulated cytokines at the EBISs; and (3) dose-dependent EBIS defects by day 7 of pregnancy. Yet, elimination of maternal neutrophils using anti-Ly6G antibody prior to LPS exposure failed to avert LPS-induced EBIS defects allowing us to suggest that activation of Tlr4-MyD88 dependent inflammatory pathway is involved in LPS-induced defects at EBISs. Thus, blocking the activation of the Tlr4-MyD88 signaling pathway may be an interesting approach to prevent infection-induced pathology at EBISs.


Assuntos
Lipopolissacarídeos/toxicidade , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/imunologia , Complicações Infecciosas na Gravidez/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Implantação do Embrião , Feminino , Inflamação , Macrófagos , Camundongos , Neutrófilos/metabolismo , Gravidez , Complicações Infecciosas na Gravidez/metabolismo
5.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360706

RESUMO

For the treatment of severe COVID-19, supplementation with human plasma-purified α-1 antitrypsin (AAT) to patients is currently considered. AAT inhibits host proteases that facilitate viral entry and possesses broad anti-inflammatory and immunomodulatory activities. Researchers have demonstrated that an interaction between SARS-CoV-2 spike protein (S) and lipopolysaccharides (LPS) enhances pro-inflammatory responses in vitro and in vivo. Hence, we wanted to understand the potential anti-inflammatory activities of plasma-derived and recombinant AAT (recAAT) in a model of human total peripheral blood mononuclear cells (PBMCs) exposed to a combination of CHO expressed trimeric spike protein and LPS, ex vivo. We confirmed that cytokine production was enhanced in PBMCs within six hours when low levels of LPS were combined with purified spike proteins ("spike"). In the presence of 0.5 mg/mL recAAT, however, LPS/spike-induced TNF-α and IL-1ß mRNA expression and protein release were significantly inhibited (by about 46-50%) relative to LPS/spike alone. Although without statistical significance, recAAT also reduced production of IL-6 and IL-8. Notably, under the same experimental conditions, the plasma-derived AAT preparation Respreeza (used in native and oxidized forms) did not show significant effects. Our findings imply that an early pro-inflammatory activation of human PBMCs is better controlled by the recombinant version of AAT than the human plasma-derived AAT used here. Considering the increasing clinical interest in AAT therapy as useful to ameliorate the hyper-inflammation seen during COVID-19 infection, different AAT preparations require careful evaluation.


Assuntos
Anti-Inflamatórios/farmacologia , Leucócitos Mononucleares/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , alfa 1-Antitripsina/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/imunologia , Células CHO , COVID-19/terapia , Células Cultivadas , Cricetulus , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , alfa 1-Antitripsina/química , alfa 1-Antitripsina/imunologia
6.
Ecotoxicol Environ Saf ; 223: 112566, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34340153

RESUMO

Artemisia ordosica is one of the main shrubby perennials belonging to Artemisia species of Asteraceae and could be used in folk Chinese/Mongolian medicine to treat symptoms of various inflammatory ailments. The present study was conducted to investigate the protective effects of dietary Artemisia ordosica polysaccharide (AOP) against lipopolysaccharide (LPS) induced oxidative stress in broilers via Nrf2/Keap1 and TLR4/NF-κB pathway. A total of 192 1-day-old Arbor Acres male broilers were randomly allotted to four treatments with 6 replicates (n = 8): (1) CON group, non-challenged broilers fed basal diet; (2) LPS group, LPS-challenged broilers fed basal diet; (3) AOP group, non-challenged broilers fed basal diet supplemented with 750 mg/kg AOP; (4) LPS+AOP group, LPS-challenged broilers fed basal diet supplemented with 750 mg/kg AOP. The trial included starter phase (d 1-14), stress period Ⅰ (d 15-21), convalescence Ⅰ (d 22-28), stress period Ⅱ (d 29-35) and convalescence Ⅱ (d 36-42). During stress period Ⅰ (on d 15, 17, 19 and 21) and stress period Ⅱ (on d 29, 31, 33 and 35), broilers were injected intra-abdominally either with LPS solution or with an equal amount of sterile saline. The results showed that dietary AOP supplementation alleviated LPS-induced reduction in antioxidant enzyme activity and excessive production of ROS, 8-OHdG and PC in serum of broilers challenged with LPS. Moreover, dietary AOP supplementation alleviated the decrease of T-AOC and activities of SOD, CAT and GPx in liver of broilers challenged with LPS by increasing expression of Nrf2, and inhibiting over-expression of Keap1 both at gene and protein level. Additionally, dietary AOP supplementation decreased the over-production of IL-1ß and IL-6 in liver of broilers challenged by LPS through decreasing mRNA expression of TLR4, MyD88, NF-κB P65, IL-1ß and IL-6, and alleviating the increase of protein expression of TLR4, IKKß, NF-κB P65, IL-1ß, IL-6, and the decrease of protein expression of IkBα. In conclusion, dietary AOP supplementation could alleviate LPS-induced oxidative stress through Nrf2/Keap1 and TLR4/NF-κB pathway.


