Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.235
Filtrar
1.
Methods Mol Biol ; 2619: 273-292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662477

RESUMO

MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Proteoglycans are glycoproteins characterized by covalent attachment of a glycosaminoglycan chain, which have been identified as regulatory targets of microRNAs in a physiological and pathophysiological context. We present a strategy and detailed methods for the functional analysis of microRNA regulation of proteoglycans using human cancer cells as an application example. The experimental setup includes in silico microRNA target prediction, transfection of cancer cells with microRNA precursors, validation of target regulation by qPCR, flow cytometry and luciferase reporter assays, and an example for functional analysis and phenotype confirmation by complementation analysis.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Transfecção , Luciferases/metabolismo
2.
PLoS One ; 18(1): e0279875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662734

RESUMO

Bioluminescence imaging (BLI) of gene expression in live animals is a powerful method for monitoring development, tumor growth, infections, healing, and other progressive, long-term biological processes. BLI remains an effective approach for reducing the number of animals needed to monitor dynamic changes in gene activity because images can be captured repeatedly from the same animals. When examining these ongoing changes, it is sometimes necessary to remove rhythmic effects on the bioluminescence signal caused by the circadian clock's daily modulation of gene expression. Furthermore, BLI using freely moving animals remains limited because the standard procedures can alter normal behaviors. Another obstacle with conventional BLI of animals is that luciferin, the firefly luciferase substrate, is usually injected into mice that are then imaged while anesthetized. Unfortunately, the luciferase signal declines rapidly during imaging as luciferin is cleared from the body. Alternatively, mice are imaged after they are surgically implanted with a pump or connected to a tether to deliver luciferin, but stressors such as this surgery and anesthesia can alter physiology, behavior, and the actual gene expression being imaged. Consequently, we developed a strategy that minimizes animal exposure to stressors before and during sustained BLI of freely moving unanesthetized mice. This technique was effective when monitoring expression of the Per1 gene that serves in the circadian clock timing mechanism and was previously shown to produce circadian bioluminescence rhythms in live mice. We used hairless albino mice expressing luciferase that were allowed to drink luciferin and engage in normal behaviors during imaging with cooled electron-multiplying-CCD cameras. Computer-aided image selection was developed to measure signal intensity of individual mice each time they were in the same posture, thereby providing comparable measurements over long intervals. This imaging procedure, performed primarily during the animal's night, is compatible with entrainment of the mouse circadian timing system to the light cycle while allowing sampling at multi-day intervals to monitor long-term changes. When the circadian expression of a gene is known, this approach provides an effective alternative to imaging immobile anesthetized animals and can removing noise caused by circadian oscillations and body movements that can degrade data collected during long-term imaging studies.


Assuntos
Diagnóstico por Imagem , Luciferases de Vaga-Lume , Camundongos , Animais , Luciferases/genética , Luciferases/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Expressão Gênica , Luciferinas , Medições Luminescentes/métodos
3.
Anal Chem ; 95(2): 668-676, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36548400

RESUMO

It is estimated that more than 2 billion people are chronically infected with the intracellular protozoan parasite Toxoplasma gondii (T. gondii). Despite this, there is currently no vaccine to prevent infection in humans, and there is no recognized curative treatment to clear tissue cysts. A major hurdle for identifying effective drug candidates against chronic-stage cysts has been the low throughput of existing in vitro assays for testing the survival of bradyzoites. We have developed a luciferase-based platform for specifically determining bradyzoite survival within in vitro cysts in a 96-well plate format. We engineered a cystogenic type II T. gondii PruΔku80Δhxgpr strain for stage-specific expression of firefly luciferase in the cytosol of bradyzoites and nanoluciferase for secretion into the lumen of the cyst (DuaLuc strain). Using this DuaLuc strain, we found that the ratio of firefly luciferase to nanoluciferase decreased upon treatment with atovaquone or LHVS, two compounds that are known to compromise bradyzoite viability. The 96-well format allowed us to test several additional compounds and generate dose-response curves for calculation of EC50 values indicating relative effectiveness of a compound. Accordingly, this DuaLuc system should be suitable for screening libraries of diverse compounds and defining the potency of hits or other compounds with a putative antibradyzoite activity.


Assuntos
Toxoplasma , Humanos , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Atovaquona/metabolismo , Atovaquona/farmacologia , Luciferases/genética , Luciferases/metabolismo
4.
Plant Physiol Biochem ; 194: 696-707, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565614

RESUMO

Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.


