Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.277
Filtrar
1.
Med Hypotheses ; 143: 110203, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33017912

RESUMO

MicroRNAs (miRNAs) naturally occur in plants and all living organisms. They play an important role in gene regulation through binding toa specific region in open reading frames (ORFs) and/or untranslated regions (UTRs) to block the translation processes through either degrading or blocking mRNA resulting in knocking down or suppression of targeted genes. Plants and many organisms protect themselves from viruses through the production of miRNAs, which are complementary to 3UTR of viruses resulting in degrading the viral mRNA or block the translation on ribosomes. As pandemic, COVID-19, and its consequences on the global economy, we hypothesized a new approach for the treatment of COVID-19 paints. This approach includes designing a mix of miRNAs targeting several regions on COVID-19 open reading frame (ORF) and 3 UTR and suitable delivery system targeting respiratory system tissues. These synthesized miRNAs may be delivered to humansinnon-viral delivery systems such as liposomes like exosome (extracellular vesicle), polymer-based carriers, or inorganic nanoparticles, which are considered to be more suitable for human use.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/terapia , MicroRNAs/uso terapêutico , Pneumonia Viral/terapia , Regiões 3' não Traduzidas , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Sistemas de Liberação de Medicamentos , Exossomos , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Genoma Viral , Humanos , Lipossomos/química , Nanopartículas/química , Fases de Leitura Aberta , Pandemias , Pneumonia Viral/virologia , Polímeros/química
2.
Nat Commun ; 11(1): 4502, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908136

RESUMO

Biological tissues, such as muscle, can increase their mechanical strength after swelling due to the existence of many biological membrane barriers that can regulate the transmembrane transport of water molecules and ions. Oppositely, typical synthetic materials show a swelling-weakening behavior, which always suffers from a sharp decline in mechanical strength after swelling, because of the dilution of the network. Here, we describe a swelling-strengthening phenomenon of polymer materials achieved by a bioinspired strategy. Liposomal membrane nanobarriers are covalently embedded in a crosslinked network to regulate transmembrane transport. After swelling, the stretched network deforms the liposomes and subsequently initiates the transmembrane diffusion of the encapsulated molecules that can trigger the formation of a new network from the preloaded precursor. Thanks to the tough nature of the double-network structure, the swelling-strengthening phenomenon is achieved to polymer hydrogels successfully. Swelling-triggered self-strengthening enables the development of various dynamic materials.


Assuntos
Materiais Biomiméticos/química , Hidrogéis/química , Lipossomos/química , Nanoestruturas/química , Força Compressiva , Reagentes para Ligações Cruzadas/química , Lipossomos/ultraestrutura , Teste de Materiais , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Resistência à Tração
3.
Nat Commun ; 11(1): 4314, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887878

RESUMO

Previous studies on the phase behaviour of multicomponent lipid bilayers found an intricate interplay between membrane geometry and its composition, but a fundamental understanding of curvature-induced effects remains elusive. Thanks to a combination of experiments on lipid vesicles supported by colloidal scaffolds and theoretical work, we demonstrate that the local geometry and global chemical composition of the bilayer determine both the spatial arrangement and the amount of mixing of the lipids. In the mixed phase, a strong geometrical anisotropy can give rise to an antimixed state, where the lipids are mixed, but their relative concentration varies across the membrane. After phase separation, the bilayer organizes in multiple lipid domains, whose location is pinned in specific regions, depending on the substrate curvature and the bending rigidity of the lipid domains. Our results provide critical insights into the phase separation of cellular membranes and, more generally, two-dimensional fluids on curved substrates.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Microdomínios da Membrana , Lipossomos/química
4.
Crit Rev Ther Drug Carrier Syst ; 37(3): 271-303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749140