Assuntos
Artemisia , Lipopolissacarídeos , Ração Animal/análise , Animais , Artemisia/metabolismo , Galinhas/metabolismo , Dieta , Suplementos Nutricionais , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Lipopolissacarídeos/toxicidade , Masculino , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Polissacarídeos , Receptor 4 Toll-Like/genética
7.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360675

RESUMO

In recent decades, interest in natural compounds has increased exponentially due to their numerous beneficial properties in the treatment of various acute and chronic diseases. A group of plant derivatives with great scientific interest is terpenic compounds. Among the plants richest in terpenes, the genus Ferula L. is one of the most representative, and ferutinin, the most common sesquiterpene, is extracted from the leaves, rhizome, and roots of this plant. As reported in the scientific literature, ferutinin possesses antioxidant and anti-inflammatory properties, as well as valuable estrogenic properties. Neurodegenerative and demyelinating diseases are devastating conditions for which a definite cure has not yet been established. The mechanisms involved in these diseases are still poorly understood, and oxidative stress is considered to be both a key modulator and a common denominator. In the proposed experimental system, co-cultured human neurons (SH-SY5Y) and human oligodendrocytes (MO3.13) were treated with the pro-inflammatory agent lipopolysaccharide at a concentration of 1 µg/mL for 24 h or pretreated with ferutinin (33 nM) for 24 h and subsequently exposed to lipopolysaccharide 1 µg/mL for 24 h. Further studies would, however, be needed to establish whether this natural compound can be used as a support strategy in pathologies characterized by progressive inflammation and oxidative stress phenomena.


Assuntos
Benzoatos/farmacologia , Cicloeptanos/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo , Sesquiterpenos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Linhagem Celular , Técnicas de Cocultura , Escherichia coli , Humanos , Inflamação/induzido quimicamente , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Substâncias Protetoras/farmacologia
8.
Oxid Med Cell Longev ; 2021: 9932099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457120

RESUMO

Oxidative stress, inflammation, and apoptosis are crucial in the pathogenesis of acute liver failure (ALF). 4-Octyl itaconate (OI) showed antioxidative and anti-inflammatory properties in many disease models. However, its role in lipopolysaccharide- (LPS-)/D-galactosamine- (D-GalN-) induced ALF is still not investigated. Here, we established an ALF murine model induced by LPS/D-GalN administration. And we found that OI improved survival rate in the murine ALF model. Our results also showed that OI alleviated LPS/D-GalN-induced hepatic histopathological injury and reduced the serum activities of alanine transaminase and aspartate transaminase. Moreover, OI reduced serum levels of proinflammatory cytokines such as monocyte chemotactic protein-1, tumor necrosis factors-α, and interlukin-6. Additionally, OI mitigated oxidative stress and alleviated lipid peroxidation in a murine model of ALF. This was evaluated by a reduction of thiobarbituric acid reactive substances (TBARS) in liver tissues. In addition, OI increased the ratio of reduced glutathione/oxidized glutathione and the activities of antioxidant enzymes including catalase and superoxide dismutase. Moreover, the apoptosis of hepatocytes in the liver was inhibited by OI. Furthermore, we found that OI inhibited LPS-induced nuclear translocation and activation of factor-kappa B (NF-κB) p65 in macrophages which could be inhibited by OI-induced activation of nuclear factor erythroid-2-related factor (Nrf2) signaling. Additionally, D-GalN-induced reactive oxygen species (ROS) generation and apoptosis in hepatocytes were inhibited by OI-induced activation of Nrf2 signaling. Therefore, the underlying mechanism for OI's protective effect in LPS/D-GalN-induced ALF may be associated with deactivation of NF-κB signaling in macrophages to reduce inflammation and inhibition of ROS-related hepatocyte apoptosis by activating Nrf2. In conclusion, OI showed a protective role in LPS/D-GalN-induced ALF by reducing inflammation, enhancing antioxidant capacity, and inhibiting cell apoptosis.