Assuntos
Fagopyrum , Rutina , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides/metabolismo , Luciferases/metabolismo , Rutina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
5.
Curr Protoc ; 2(12): e615, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36469580

RESUMO

The pregnane X receptor (PXR) is a nuclear receptor found mainly in the liver and intestine, whose main function is to regulate the expression of drug-metabolizing enzymes and transporters. Recently, it has been noted that PXR plays critical roles in energy homeostasis, immune response, and cancer. Therefore, identifying chemicals or compounds that can modulate PXR is of great interest, as these can result in downstream toxicity or, alternatively, may have therapeutic potential. Testing one compound at a time for PXR activity would be inefficient and take thousands of hours for large compound libraries. Here, we describe a high-throughput screening method that encompasses plating and treating HepG2-CYP3A4-hPXR cells in a 1536-well plate, as well as reading and interpreting assay (e.g., luciferase reporter gene activity) endpoints. These cells are stably transfected with a human PXR expression vector and CYP3A4-promoter-driven luciferase reporter vector, allowing the identification of compounds that activate PXR through cytochrome 450 3A4. We also describe how to analyze the data from each assay and explain follow-up steps, namely pharmacological characterization and quantitative polymerase chain reaction (qPCR) assays, which can be performed to confirm results from the original screen. These methods can be used to identify and confirm hPXR activators after completion of a compound screening. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Establishment of a high-throughput assay to identify hPXR activators Basic Protocol 2: Quantitative high-throughput screening a compound library to classify hPXR activators Basic Protocol 3: Performing pharmacological characterization and qPCR assays to confirm hPXR activators.


Assuntos
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Receptor de Pregnano X/genética , Citocromo P-450 CYP3A/genética , Receptores de Esteroides/genética , Receptores Citoplasmáticos e Nucleares , Luciferases/metabolismo
6.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555716

RESUMO

The application of in vivo bioluminescent imaging in infectious disease research has significantly increased over the past years. The detection of transgenic parasites expressing wildtype firefly luciferase is however hampered by a relatively low and heterogeneous tissue penetrating capacity of emitted light. Solutions are sought by using codon-optimized red-shifted luciferases that yield higher expression levels and produce relatively more red or near-infrared light, or by using modified bioluminescent substrates with enhanced cell permeability and improved luminogenic or pharmacokinetic properties. In this study, the in vitro and in vivo efficacy of two modified bioluminescent substrates, CycLuc1 and AkaLumine-HCl, were compared with that of D-luciferin as a gold standard. Comparisons were made in experimental and insect-transmitted animal models of leishmaniasis (caused by intracellular Leishmania species) and African trypanosomiasis (caused by extracellular Trypanosoma species), using parasite strains expressing the red-shifted firefly luciferase PpyRE9. Although the luminogenic properties of AkaLumine-HCl and D-luciferin for in vitro parasite detection were comparable at equal substrate concentrations, AkaLumine-HCl proved to be unsuitable for in vivo infection follow-up due to high background signals in the liver. CycLuc1 presented a higher in vitro luminescence compared to the other substrates and proved to be highly efficacious in vivo, even at a 20-fold lower dose than D-luciferin. This efficacy was consistent across infections with the herein included intracellular and extracellular parasitic organisms. It can be concluded that CycLuc1 is an excellent and broadly applicable alternative for D-luciferin, requiring significantly lower doses for in vivo bioluminescent imaging in rodent models of leishmaniasis and African trypanosomiasis.


Assuntos
Parasitos , Tripanossomíase Africana , Animais , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Parasitos/metabolismo , Medições Luminescentes/métodos , Luciferases/genética , Luciferases/metabolismo , Luciferinas , Luciferina de Vaga-Lumes/metabolismo
7.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555241