RESUMO

Nanotechnology has made great contributions in the development of materials with potential application in different areas, especially in the pharmaceutical sector, where nano-systems are being intensely studied for controlled drug release. These innovative systems are composed of structures such as nanoparticles, nanoemulsions, and cyclodextrins, with the aim of promoting enhanced bioavailability of bioactive molecules. Among these nanocarriers, vesicles such as liposomes and polymersomes are considered to be promising alternatives in delivering hydrophilic and lipophilic drugs. They have different classifications according to their composition, among which are hybrid vesicles, which unlike liposomes are composed of both lipids and polymers. These vesicular systems stand out for combining the advantages of both components, overcoming the limitations of traditional systems imposed by low stability and premature release of the encapsulated active substance. The polymers applied in hybrid vesicles can make up the membrane structure itself or be employed to coat preformed vesicles. Due to the relevance of these systems, this work covers their characteristics and summarizes recent articles about them in the literature.


Assuntos
Cosméticos/administração & dosagem , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Nanotecnologia/métodos , Polímeros/administração & dosagem , Nanomedicina Teranóstica/métodos , Animais , Cosméticos/química , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipídeos/química , Lipossomos/administração & dosagem , Lipossomos/química , Nanopartículas/química , Polímeros/química
5.
Int J Nanomedicine ; 15: 5279-5288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801691

RESUMO

Introduction: Today, a new paradigm has emerged for cancer treatment introducing combination therapies. Doxil, a liposomal doxorubicin serving as a chemotherapeutic agent, is an effective immunogenic killer of cancer cells. Anti-CTLA-4 has been approved for the treatment of some cancers, including melanoma, but side effects have limited its therapeutic potential. Methods: In this study, two approaches were utilized to increase treatment efficiency and decrease the side effects of anti-CTLA-4, combining it with chemotherapy and encapsulation in a PEGylated liposome. A different sequence of anti-CTLA-4 and Doxil was assessed in combination therapy using non-liposomal and liposomal anti-CTLA-4. Results: Our results showed that liposomal anti-CTLA-4 reduced the size of established tumors and increased survival in comparison with non-liposomal anti-CTLA-4 in a well-established B16 mouse melanoma model. In combination therapy with Doxil, only the administration of anti-CTLA-4 before Doxil showed synergism in both non-liposomal and liposomal form and increased the CD8+/regulatory T cell ratio. Discussion: In summary, our results demonstrate the potential of utilizing a nanocarrier system for the delivery of checkpoint blockers, such as anti-CTLA-4 which further showed potential in a combination therapy, especially when administered before chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Melanoma Experimental/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Antígeno CTLA-4/imunologia , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Feminino , Lipossomos/química , Camundongos Endogâmicos C57BL , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Linfócitos T Reguladores/efeitos dos fármacos
6.
Int J Nanomedicine ; 15: 4933-4941, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764926

RESUMO

Purpose: The aim of this study was to develop an avidin-modified macromolecular lipid magnetic sphere and its application in differential diagnosis of liver disease and liver cancer. Materials and Methods: Lectin-modified macromolecular lipid magnetic spheres were prepared by thin-film hydration method using lentil lectin derivatives (LCA-HQ) and cholesterol as raw materials. Alpha-fetoprotein variants (AFP-L3) in serum from healthy people, liver disease and liver cancer patients were isolated using the prepared lectin-modified macromolecular lipid magnetic spheres, and alpha-fetoprotein (AFP) and AFP-L3 were detected by fully automatic time-resolved fluorescence immunoassay. Results: The lectin polymer lipid magnetic sphere prepared in this study was superparamagnetic and encapsulated by a lectin derivative. There was no significant difference in the recovery rate of AFP-L3 between avidin magnetic ball-automatic time-resolved fluorescence immunoassay and manual micro-affinity column method (p>0.05). We found that AFP-L3 can be used as a differential indicator between liver cancer and liver disease. The positive rate of AFP and AFP-L3 in liver cancer patients was higher than that in healthy people and liver disease patients (p<0.001). The AUC (95% CI) of AFP and AFP-L3 were 0.743 ± 0.031 and 0.850 ± 0.024, respectively. AFP-L3 AUC value is greater than AFP; therefore, AFP-L3 distinguishes liver cancer more accurately, and the difference is statistically different, p<0.05. Conclusion: We proposed a novel method for integration of the lectin polymer lipid magnetic spheres and time-resolved fluorescence immunoassay that enables simple, accurate and rapid determination of AFP-L3 in clinical samples. To be noted, fully automatic time-resolved fluorescence immunoassay compared with the commonly used techniques in clinical practice, the measurement procedure is simple and is expected to be used for the detection and accurate diagnosis of liver cancer.