Assuntos
Apoptose , Galactosamina/toxicidade , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/tratamento farmacológico , Estresse Oxidativo , Succinatos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais
9.
Free Radic Biol Med ; 173: 104-116, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303829

RESUMO

BACKGROUND: Chloroquine has been used successfully to treat Malaria, including by chloroquine-resistant Plasmodium sp., indicating that it has effects on disease itself. Since heme has inflammatory effects and contributes to the pathogenesis of hemolytic diseases, we hypothesize that the anti-inflammatory effect of chloroquine is partially due to its inhibitory effect on heme-induced macrophage activation and on inflammatory tissue damage. METHODS: Bone marrow derived macrophages (BMDMs) were incubated with chloroquine before stimulation with heme, in different conditions, to evaluate cytokines secretion, ROS production, mitogen activated protein kinases (MAPK) or spleen tyrosine kinase (Syk) activation, alone or combined with LPS. The effects of chloroquine upon heme inflammation were also evaluated in vivo, through simultaneous i.p. injection of LPS and heme, intratracheal instillation of Poly-IC followed by heme injection, and in a rhabdomyolysis model. RESULTS: Chloroquine inhibited TNF secretion, mitochondrial ROS production, MAPK, and Syk activation induced by heme. Inhibition of TNF production could be mimicked by zinc ionophore quercetin, but not by primaquine, a chloroquine analog with low affinity for heme. IL-6 and IL-1ß secretions induced by heme in the presence of PRRs agonists were inhibited by chloroquine, but not by calcium chelator BAPTA or inhibitor of endosomal acidification concamycin B. Chloroquine also protected mice from heme inflammatory effects in vivo, inhibiting lethal synergism with PRR agonists, lung pathology caused by heme injection after intratracheal instillation of Poly-IC, and delaying death after rhabdomyolisis. CONCLUSION: Our data indicate that chloroquine might be used as a supportive therapy to control heme-induced deleterious inflammation in different hemolytic diseases.


Assuntos
Cloroquina , Heme , Animais , Citocinas , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos , Macrófagos , Camundongos
10.
Mol Med Rep ; 24(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34328196

RESUMO

Inflammation and oxidative stress have indispensable roles in the development of acute lung injury (ALI). MicroRNA (miRNA/miR)­351­5p was initially identified as a myogenesis­associated miRNA; however, its role in lipopolysaccharide (LPS)­induced ALI remains unclear. The aim of the present study was to investigate the role and potential mechanisms of miR­351­5p in ALI. ALI was induced through a single intratracheal injection of LPS for 12 h, and miR­351­5p agomir, antagomir or their corresponding negative controls were injected into the tail vein before LPS stimulation. Compound C, 2',5'­dideoxyadenosine and H89 were used to inhibit AMP­activated protein kinase (AMPK), adenylate cyclase and protein kinase A (PKA), respectively. miR­351­5p levels in the lungs were significantly increased in response to LPS injection. miR­351­5p antagomir alleviated, while miR­351­5p agomir aggravated LPS­induced oxidative stress and inflammation in the lungs. The present results also demonstrated that miR­351­5p antagomir attenuated LPS­induced ALI via activating AMPK, and that the cAMP/PKA axis was required for the activation of AMPK by the miR­351­5p antagomir. In conclusion, the present study indicated that miR­351­5p aggravated LPS­induced ALI via inhibiting AMPK, suggesting that targeting miR­351­5p may help to develop efficient therapeutic approaches for treating ALI.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Inflamação/genética , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/genética
11.
Nat Immunol ; 22(9): 1118-1126, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34326534