RESUMO

Milk fat is the foremost nutrient of milk and a vital indicator in evaluating milk quality. Accumulating evidence suggests that microRNAs (miRNAs) are involved in the synthesis of milk fat. The miR-200c is closely related to lipid metabolism, but little is known about its effect on the synthesis of milk fat in MECs of ewes. Herein, the effect of miR-200c on the proliferation of ovine mammary epithelial cells (MECs) and its target relationship with a predicted target gene were investigated. The regulatory effects of miR-200c on the expression of the target genes and the content of triglycerides in ovine MECs were further analyzed. The results revealed that the expression level of miR-200c was differentially expressed in both eight tissues selected during lactation and in mammary gland tissues at different physiological periods. Overexpression of miR-200c inhibited the viability and proliferation of ovine MECs, while inhibition of miR-200c increased cell viability and promoted the proliferation of ovine MECs. Target gene prediction results indicated that miR-200c would bind the 3'UTR region of pantothenate kinase 3 (PANK3). Overexpression of miR-200c reduced the luciferase activity of PANK3, while inhibition of miR-200c increased its luciferase activity. These findings illustrated that miR-200c could directly interact with the target site of the PANK3. It was further found that overexpression of miR-200c reduced the expression levels of PANK3 and, thus, accelerated the synthesis of triglycerides. In contrary, the inhibitor of miR-200c promoted the expression of PANK3 that, thus, inhibited the synthesis of triglycerides in ovine MECs. Together, these findings revealed that miR-200c promotes the triglycerides synthesis in ovine MECs via increasing the lipid synthesis related genes expression by targeting PANK3.


Assuntos
MicroRNAs , Leite , Animais , Feminino , Células Epiteliais/metabolismo , Luciferases/metabolismo , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Leite/metabolismo , Ovinos/genética , Triglicerídeos/metabolismo
8.
Cell Commun Signal ; 20(1): 194, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536346

RESUMO

BACKGROUND: Tumor glycolysis is a critical event for tumor progression. Docetaxel is widely used as a first-line drug for chemotherapy and shown to have a survival advantage. However, the role of docetaxel in tumor glycolysis remained poorly understood. METHODS: The effect of Docetaxel in tumor glycolysis and proliferation were performed by CCK-8, Western blotting, real-time PCR, glucose, and lactate detection and IHC. ChIP and luciferase assay were used to analyze the mechanism of Docetaxel on Smad3-mediated HIF-1α transactivity. RESULTS: In this study, we showed that docetaxel treatment led to a significant inhibition of cell proliferation in prostate cancer cells through PFKP-mediated glycolysis. Addition of lactate, a production of glycolysis, could reverse the inhibitory effect of docetaxel on cell proliferation. Further analysis has demonstrated that phosphorylation of Smad3 (Ser213) was drastically decreased in response to docetaxel stimulation, leading to reduce Smad3 nuclear translocation. Luciferase and Chromatin immunoprecipitation (ChIP) analysis revealed that docetaxel treatment inhibited the binding of Smad3 to the promoter of the HIF-1α gene, suppressing transcriptional activation of HIF-1α. Moreover, ectopic expression of Smad3 in prostate cancer cells could overcome the decreased HIF-1α expression and its target gene PFKP caused by docetaxel treatment. Most importantly, endogenous Smad3 regulated and interacted with HIF-1α, and this interaction was destroyed in response to docetaxel treatment. What's more, both HIF-1α and PFKP expression were significantly reduced in prostate cancer received docetaxel treatment in vivo. CONCLUSION: These findings extended the essential role of docetaxel and revealed that docetaxel inhibited cell proliferation by targeting Smad3/HIF-1α signaling-mediated tumor Warburg in prostate cancer cells. Video Abstract.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Proliferação de Células , Glicólise , Luciferases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Smad3/metabolismo
9.
J Biomed Sci ; 29(1): 95, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369000

RESUMO

BACKGROUND: Doublecortin-like kinase 1 (DCLK1) has been recognized as a marker of cancer stem cell in several malignancies. Thrombin is crucial in asthma severity as it can promote IL-8/CXCL8 production in lung epithelial cells, which is a potent chemoattractant for neutrophils. However, the pathologic role of DCLK1 in asthma and its involvement in thrombin-stimulated IL-8/CXCL8 expression remain unknown. METHODS: IL-8/CXCL8, thrombin, and DCLK1 expression were observed in the lung tissues of severe asthma patients and ovalbumin (OVA)-induced asthmatic mice model. A549 and BEAS-2B cells were either pretreated with inhibitors or small interfering RNAs (siRNAs) before being treated with thrombin. IL-8/CXCL8 expression and the molecules involved in signaling pathway were performed using ELISA, luciferase activity assay, Western blot, or ChIP assay. RESULTS: IL-8/CXCL8, thrombin, and DCLK1 were overexpressed in the lung tissues of severe asthma patients and ovalbumin (OVA)-induced asthmatic mice model. Our in vitro study found that DCLK siRNA or LRKK2-IN-1 (DCLK1 inhibitor) attenuated IL-8/CXCL8 release after thrombin induction in A549 and BEAS-2B cells. Thrombin activated DCLK1, RhoA, and YAP in a time-dependent manner, in which DCLK1 siRNA inhibited RhoA and YAP activation. YAP was dephosphorylated on the Ser127 site after thrombin stimulation, resulting in YAP translocation to the nucleus from the cytosol. DCLK1, RhoA and YAP activation following thrombin stimulation were inhibited by U0126 (ERK inhibitor). Moreover, DCLK1 and YAP siRNA inhibited κB-luciferase activity. Thrombin stimulated the recruitment of YAP and p65 to the NF-κB site of the IL-8/CXCL8 promoter and was inhibited by DCLK1 siRNA. CONCLUSIONS: Thrombin activates the DCLK1/RhoA signaling pathway, which promotes YAP activation and translocation to the nucleus from the cytosol, resulting in YAP/p65 formation, and binding to the NF-κB site, which enhances IL-8/CXCL8 expression. DCLK1 might be essential in thrombin-stimulated IL-8/CXCL8 expression in asthmatic lungs and indicates a potential therapeutic strategy for severe asthma treatment.