Assuntos
Fluorescência , Lipossomos/química , Neoplasias Hepáticas/diagnóstico , Mutação , Polímeros/química , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , Adulto , Área Sob a Curva , Automação , Biomarcadores Tumorais/sangue , Feminino , Humanos , Imunoensaio/métodos , Neoplasias Hepáticas/sangue , Imãs/química , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
7.
Int J Nanomedicine ; 15: 5575-5589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801705

RESUMO

Purpose: The overexpression of Her-2 in 25-30% breast cancer cases and the crosstalk between Her-2 and fatty acid synthase (FASN) establishes Her-2 as a promising target for site-directed delivery. The present study aimed to develop the novel lipid base formulations to target and inhibit the cellular proliferation of Her-2-expressing breast cancer cells through the silencing of FASN. In order to achieve this goal, we prepared DSPC/Chol and DOPE/CHEMS immunoliposomes, conjugated with the anti-Her-2 fab' and encapsulated FASN siRNA against breast cancer cells. Methods: We evaluated the size, stability, cellular uptake and internalization of various formulations of liposomes. The antiproliferative gene silencing potential was investigated by the cell cytotoxicity, crystal violet, wound healing and Western blot analyses in Her-2+ and Her-2¯ breast cancer cells. Results: The data revealed that both nanosized FASN-siRNA-encapsulated liposomes showed significantly higher cellular uptake and internalization with enhanced stability. The cell viability of Her-2+ SK-BR3 cells treated with the targeted formulation of DSPC/Chol- and DOPE/CHEMS-encapsulating FASN-siRNA reduced to 30% and 20%, respectively, whereas it was found to be 45% and 36% in MCF-7 cells. The wounds were not only failed to close but they became broader in Her-2+ cells treated with targeted liposomes of siRNA. Consequently, the amount of FASN decreased by 80% in SK-BR3 cells treated with non-targeted liposomes and it was 30% and 60% in the MCF-7 cells treated with DSPC/Chol and DOPE/CHEMS liposomes, respectively. Conclusion: In this study, we developed the formulation that targeted Her-2 for the suppression of FASN and, therefore, inhibited the proliferation of breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Ácido Graxo Sintase Tipo I/genética , Terapia de Alvo Molecular/métodos , Receptor ErbB-2/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Feminino , Inativação Gênica , Humanos , Concentração de Íons de Hidrogênio , Fragmentos Fab das Imunoglobulinas/química , Lipídeos/química , Lipossomos/administração & dosagem , Lipossomos/química , Lipossomos/imunologia , Células MCF-7 , RNA Interferente Pequeno/genética , Receptor ErbB-2/imunologia
8.
Nat Commun ; 11(1): 3638, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686667

RESUMO

Surface charge plays a fundamental role in determining the fate of a nanoparticle, and any encapsulated contents, in vivo. Herein, we describe, and visualise in real time, light-triggered switching of liposome surface charge, from neutral to cationic, in situ and in vivo (embryonic zebrafish). Prior to light activation, intravenously administered liposomes, composed of just two lipid reagents, freely circulate and successfully evade innate immune cells present in the fish. Upon in situ irradiation and surface charge switching, however, liposomes rapidly adsorb to, and are taken up by, endothelial cells and/or are phagocytosed by blood resident macrophages. Coupling complete external control of nanoparticle targeting together with the intracellular delivery of encapsulated (and membrane impermeable) cargos, these compositionally simple liposomes are proof that advanced nanoparticle function in vivo does not require increased design complexity but rather a thorough understanding of the fundamental nano-bio interactions involved.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Nanopartículas/química , Animais , Cátions/metabolismo , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Macrófagos , Membranas/metabolismo , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Fagocitose , Peixe-Zebra
9.
Food Chem ; 333: 127442, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32673950