RESUMO

Transcription factors specialized to limit the destructive potential of inflammatory immune cells remain ill-defined. We discovered loss-of-function variants in the X-linked ETS transcription factor gene ELF4 in multiple unrelated male patients with early onset mucosal autoinflammation and inflammatory bowel disease (IBD) characteristics, including fevers and ulcers that responded to interleukin-1 (IL-1), tumor necrosis factor or IL-12p40 blockade. Using cells from patients and newly generated mouse models, we uncovered ELF4-mutant macrophages having hyperinflammatory responses to a range of innate stimuli. In mouse macrophages, Elf4 both sustained the expression of anti-inflammatory genes, such as Il1rn, and limited the upregulation of inflammation amplifiers, including S100A8, Lcn2, Trem1 and neutrophil chemoattractants. Blockade of Trem1 reversed inflammation and intestine pathology after in vivo lipopolysaccharide challenge in mice carrying patient-derived variants in Elf4. Thus, ELF4 restrains inflammation and protects against mucosal disease, a discovery with broad translational relevance for human inflammatory disorders such as IBD.


Assuntos
Proteínas de Ligação a DNA/genética , Doenças Hereditárias Autoinflamatórias/genética , Doenças Inflamatórias Intestinais/genética , Macrófagos/imunologia , Fatores de Transcrição/genética , Animais , Calgranulina A/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Doenças Hereditárias Autoinflamatórias/imunologia , Doenças Hereditárias Autoinflamatórias/patologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Lipocalina-2/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th17/imunologia , Transcrição Genética/genética , Receptor Gatilho 1 Expresso em Células Mieloides/antagonistas & inibidores , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
12.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299102

RESUMO

Aging is associated with immune disregulation and oxidative stress which lead to inflammation and neurodegenerative diseases. We have tried to identify the anti-neuroinflammatory and anti-inflammatory components of Coreopsis lanceolata L. The dried flowers of C. lanceolata were extracted with 70% EtOH, and the obtained extract was divided into CH2Cl2, EtOAc, n-BuOH, and H2O fractions. The CH2Cl2 fraction was separated using silica gel and C-18 column chromatography to yield phenylheptatriyne (1), 2'-hydroxy-3,4,4'-trimethoxychalcone (2), and 4',7-dimethoxyflavanone (3). Additionally, the EtOAc fraction was subjected to silica gel, C-18, and Sephadex LH-20 column chromatography to yield 8-methoxybutin (4) and leptosidin (5). All the compounds isolated from C. lanceolata inhibited the production of nitric oxide (NO) in LPS-induced BV2 and RAW264.7 cells. In addition, phenylheptatriyne and 4',7-dimethoxyflavanone reduced the secretion of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6. Among them, phenylheptatriyne was significantly downregulated in the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequently, phenylheptatriyne also effectively inhibited nuclear factor-kappa B (NF-κB) activation in LPS-stimulated BV2 and RAW264.7 cells. Based on these results, the anti-neuroinflammatory effect of phenylheptatriyne isolated from C. lanceolata was confirmed, which may exert a therapeutic effect in treatment of neuroinflammation-related diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Coreopsis/química , Flores/química , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Dinoprostona/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais
13.
Physiol Rep ; 9(13): e14802, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34250766

RESUMO

In severe acute respiratory distress syndrome (ARDS), extracorporeal membrane oxygenation (ECMO) is a life-prolonging treatment, especially among COVID-19 patients. Evaluation of lung injury progression is challenging with current techniques. Diagnostic imaging or invasive diagnostics are risky given the difficulties of intra-hospital transportation, contraindication of biopsies, and the potential for the spread of infections, such as in COVID-19 patients. We have recently shown that particle flow rate (PFR) from exhaled breath could be a noninvasive, early detection method for ARDS during mechanical ventilation. We hypothesized that PFR could also measure the progress of lung injury during ECMO treatment. Lipopolysaccharide (LPS) was thus used to induce ARDS in pigs under mechanical ventilation. Eight were connected to ECMO, whereas seven animals were not. In addition, six animals received sham treatment with saline. Four human patients with ECMO and ARDS were also monitored. In the pigs, as lung injury ensued, the PFR dramatically increased and a particular spike followed the establishment of ECMO in the LPS-treated animals. PFR remained elevated in all animals with no signs of lung recovery. In the human patients, in the two that recovered, PFR decreased. In the two whose lung function deteriorated while on ECMO, there was increased PFR with no sign of recovery in lung function. The present results indicate that real-time monitoring of PFR may be a new, complementary approach in the clinic for measurement of the extent of lung injury and recovery over time in ECMO patients with ARDS.