Assuntos
Asma , Interleucina-8 , Camundongos , Animais , Humanos , Interleucina-8/genética , Trombina/farmacologia , Trombina/metabolismo , NF-kappa B/metabolismo , RNA Interferente Pequeno/metabolismo , Ovalbumina/metabolismo , Quinases Semelhantes a Duplacortina , Fosforilação , Pulmão/metabolismo , Células Epiteliais/metabolismo , Asma/induzido quimicamente , Asma/genética , Luciferases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Serina-Treonina Quinases/genética
10.
Free Radic Biol Med ; 193(Pt 2): 620-637, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36370962

RESUMO

Ferroptosis is a widely known regulator of cell death in connection with the redox state as a consequence of the depletion of glutathione or accumulation of lipid peroxidation. Hepatic stellate cells (HSCs) play a pivotal role in the progression of hepatic fibrosis by increasing the production and secretion of the extracellular matrix. However, the role of ferroptosis in HSC activation and liver fibrogenesis has not been clearly elucidated. The ferroptosis inducer RAS-selective lethal 3 (RSL3) or erastin treatment in HSCs caused cell death. This effect was suppressed only after exposure to ferroptosis inhibitors. We observed induction of ferroptosis by RSL3 treatment in HSCs supported by decreased glutathione peroxidase 4, glutathione deficiency, reactive oxygen species generation, or lipid peroxidation. Interestingly, RSL3 treatment upregulated the expression of plasminogen activator inhibitor-1, a representative fibrogenic marker of HSCs. In addition, treatment with ferroptosis-inducing compounds increased c-JUN phosphorylation and activator protein 1 luciferase activity but did not alter Smad phosphorylation and Smad-binding element luciferase activity. Chronic administration of iron dextran to mice causes ferroptosis of liver in vivo. The expression of fibrosis markers, such as alpha-smooth muscle actin and plasminogen activator inhibitor-1, was increased in the livers of mice with iron accumulation. Hepatic injury accompanying liver fibrosis was observed based on the levels of alanine aminotransferase, aspartate aminotransferase, and hematoxylin and eosin staining. Furthermore, we found that both isolated primary hepatocyte and HSCs undergo ferroptosis. Consistently, cirrhotic liver tissue of patients indicated glutathione peroxidase 4 downregulation in fibrotic region. In conclusion, our results suggest that ferroptosis contribute to HSC activation and the progression of hepatic fibrosis.


Assuntos
Ferroptose , Células Estreladas do Fígado , Camundongos , Animais , Ferroptose/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fígado/metabolismo , Cirrose Hepática/metabolismo , Glutationa/metabolismo , Ferro/metabolismo , Luciferases/metabolismo
11.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361798

RESUMO

Dinoflagellates bioluminescence mechanism depends upon a luciferin-luciferase reaction that promotes blue light emission (480 nm) in specialized luminogenic organelles called scintillons. The scintillons contain luciferin, luciferase and, in some cases, a luciferin-binding protein (LBP), which prevents luciferin from non-enzymatic oxidation in vivo. Even though dinoflagellate bioluminescence has been studied since the 1950s, there is still a lack of mechanistic understanding on whether the light emission process involves a peroxidic intermediate or not. Still, bioassays employing luminous dinoflagellates, usually from Gonyaulax or Pyrocystis genus, can be used to assess the toxicity of metals or organic compounds. In these dinoflagellates, the response to toxicity is observed as a change in luminescence, which is linked to cellular respiration. As a result, these changes can be used to calculate a percentage of light inhibition that correlates directly with toxicity. This current approach, which lies in between fast bacterial assays and more complex toxicity tests involving vertebrates and invertebrates, can provide a valuable tool for detecting certain pollutants, e.g., metals, in marine sediment and seawater. Thus, the present review focuses on how the dinoflagellates bioluminescence can be applied to evaluate the risks caused by contaminants in the marine environment.