RESUMO

Betalains are violet-red, natural food grade pigments with health benefits; however, their stability limits its use in industrial food processing. This can be overcome by placing the betalains in lecithin nanoliposomes (NLs), which causes a 76% improvement of betalain colour and stability. Extended sonication time (8 min) lowered the zeta potential (-47.5 to -40.8), and particle size (74.23 to 55.35 nm). Zeta potential, particle size, and polydispersity index of Betalain NLs (BNLs) didn't change significantly during storage (40 days). Degradation in the colour of BNLs was observed only at 121 °C (20 min) while the native juice degraded at 100 °C (20 min). BNLs were incorporated in gummy candies (GuCa) to improve its colour stability. The betalain retention, colour, texture, antioxidant activity, and shelf-life of the GuCa during storage (5 °C, 28 days) demonstrated the efficacy of BNLs to be explored as a natural colourant for the food industry.


Assuntos
Betalaínas/química , Doces , Caryophyllales/química , Frutas/química , Lipossomos/química , Antioxidantes/química , Cor , Dieta Vegana , Manipulação de Alimentos/métodos , Armazenamento de Alimentos , Sucos de Frutas e Vegetais , Humanos , Nanoestruturas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Paladar , Temperatura
10.
Int J Nanomedicine ; 15: 3953-3964, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581539

RESUMO

Objective: To construct an ideal theranostic nanoplatform (LIP3); to clarify its physicochemical properties; to confirm its characteristics of dual-modality imaging, active-targeting, and cascade amplification therapy for mammary carcinoma; and to perform a preliminary exploration of the cytotoxicity mechanism. Design: A self-prepared liposome nanosystem, LIP3, can actively target 4T1 cells because the surface is linked with C-RGD. Haematoporphyrin monomethyl ether (HMME), an excellent sonosensitizer entrapped in the lipid bilayer, can function in photoacoustic imaging. Low-intensity focused ultrasound (LIFU) of ultrasound-targeted microbubble destruction (UTMD) promotes localized drug delivery into tumours because PFH, a phase-change substance, is loaded in the LIP3 core, achieving visualization of targeted drug release, and sonodynamic therapy (SDT) can kill tumour cells. SDT provides a favourable environment for AQ4N, resulting in amplification of LIP3 treatment. Therefore, LIP3 shows targeted aggregation and targeted release, integrating dual-mode imaging and precise treatment. Results: The self-prepared lipid nanosystem, LIP3, meets the above expectations and has ideal physicochemical properties, with a regular sphere with uniform distribution. Contrast-enhanced ultrasound (CEUS), photoacoustic imaging, and bimodal imaging were effective in vitro. In 4T1 cell experiments, the cell capacity was as high as 42.9%, and the cytotoxicity to 4T1 was more than 5 times that of LIP1 (containing AQ4N only) and more than 2 times that of LIP2 (containing only HMME), achieving comparable results as cascade therapy for mammary cancer. Conclusion: LIP3, a theranostic nanoplatform, was successfully constructed and conformed to the physicochemical characterization of ideal nanoparticles, with active-targeting, dual-modality imaging, visualized drug release, and precise treatment under the action of LIFU. SDT provides a favourable environment for AQ4N, resulting in amplification of LIP3 treatment. Therefore, LIP3 shows targeted aggregation and targeted release, integrating dual-mode imaging, and precise cascade treatment. This unique theranostic NPS with multiple capabilities is expected to be a favourable anti-cancer method in the future.