Assuntos
COVID-19/fisiopatologia , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Material Particulado/análise , Síndrome do Desconforto Respiratório/fisiopatologia , Animais , Gasometria/métodos , COVID-19/induzido quimicamente , Oxigenação por Membrana Extracorpórea/métodos , Pulmão/efeitos dos fármacos , Lesão Pulmonar/induzido quimicamente , Material Particulado/efeitos adversos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/induzido quimicamente , Suínos
14.
Analyst ; 146(16): 5150-5159, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34286712

RESUMO

Label-free radiation pressure force analysis using a microfluidic platform is applied to the differential detection of innate immune cell activation. Murine-derived peritoneal macrophages (IC-21) are used as a model system and the activation of IC-21 cells by lipopolysaccharide (LPS) and interferon gamma (IFN-γ) to M1 pro-inflammatory phenotype is confirmed by RNA gene sequencing and nitric oxide production. The mean cell size determined by radiation pressure force analysis increases slightly after the activation (4 to 6%) and the calculated percentage of population overlaps between the control and the activated group after 14 and 24 h stimulations are at 79% and 77%. Meanwhile the mean cell velocity decreases more significantly after the activation (14% to 15%) and the calculated percentage of population overlaps between the control and the activated group after 14 and 24 h stimulations are only at 14% and 13%. The results demonstrate that the majority of the activated cells acquire a lower velocity than the cells from the control group without changes in cell size. For comparison label-free flow cytometry analysis of living IC-21 cells under the same stimulation conditions are performed and the results show population shifts towards larger values in both forward scatter and side scatter, but the calculated percentage of population overlaps in all case are significant (70% to 83%). Cell images obtained during radiation pressure force analysis by a CCD camera, and by optical microscopy and atomic force microscopy (AFM) reveal correlations between the cell activation by LPS/IFN-γ, the increase in cell complexity and surface roughness, and enhanced back scattered light by the activated cells. The unique relationship predicted by Mie's theory between the radiation pressure force exerted on the cell and the angular distribution of the scattered light by the cell which is influenced by its size, complexity, and surface conditions, endows the cell velocity based measurement by radiation pressure force analysis with high sensitivity in differentiating immune cell activation.


Assuntos
Lipopolissacarídeos , Macrófagos Peritoneais , Animais , Interferon gama , Lipopolissacarídeos/toxicidade , Camundongos , Microscopia de Força Atômica , Óxido Nítrico
15.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200709

RESUMO

Sepsis is characterized by multiple-organ dysfunction caused by the dysregulated host response to infection. Until now, however, the role of the Wnt signaling has not been fully characterized in multiple organs during sepsis. This study assessed the suppressive effect of a Wnt signaling inhibitor, Wnt-C59, in the kidney, lung, and liver of lipopolysaccharide-induced endotoxemic mice, serving as an animal model of sepsis. We found that Wnt-C59 elevated the survival rate of these mice and decreased their plasma levels of proinflammatory cytokines and organ-damage biomarkers, such as BUN, ALT, and AST. The Wnt/ß-catenin and NF-κB pathways were stimulated and proinflammatory cytokines were upregulated in the kidney, lung, and liver of endotoxemic mice. Wnt-C59, as a Wnt signaling inhibitor, inhibited the Wnt/ß-catenin pathway, and its interaction with the NF-κB pathway, which resulted in the inhibition of NF-κB activity and proinflammatory cytokine expression. In multiple organs of endotoxemic mice, Wnt-C59 significantly reduced the ß-catenin level and interaction with NF-κB. Our findings suggest that the anti-endotoxemic effect of Wnt-C59 is mediated via reducing the interaction between ß-catenin and NF-κB, consequently suppressing the associated cytokine upregulation in multiple organs. Thus, Wnt-C59 may be useful for the suppression of the multiple-organ dysfunction during sepsis.