Assuntos
Dinoflagelados , Animais , Dinoflagelados/metabolismo , Luciferases/metabolismo , Luminescência , Bioensaio , Sedimentos Geológicos , Medições Luminescentes
12.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232582

RESUMO

As a widely used steroid hormone medicine, glucocorticoids have the potential to cause steroid-induced osteonecrosis of the femoral head (SONFH) due to mass or long-term use. The non-coding RNA hypothesis posits that they may contribute to the destruction and dysfunction of cartilages as a possible etiology of SONFH. MiR-30b-5p was identified as a regulatory factor in cartilage degeneration caused by methylprednisolone (MPS) exposure in our study through cell transfection. The luciferase reporter assay confirmed that miR-30b-5p was downregulated and runt-related transcription factor 2 (Runx2) was mediated by miR-30b-5p. The nobly increased expression of matrix metallopeptidase 13 (MMP13) and type X collagen (Col10a1) as Runx2 downstream genes contributed to the hypertrophic differentiation of chondrocytes, and the efficiently upregulated level of matrix metallopeptidase 9 (MMP9) may trigger chondrocyte apoptosis with MPS treatments. The cell transfection experiment revealed that miR-30b-5p inhibited chondrocyte hypertrophy and suppressed MPS-induced apoptosis. As a result, our findings showed that miR-30b-5p modulated Runx2, MMP9, MMP13, and Col10a1 expression, thereby mediating chondrocyte hypertrophic differentiation and apoptosis during the SONFH process. These findings revealed the mechanistic relationship between non-coding RNA and SONFH, providing a comprehensive understanding of SONFH and other bone diseases.


Assuntos
MicroRNAs , Osteonecrose , Apoptose/genética , Condrócitos/metabolismo , Colágeno Tipo X/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo , Cabeça do Fêmur/metabolismo , Glucocorticoides/metabolismo , Humanos , Hipertrofia/metabolismo , Luciferases/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metilprednisolona/efeitos adversos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteonecrose/induzido quimicamente , Osteonecrose/genética , Osteonecrose/metabolismo , Esteroides/metabolismo
13.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232701

RESUMO

The Polyribonucleotide nucleotidyltransferase 1 gene (PNPT1) encodes polynucleotide phosphorylase (PNPase), a 3'-5' exoribonuclease involved in mitochondrial RNA degradation and surveillance and RNA import into the mitochondrion. Here, we have characterized the PNPT1 promoter by in silico analysis, luciferase reporter assays, electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation (ChIP), siRNA-based mRNA silencing and RT-qPCR. We show that the Specificity protein 1 (SP1) transcription factor and Nuclear transcription factor Y (NFY) bind the PNPT1 promoter, and have a relevant role regulating the promoter activity, PNPT1 expression, and mitochondrial activity. We also found in Kaplan-Meier survival curves that a high expression of either PNPase, SP1 or NFY subunit A (NFYA) is associated with a poor prognosis in liver cancer. In summary, our results show the relevance of SP1 and NFY in PNPT1 expression, and point to SP1/NFY and PNPase as possible targets in anti-cancer therapy.


Assuntos
Fator de Ligação a CCAAT , Exorribonucleases , Neoplasias Hepáticas , Proteínas Mitocondriais , Polirribonucleotídeo Nucleotidiltransferase , Fator de Transcrição Sp1 , Sítios de Ligação , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Luciferases/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial , RNA Interferente Pequeno , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
14.
Anticancer Drugs ; 33(10): 1058-1068, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206098