Assuntos
Neoplasias da Mama/terapia , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Animais , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Meios de Contraste/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Hematoporfirinas/química , Humanos , Lipídeos/química , Lipossomos/química , Camundongos Nus , Nanopartículas/uso terapêutico , Oligopeptídeos/química , Coelhos , Ultrassonografia de Intervenção/métodos
11.
Adv Exp Med Biol ; 1257: 133-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483736

RESUMO

The recruitment of autologous macrophages to attack osteosarcoma represents a novel immunotherapy approach to the treatment of osteosarcoma. Muramyl tripeptide-phosphatidyl ethanolamine encapsulated in liposomes (L-MTP-PE) was derived as a compound with the ability to stimulate macrophages to destroy autologous osteosarcoma tumor cells. Preclinical studies including studies in dogs with spontaneously arising osteosarcoma showed the ability of L-MTP-PE to control microscopic metastatic disease in osteosarcoma. A pivotal clinical trial led to the approval of L-MTP-PE for the treatment of newly diagnosed osteosarcoma in over 40 countries.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Acetilmuramil-Alanil-Isoglutamina , Animais , Neoplasias Ósseas/tratamento farmacológico , Ensaios Clínicos como Assunto , Cães , Humanos , Fatores Imunológicos/administração & dosagem , Lipossomos/administração & dosagem , Lipossomos/química , Osteossarcoma/tratamento farmacológico , Fosfatidiletanolaminas/administração & dosagem
12.
AAPS PharmSciTech ; 21(5): 167, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504176

RESUMO

Ciprofloxacin is a commonly used antibiotic for treatment of bacterial conjunctivitis. The conventional eye drop dosage form is the widely used mode of treatment, but it has low corneal residence time. This drawback can be overcome by developing a bioadhesive noisome system (chitosan-coated) for enhanced corneal residence time. The niosomes were prepared by thin-film hydration technique and optimized by using Box-Behnken statistical design software. Cholesterol (A), Span 60 (B), and sonication time (C) were selected as independent variables, whereas vesicle size (Y1 in nm), entrapment efficiency (Y2 in %), and drug release (Y3 in %) were chosen as dependent variables. The vesicle size, entrapment efficiency, and drug release of optimized CIP niosomes (CIP-NSMopt) were found to be 180.34 ± 5.13 nm, 78.32 ± 4.49%, and 82.87 ± 4.01% (in 12 h), respectively. Further CIP-NSMopt was coated with different chitosan concentrations (0.1 to 0.3%) to enhance mucoadhesion. Finally, optimized chitosan-coated niosomes (chitosomes; CIP-CHTopt) showed a vesicle size of 210.65 ± 2.76 nm, zeta potential of - 35.17 ± 2.25Mv, and PDI of 0.221. CIP-CHTopt exhibited sustained release profile (75.31% in 12 h) with the Korsmeyer-Peppas kinetic model (R2 = 0.980). The permeation study showed 1.79-fold enhancements in corneal permeation compared with marketed CIP eye drop. The hen's egg chorioallantoic membrane (HET-CAM) study showed 0 scores (no irritation), and it was further confirmed by corneal hydration and histopathology study. The antimicrobial study exhibited a significant high zone (P < 0.05) of inhibition against tested organism. Our findings demonstrated that chitosan-coated niosomes are a promising drug carrier to enhance corneal contact time and treatment of bacterial conjunctivitis.


Assuntos
Antibacterianos/química , Quitosana/química , Membrana Corioalantoide/efeitos dos fármacos , Ciprofloxacino/química , Soluções Oftálmicas/química , Animais , Galinhas , Ciprofloxacino/farmacologia , Ciprofloxacino/toxicidade , Portadores de Fármacos , Composição de Medicamentos , Lipossomos/química
13.
PLoS One ; 15(6): e0235422, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32584899