Assuntos
Benzenoacetamidas/farmacologia , Citocinas/metabolismo , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , Piridinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , Animais , Citocinas/genética , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Domínios e Motivos de Interação entre Proteínas , beta Catenina/metabolismo
16.
Anal Chim Acta ; 1174: 338738, 2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34247736

RESUMO

Cysteine (Cys) is a critical amino acid that involves in many physiological and pathological processes in the human body, and it plays an important role in maintaining redox homeostasis in living systems. The concentration of intracellular Cys is abnormal under oxidative stress thus leading to many diseases. Therefore, it is significant to develop an effective method for detection of Cys under oxidative stress. In this work, we propose a new polymer-based ratiometric fluorescent probe with good selectivity and sensitivity for detecting Cys. The bioimaging experiments results show that the novel probe has a rapid ratiometric response to Cys, which can be used to monitor Cys level changes during LPS or H2O2 induced oxidative stress in living cells and zebrafish.


Assuntos
Cisteína , Corantes Fluorescentes , Animais , Cisteína/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/toxicidade , Lipopolissacarídeos/toxicidade , Estresse Oxidativo , Polímeros/toxicidade , Espectrometria de Fluorescência , Peixe-Zebra
17.
Biochemistry (Mosc) ; 86(6): 693-703, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34225592

RESUMO

Differential effect of the neonatal proinflammatory stress (NPS) on the development of neuroinflammation in the hippocampus and induction of the depressive-like behavior in juvenile and adult male and female rats was studied. NPS induction by bacterial lipopolysaccharide in the neonatal period upregulated expression of the Il6 and Tnf mRNAs accompanied by the development of depressive-like behavior in the adult male rats. NPS increased expression of the mRNAs for fractalkine and its receptor in the ventral hippocampus of the juvenile male rats, but did not affect expression of mRNAs for the proinflammatory cytokines and soluble form of fractalkine. NPS downregulated expression of fractalkine mRNA in the dorsal hippocampus of juvenile males. No significant effects of NPS were found in the female rats. Therefore, the NPS induces long-term changes in the expression of neuroinflammation-associated genes in different regions of the hippocampus, which ultimately leads to the induction of neuroinflammation and development of depressive-like behavior in male rats.


Assuntos
Quimiocina CX3CL1/genética , Depressão/etiologia , Hipocampo/metabolismo , Inflamação/metabolismo , Interleucina-6/genética , Fator de Necrose Tumoral alfa/genética , Animais , Animais Recém-Nascidos , Receptor 1 de Quimiocina CX3C/genética , Depressão/genética , Depressão/metabolismo , Depressão/fisiopatologia , Feminino , Regulação da Expressão Gênica , Hipocampo/patologia , Hipocampo/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/genética , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Caracteres Sexuais
18.
Biochemistry (Mosc) ; 86(6): 761-772, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34225597

RESUMO

According to the two-hit hypothesis of psychoneuropathology formation, infectious diseases and other pathological conditions occurring during the critical periods of early ontogenesis disrupt normal brain development and increase its susceptibility to stress experienced in adolescence and adulthood. It is believed that these disorders are associated with changes in the functional activity of the glutamatergic system in the hippocampus. Here, we studied expression of NMDA (GluN1, GluN2a, GluN2b) and AMPA (GluA1, GluA2) glutamate receptor subunits, as well as glutamate transporter EAAT2, in the ventral and dorsal regions of the hippocampus of rats injected with LPS during the third postnatal week and then subjected to predator stress (contact with a python) in adulthood. The tests were performed 25 days after the stress. It was found that stress altered protein expression in the ventral, but not in the dorsal hippocampus. Non-stressed LPS-treated rats displayed lower levels of the GluN2b protein in the ventral hippocampus vs. control animals. Stress significantly increased the content of GluN2b in the LPS-treated rats, but not in the control animals. Stress also affected differently the exploratory behavior of LPS-injected and control rats. Compared to the non-stressed animals, stressed control rats demonstrated a higher locomotor activity during the 1st min of the open field test, while the stressed LPS-injected rats displayed lower locomotor activity than the non-stressed rats. In addition, LPS-treated stressed and non-stressed rats spent more time in the open arms of the elevated plus maze and demonstrated reduced blood levels of corticosterone. To summarize the results of our study, exposure to bacterial LPS in the early postnatal ontogenesis affects the pattern of stress-induced changes in the behavior and hippocampal expression of genes coding for ionotropic glutamate receptor subunits after psychogenic trauma suffered in adulthood.