RESUMO

Long noncoding RNAs (lncRNAs) have been demonstrated to participate in various biological processes and play key roles in tumorigenesis and metastasis. Pituitary adenoma (PA) is one of the most common malignancies in central nervous system. Recently, multiple lncRNAs have been identified to regulate PA initiation, progression and metastasis. we aimed to elucidate the expression pattern and function of lncRNA MYMLR in PA development. The expression of lncRNA MYMLR in PA tissues and cells was examined by real-time quantitative PCR. Knockdown of MYMLR expression was achieved by using shRNA. The function of MYMLR and regulatory network were analyzed using CCK-8 assay, wound-healing assay, migration assay and Annexin V/PI staining. Xenograft tumor model was used to explore the function of MYMLR in vivo . Bioinformatics analysis and luciferase reporter assay were conducted to investigate the interaction between MYMLR and its regulatory network. LncRNA MYMLR was highly expressed in PA tissues compared with that in normal tissues. Knockdown of MYMLR suppressed cell proliferation, migration and invasion, while promoting PA cell apoptosis. Mechanistically, MYMLR functioned as a competing endogenous RNA (ceRNA) sponging microRNA miR-197-3p. Furthermore, miR-197-3p exerted its tumor inhibitory role via negatively regulating carbonyl reductase 1 (CBR1). Overexpression of CBR1 antagonized the inhibitory effect of lncRNA MYMLR knockdown or miR-197-3p overexpression. In addition, xenograft tumor model revealed that knockdown of lncRNA MYMLR suppressed PA tumor development in vivo via regulating CBR1. Our findings suggest a regulatory network of lncRNA MYMLR/miR-197-3p/CBR1, which benefits the understanding of PA development and provides a promising lncRNA-direct therapeutic strategy against PA.


Assuntos
Carbonil Redutase (NADPH) , MicroRNAs , Neoplasias Hipofisárias , RNA Longo não Codificante , Humanos , Anexina A5/genética , Anexina A5/metabolismo , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hipofisárias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno , Animais
15.
Anticancer Drugs ; 33(10): 989-998, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206129

RESUMO

Oovarian cancer is a common lethal gynecological malignancy with a high occurrence and dismal prognosis on account of its drug resistance. MicroRNAs (miRNAs) are widely involved in the chemotherapy resistance of tumors, including miR-30a-5p. Herein, we probed the functional role and molecular mechanism of miR-30a-5p in the chemoresistance of ovarian cancer. We enrolled 48 ovarian cancer patients in this study. Statistical analysis and a series of experiments including quantitative reverse transcription polymerase chain reaction, western blot, methyl thiazolyl tetrazolium assay, colony formation assay, flow cytometry analysis, Transwell assay, luciferase reporter assay, RNA pull-down assay and TOP/FOP flash assay were explored in the study. Animal experiments were performed to verify the role of miR-30a-5p in vivo . In our study, miR-30a-5p showed a prominently low level in ovarian cancer tissues and cells. Importantly, its expression in cisplatin-resistant cell lines was more downregulated than in cisplatin-sensitive ones. Additionally, miR-30a-5p overexpression inhibited proliferative, migratory and invasive abilities of ovarian cancer cells while enhancing cell apoptosis and improving cell sensitivity to cisplatin in ovarian cancer. Further, miR-30a-5p targeted to chromodomain helicase DNA binding protein 1 (CHD1) and inhibited the expression of CHD1 in ovarian cancer. Moreover, rescue experiments manifested that miR-30a-5p weakened cisplatin resistance and the cellular process of ovarian cancer by mediating CHD1. Besides, miR-30a-5p regulated CHD1 expression to suppress Wnt/ß-catenin signaling in ovarian cancer. The findings were verified by in vivo experiments. This article elucidated that miR-30a-5p/CHD1 axis inhibited the cellular process and enhanced cisplatin sensitivity of ovarian cancer cells through the Wnt/ß-catenin pathway, which may provide a useful direction for the targeted chemotherapy of ovarian cancer.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , MicroRNAs , Neoplasias Ovarianas , Animais , Feminino , Humanos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Via de Sinalização Wnt
16.
J Hematol Oncol ; 15(1): 141, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209111