RESUMO

Alternatives to antibiotics for prevention of respiratory tract infections in cattle are urgently needed given the increasing public and regulatory pressure to reduce overall antibiotic usage. Activation of local innate immune defenses in the upper respiratory tract is one strategy to induce non-specific protection against infection with the diverse array of viral and bacterial pathogens associated with bovine respiratory disease complex (BRDC), while avoiding the use of antibiotics. Our prior studies in rodent models demonstrated that intranasal administration of liposome-TLR complexes (LTC) as a non-specific immune stimulant generated high levels of protection against lethal bacterial and viral pathogens. Therefore, we conducted studies to assess LTC induction of local immune responses and protective immunity to BRDC in cattle. In vitro, LTC were shown to activate peripheral blood mononuclear cells in cattle, which was associated with secretion of INFγ and IL-6. Macrophage activation with LTC triggered intracellular killing of Mannheimia hemolytica and several other bacterial pathogens. In studies in cattle, intranasal administration of LTC demonstrated dose-dependent activation of local innate immune responses in the nasopharynx, including recruitment of monocytes and prolonged upregulation (at least 2 weeks) of innate immune cytokine gene expression by nasopharyngeal mucosal cells. In a BRDC challenge study, intranasal administration of LTC prior to pathogen exposure resulted in significant reduction in both clinical signs of infection and disease-associated euthanasia rates. These findings indicate that intranasal administration of a non-specific innate immune stimulant can be an effective method of rapidly generating generalized protection from mixed viral and bacterial respiratory tract infections in cattle.


Assuntos
Complexo Respiratório Bovino/patologia , Imunidade Inata/efeitos dos fármacos , Fármacos do Sistema Respiratório/farmacologia , Administração Intranasal , Animais , Complexo Respiratório Bovino/tratamento farmacológico , Complexo Respiratório Bovino/mortalidade , Bovinos , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Lipossomos/química , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Mannheimia haemolytica/isolamento & purificação , Mannheimia haemolytica/patogenicidade , Nasofaringe/metabolismo , Nasofaringe/microbiologia , Óxido Nítrico/metabolismo , Fagocitose , Fármacos do Sistema Respiratório/uso terapêutico , Taxa de Sobrevida , Receptor 3 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Regulação para Cima/efeitos dos fármacos
14.
Int J Nanomedicine ; 15: 2809-2828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368056

RESUMO

Introduction: Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). Methods: Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. Results: SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. Discussion: SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Lipossomos/administração & dosagem , Interferência de RNA , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Glioblastoma/genética , Glioblastoma/patologia , Ouro/química , Humanos , Lipossomos/química , Masculino , Nanopartículas Metálicas/química , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Ácidos Nucleicos/química , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/farmacocinética , Proteínas do Envelope Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Food Chem ; 326: 126973, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413757

RESUMO

The aim of this study was to substitute part of soybean phospholipid (SPC) with hydrogenated soybean phospholipid (HSPC) in curcumin-loaded liposomes (Cur-LP), in order to further enhance stability and release performances of curcumin. When the SPC/HSPC mass ratio changed from 10:0 to 5:5, vesicle size, encapsulation efficiency and alkali resistance of curcumin increased, although a small decrease in centrifugal stability was observed. Salt stability became worse as more HSPC was used (3:7 and 0:10). Owing storage at 4 °C and 25 °C, Cur-LP at a SPC/HSPC mass ratio of 5:5 performed well considering vesicle size, lipid oxidation and curcumin retention. These vesicles displayed also the best sustained-release performance in simulated digestion, attributed to the tighter lipid packing in membranes as indicated by fluorescence probes, DSC and FTIR. This study can guide the development of a Cur-LP product with improved shelf-life stability by using HSPC.


Assuntos
Curcumina/farmacocinética , Lipossomos/química , Lipossomos/farmacocinética , Fosfolipídeos/química , Varredura Diferencial de Calorimetria , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Hidrogenação , Lecitinas , Soja/química , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Int J Nanomedicine ; 15: 2841-2858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425521