Assuntos
Comportamento Animal , Hipocampo/metabolismo , Lipopolissacarídeos/toxicidade , Receptores Ionotrópicos de Glutamato/genética , Estresse Psicológico/metabolismo , Animais , Animais Recém-Nascidos , Regulação da Expressão Gênica , Hipocampo/crescimento & desenvolvimento , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/genética
19.
Biomed Pharmacother ; 141: 111823, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147902

RESUMO

Here, we demonstrate that the two distinct formulations of our anti-sepsis drug candidate Rejuveinix (RJX), have a very favorable safety profile in Wistar Albino rats at dose levels comparable to the projected clinical dose levels. 14-day treatment with RJX-P (RJX PPP.18.1051) or RJX-B (RJX-B200702-CLN) similarly elevated the day 15 tissue levels of the antioxidant enzyme superoxide dismutase (SOD) as well as ascorbic acid in both the lungs and liver in a dose-dependent fashion. The activity of SOD and ascorbic acid levels were significantly higher in tissues of RJX-P or RJX-B treated rats than vehicle-treated control rats (p < 0.0001). There was no statistically significant difference between tissue SOD activity or ascorbic acid levels of rats treated with RJX-P vs. rats treated with RJX-B (p > 0.05). The observed elevations of the SOD and ascorbic acid levels were transient and were no longer detectable on day 28 following a 14-day recovery period. These results demonstrate that RJX-P and RJX-B are bioequivalent relative to their pharmacodynamic effects on tissue SOD and ascorbic acid levels. Furthermore, both formulations showed profound protective activity in a mouse model of sepsis. In agreement with the PD evaluations in rats and their proposed mechanism of action, both RJX-P and RJX-B exhibited near-identical potent and dose-dependent anti-oxidant and anti-inflammatory activity in the LPS-GalN model of ARDS and multi-organ failure in mice.


Assuntos
Ácido Ascórbico/química , Ácido Ascórbico/uso terapêutico , Sulfato de Magnésio/química , Sulfato de Magnésio/uso terapêutico , Niacinamida/química , Niacinamida/uso terapêutico , Ácido Pantotênico/química , Ácido Pantotênico/uso terapêutico , Piridoxina/química , Piridoxina/uso terapêutico , Riboflavina/química , Riboflavina/uso terapêutico , Sepse/tratamento farmacológico , Sepse/metabolismo , Tiamina/química , Tiamina/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Ascórbico/farmacologia , Cães , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Composição de Medicamentos , Feminino , Humanos , Lipopolissacarídeos/toxicidade , Sulfato de Magnésio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Niacinamida/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ácido Pantotênico/farmacologia , Piridoxina/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Riboflavina/farmacologia , Sepse/patologia , Superóxido Dismutase/metabolismo , Tiamina/farmacologia
20.
J Vet Med Sci ; 83(8): 1173-1177, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34121040

RESUMO

Genital bacterial infection is one of the most important causes of infertility, however, bacteria frequently exist in seminal fluid. Sperm express Toll-like receptors (TLRs) on their cell surfaces and bacterial recognition by TLRs induces sperm apoptosis. In this study, we examined the lactoferrin (LF) potentiality on sperm apoptosis induced by bacterial lipopolysaccharide (LPS). The TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay indicated that TUNEL-positive sperm cells were scarce in the group treated with LF and LPS (LF/LPS group) compared to the group treated with LPS only (LPS group). In addition, real-time RT-PCR detected lower mRNA expression levels of apoptosis-associated genes in the LF/LPS group compared to the LPS group. These results indicate that LF treatment of semen might decrease LPS-induced apoptosis of sperm.


Assuntos
Lactoferrina , Lipopolissacarídeos , Animais , Apoptose , Injeções Intraperitoneais/veterinária , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...