RESUMO

BACKGROUND: Besides featured glucose consumption, recent studies reveal that cancer cells might prefer "addicting" specific energy substrates from the tumor microenvironment (TME); however, the underlying mechanisms remain unclear. METHODS: Fibroblast-specific long noncoding RNAs were screened using RNA-seq data of our NJLCC cohort, TCGA, and CCLE datasets. The expression and package of LINC01614 into exosomes were identified using flow cytometric sorting, fluorescence in situ hybridization (FISH), and quantitative reverse transcription polymerase chain reaction (RT-PCR). The transfer and functional role of LINC01614 in lung adenocarcinoma (LUAD) and CAFs were investigated using 4-thiouracil-labeled RNA transfer and gain- and loss-of-function approaches. RNA pull-down, RNA immunoprecipitation, dual-luciferase assay, gene expression microarray, and bioinformatics analysis were performed to investigate the underlying mechanisms involved. RESULTS: We demonstrate that cancer-associated fibroblasts (CAFs) in LUAD primarily enhance the glutamine metabolism of cancer cells. A CAF-specific long noncoding RNA, LINC01614, packaged by CAF-derived exosomes, mediates the enhancement of glutamine uptake in LUAD cells. Mechanistically, LINC01614 directly interacts with ANXA2 and p65 to facilitate the activation of NF-κB, which leads to the upregulation of the glutamine transporters SLC38A2 and SLC7A5 and eventually enhances the glutamine influx of cancer cells. Reciprocally, tumor-derived proinflammatory cytokines upregulate LINC01614 in CAFs, constituting a feedforward loop between CAFs and cancer cells. Blocking exosome-transmitted LINC01614 inhibits glutamine addiction and LUAD growth in vivo. Clinically, LINC01614 expression in CAFs is associated with the glutamine influx and poor prognosis of patients with LUAD. CONCLUSION: Our study highlights the therapeutic potential of targeting a CAF-specific lncRNA to inhibit glutamine utilization and cancer progression in LUAD.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , RNA Longo não Codificante , Adenocarcinoma/genética , Fibroblastos Associados a Câncer/patologia , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Hibridização in Situ Fluorescente , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Luciferases/genética , Luciferases/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral
17.
Mol Cancer ; 21(1): 191, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192757

RESUMO

BACKGROUND: In vivo gene editing of somatic cells with CRISPR nucleases has facilitated the generation of autochthonous mouse tumors, which are initiated by genetic alterations relevant to the human disease and progress along a natural timeline as in patients. However, the long and variable, orthotopic tumor growth in inner organs requires sophisticated, time-consuming and resource-intensive imaging for longitudinal disease monitoring and impedes the use of autochthonous tumor models for preclinical studies. METHODS: To facilitate a more widespread use, we have generated a reporter mouse that expresses a Cre-inducible luciferase from Gaussia princeps (GLuc), which is secreted by cells in an energy-consuming process and can be measured quantitatively in the blood as a marker for the viable tumor load. In addition, we have developed a flexible, complementary toolkit to rapidly assemble recombinant adenoviruses (AVs) for delivering Cre recombinase together with CRISPR nucleases targeting cancer driver genes. RESULTS: We demonstrate that intratracheal infection of GLuc reporter mice with CRISPR-AVs efficiently induces lung tumors driven by mutations in the targeted cancer genes and simultaneously activates the GLuc transgene, resulting in GLuc secretion into the blood by the growing tumor. GLuc blood levels are easily and robustly quantified in small-volume blood samples with inexpensive equipment, enable tumor detection already several months before the humane study endpoint and precisely mirror the kinetics of tumor development specified by the inducing gene combination. CONCLUSIONS: Our study establishes blood-based GLuc monitoring as an inexpensive, rapid, high-throughput and animal-friendly method to longitudinally monitor autochthonous tumor growth in preclinical studies.


Assuntos
Copépodes , Neoplasias Pulmonares , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Copépodes/genética , Copépodes/metabolismo , Edição de Genes , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/genética , Camundongos
18.
Clin Transl Med ; 12(10): e1065, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36245253