RESUMO

Introduction: Osthole (Ost) is a coumarin compound that strengthens hippocampal neurons and neural stem cells against Aß oligomer-induced neurotoxicity in mice, and is a potential drug for the treatment of Alzheimer's disease (AD). However, the effectiveness of the drug is limited by its solubility and bioavailability, as well as by the low permeability of the blood-brain barrier (BBB). In this study, a kind of transferrin-modified Ost liposomes (Tf-Ost-Lip) was constructed, which could improve the bioavailability and enhance brain targeting. Methods: Tf-Ost-Lip was prepared by thin-film hydration method. The ability of liposomal formulations to translocate across BBB was investigated using in vitro BBB model. And the protective effect of Tf-Ost-Lip was evaluated in APP-SH-SY5Y cells. In addition, we performed pharmacokinetics study and brain tissue distribution analysis of liposomal formulations in vivo. We also observed the neuroprotective effect of the varying formulations in APP/PS-1 mice. Results: In vitro studies reveal that Tf-Ost-Lip could increase the intracellular uptake of hCMEC/D3 cells and APP-SH-SY5Y cells, and increase the drug concentration across the BBB. Additionally, Tf-Ost-Lip was found to exert a protective effect on APP-SH-SY5Y cells. In vivo studies of pharmacokinetics and the Ost distribution in brain tissue indicate that Tf-Ost-Lip prolonged the cycle time in mice and increased the accumulation of Ost in the brain. Furthermore, Tf-Ost-Lip was also found to enhance the effect of Ost on the alleviation of Alzheimer's disease-related pathology. Conclusion: Transferrin-modified liposomes for delivery of Ost has great potential for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Cumarínicos/farmacologia , Lipossomos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/patologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular , Cumarínicos/química , Cumarínicos/farmacocinética , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Polietilenoglicóis/química , Presenilina-1/genética , Ratos Sprague-Dawley , Distribuição Tecidual , Transferrina/química
17.
AAPS PharmSciTech ; 21(5): 143, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424702

RESUMO

This work aims to improve the functionality of Rosmarinus officinalis L. (rosemary) polyphenols by encapsulation in an optimized proliposome formulation. A 23 Box-Wilson central composite design (CCD) was employed to determine lone and interaction effects of composition variables on moisture content (Xp); water activity (Aw); concentration and retention of rosemary polyphenols-rosmarinic acid (ROA), carnosol (CAR), and carnosic acid (CNA); and recovery of spray-dried proliposomes (SDP). Processing conditions which generate proliposomes with optimum physicochemical properties were determined by multi-response analysis (desirability approach). Antioxidant and antifungal activities were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) sequestering and minimum inhibitory concentration (MIC)/minimum fungicidal concentration (MFC) assays, respectively. SDP exhibited high polyphenol retention, ranging from 62.0 to 100.0% w/w, showing dependence on composition variables and polyphenol lipophilicity. SDP recovery ranged from 20.1 to 45.8%, with Xp and Aw of 1.7 ± 0.14-2.5 ± 0.23% w/w and 0.30 ± 0.004-0.47 ± 0.003, respectively, evidencing product with good chemical and microbiological stability. Optimum liposomal composition was determined, namely, lipid concentration (4.26% w/w), lyophilized extract (LE) concentration (4.48% w/w), and drying aid:(lipid+extract) ratio (7.55% w/w) on wet basis. Relative errors between experimental and predicted values for SDP properties showed concurrence for all responses except CAR retention, being 22% lower. SDP showed high antioxidant activity with IC50 of 9.2 ± 0.2 µg/mL, superior to results obtained for LE (10.8 µg/mL) and butylated hydroxytoluene (BHT), a synthetic antioxidant (12.5 µg/mL). MIC and MFC against Candida albicans (ATCC1023) were 312.5 µg/mL and 1250 µg/mL, respectively, a moderate antimicrobial activity for phytochemical-based products. SDP is shown as a veritable tool to encapsulate hydrophilic and lipophilic rosemary polyphenols generating a product with optimal physicochemical and biological properties.


Assuntos
Lipossomos/química , Polifenóis/química , Rosmarinus/química , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Candida albicans/efeitos dos fármacos , Cápsulas , Dessecação , Composição de Medicamentos , Liofilização , Humanos , Lipídeos/química , Testes de Sensibilidade Microbiana , Folhas de Planta/química , Polifenóis/administração & dosagem , Polifenóis/farmacologia , Água/análise
18.
AAPS PharmSciTech ; 21(5): 156, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32449087