RESUMO

BACKGROUNDS: Decreased cytotoxicity of natural killer (NK) cells has been shown in multiple myeloma (MM). However, the underlying molecular mechanisms remain unclear. Here, by using single-cell RNA sequencing analysis and in vitro experiments, we aim to uncover and validate molecularly distinctive insights into identifying regulators for NK cell exhaustion and provide potential targets for novel immune therapies in MM. METHODS: Single-cell RNA sequencing was conducted in the bone marrow and peripheral blood samples from 10 newly diagnosed MM patients and three healthy volunteers. Based on the cluster-defining differentially expressed genes, we named and estimated functional states of each cluster via bioinformatics analyses. Functional significance of key findings obtained from sequencing analysis was examined in a series of in vitro experiments, including luciferase reporter assay, lentiviral expression vector construction, NK cell transfection, RT-qPCR, flow cytometry, and cytotoxicity assay. RESULTS: We classified NK cells into seven distinct clusters and confirmed that a subset of ZNF683+ NK cells were enriched in MM patients with 'exhausted' transcriptomic profile, featuring as decreased expression of activating receptors and cytolytic molecules, as well as increased expression of inhibitory receptors. Next, we found a significant downregulation of SH2D1B gene that encodes EAT-2, an adaptor protein of activating receptor SLAMF7, in ZNF683+ NK cells from MM patients versus healthy volunteers. We further proved that ZNF683 transfection in NK cells significantly downregulated SH2D1B expression via directly binding to the promoter of SH2D1B, leading to NK cell cytotoxic activity impairment and exhausted phenotypes acquisition. In contrast, ZNF683 knockout in NK cells from MM patients increased cytotoxic activity and reversed NK cell exhaustion. CONCLUSIONS: In summary, our findings uncover an important mechanism of ZNF683+ NK cell exhaustion and suggest that transcriptional suppressor ZNF683 as a potential useful therapeutic target in immunotherapy of MM.


Assuntos
Mieloma Múltiplo , Humanos , Citotoxicidade Imunológica , Perfilação da Expressão Gênica , Células Matadoras Naturais/metabolismo , Luciferases/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo
19.
Biochem Biophys Res Commun ; 635: 203-209, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36279682

RESUMO

The secretions of osteocalcin and bone morphogenetic protein 2 (BMP2) from living osteoblastic cells were visualized for the first time using a method of video-rate bioluminescence imaging. The fusion proteins with Gaussia luciferase (GLase) for mouse osteocalcin and BMP2 (OC-GLase and BMP2-GLase, respectively) expressed in osteoblastic MC3T3-E1 cells were correctly processed and secreted. In the video images of exocytotic secretion, the luminescence spots of OC-GLase and BMP2-GLase disappeared rapidly and gradually, respectively, indicating different manners of these proteins in diffusion. Notably, a deletion mutant of BMP2 (Δ3BMP2-GLase) lacking three basic amino acid residues in the N-terminal region for binding to heparan sulfate showed rapidly disappearing luminescence spots. In our imaging conditions, the half-life of luminescence for the spots of Δ3BMP2-GLase (1.61 ± 0.20 s) was similar to that of OC-GLase (1.22 ± 0.14 s) but not to that of BMP2-GLase (4.31 ± 0.41 s). These results suggest that, in contrast to osteocalcin, the diffusion of BMP2 from cells occurred slowly after exocytosis. Thus, our bioluminescence imaging method is useful to study the diffusion properties of secreted proteins in exocytosis.


Assuntos
Proteína Morfogenética Óssea 2 , Comunicação Celular , Camundongos , Animais , Osteocalcina/genética , Osteocalcina/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Luciferases/genética , Luciferases/metabolismo , Linhagem Celular , Osteoblastos/metabolismo , Diferenciação Celular
20.
Oxid Med Cell Longev ; 2022: 8428596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267811

RESUMO

As a common cardiovascular disease, acute myocardial infarction seriously affects the health and life of patients. miRNAs play an important role in acute myocardial infarction. Based on miRNA obtained from the previous sequencing, this study investigated whether miRNA (miR)-124-3p-loaded nanoparticles (NPs) affect the phenotype of the acute myocardial infarction (AMI) rat. Nano-miR-124-3p decreased the myocardial infarction area, improved the myocardial tissue structure, and increased the degree of fibrosis. Nano-miR-124-3p decreased apoptosis and the expression of cleaved caspase 3, indicating its role in protecting and repairing the myocardium. To further verify the action mechanism of miRNA, a potential target gene of miR-124-3p, PTEN was identified by STARBASE and further confirmed using double luciferase assays. Following cotransfection of nano-miR-124-3p and PTEN, the areas of tissue structure damage, myocardial infarction, and fibrosis were substantially elevated. The expression of cleaved caspase 3 and the apoptosis rate in the nano-miR-124-3p and PTEN cotransfection group was also significantly increased. Bioinformatics analysis revealed that miRNA-124-3 may regulate oxidative stress injury by targeting PTEN. Taken together, miR-124-3p could protect and repair myocardial tissues through targeting PTEN.


Assuntos
MicroRNAs , Infarto do Miocárdio , Nanopartículas , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caspase 3/metabolismo , Transdução de Sinais , Infarto do Miocárdio/patologia , Estresse Oxidativo , Luciferases/metabolismo , Fibrose , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...