RESUMO

Proniosomes are free-flowing systems with coating carriers, which developed as a method for improving the drug flow and pulmonary delivery. Extensive research on proniosomes was done to enhance the dry powder inhalers (DPI)'s inhalation performance. This research aimed at studying the impact of lactose-mannitol mixture additives on the proniosome's physicochemical properties as a method for improving the inhalation efficiency of DPI. Vismodegib has been employed as a compound model. Box-Behnken design has been employed to prepare different proniosomes formulae by incorporating various (A) span 60 concentrations, (B) lactose concentrations and (C) mannitol: total carrier mixture. The measured responses were vesicle size (R1), %release (R2), Carr's index (R3) and %recovery (R4). The results displayed that R1 and R4 were significantly antagonistic to C and significantly synergistic to both A and B while R2 and R3 were significantly synergistic to C and significantly antagonistic to both A and B. The optimal formula was selected for its aerodynamic behaviour, cytotoxic activity and bioavailability assessment. The optimal formula resulted in better Vismodegib lung deposition, cytotoxic activity and relative bioavailability. This novel formula could be a promising carrier for sustained delivery of drugs via the pulmonary route.


Assuntos
Portadores de Fármacos/química , Inaladores de Pó Seco , Lipossomos/química , Administração por Inalação , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Disponibilidade Biológica , Composição de Medicamentos , Desenho de Fármacos , Lactose , Manitol/química , Tamanho da Partícula , Pós
19.
J Vis Exp ; (158)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32391815

RESUMO

The bottom-up assembly approach for construction of synthetic cells is an effective tool for isolating and investigating cellular processes in a cell mimicking environment. Furthermore, the development of cell-free expression systems has demonstrated the ability to reconstitute the protein production, transcription and translation processes (DNA→RNA→protein) in a controlled manner, harnessing synthetic biology. Here we describe a protocol for preparing a cell-free expression system, including the production of a potent bacterial lysate and encapsulating this lysate inside cholesterol-rich lipid-based giant unilamellar vesicles (GUVs) (i.e., stable liposomes), to form synthetic cells. The protocol describes the methods for preparing the components of the synthetic cells including the production of active bacterial lysates, followed by a detailed step-by-step preparation of the synthetic cells based on a water-in-oil emulsion transfer method. These facilitate the production of millions of synthetic cells in a simple and affordable manner with a high versatility for producing different types of proteins. The obtained synthetic cells can be used to investigate protein/RNA production and activity in an isolated environment, in directed evolution, and also as a controlled drug delivery platform for on-demand production of therapeutic proteins inside the body.


Assuntos
Células Artificiais/metabolismo , Emulsões/química , Escherichia coli/metabolismo , Biossíntese de Proteínas , Biologia Sintética/métodos , Sistema Livre de Células/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Lipossomos/química , Luciferases/metabolismo
20.
AAPS PharmSciTech ; 21(5): 138, 2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32419093

RESUMO

Physical stability is one of critical characteristics of liposome, especially to its clinical application. Vesicle fusion was one of the common physical stability phenomena that occurred during the long storage period. Because vesicle fusion could be easily checked by the change of vesicle size, it was widely applied in the evaluation of liposome physical stability. However, since the method requires the liposome to be placed under certain conditions for long-term observation, a liposome physical stability test usually takes several weeks, which greatly hinders the research efficiency. In this study, to speed up the research efficiency, coarse-grained molecular dynamics was first applied in the study of liposome physical stability. By analyzing the microprocess of vesicle fusion, two parameters including diffusion constant and the total time of the vesicle morphology transition process were employed to study the liposome physical stability. Then, in order to verify the applicability of two parameters, the physical stability of elastic liposomes and conventional liposomes was compared at 3 different temperatures. It was found that the fusion probability and speed of elastic liposomes were higher than those of conventional liposomes. Thus, elastic liposomes showed a worse physical stability compared with that of conventional liposomes, which was consistent with former research. Through this research, a new efficient method based on coarse-grained molecular dynamics was proposed for the study of liposome physical stability.


Assuntos
Lipossomos/química , Simulação de Dinâmica Molecular , Algoritmos , Química Farmacêutica , Estabilidade de Medicamentos , Elasticidade , Fusão de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA