Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.212
Filtrar
1.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948140

RESUMO

The stem is an important organ in supporting plant body, transporting nutrients and communicating signals for plant growing. However, studies on the regulation of stem development in tomato are rather limited. In our study, we demonstrated that SlHB8 negatively regulated tomato stem development. SlHB8 belongs to homeo domain-leucine zipper Class III gene family transcription factors and expressed in all the organs examined including root, stem, leaves, flower, and fruit. Among these tissues, SlHB8 showed stable high expression level during tomato stem development. Overexpression of SlHB8 gene decreased stem diameter with inhibited xylem width and xylem cell layers, while loss of function of SlHB8gene increased the stem diameter and xylem width. The contents of lignin were decreased both in leaves and stems of SlHB8 overexpression plants. RNA-seq analysis on the stems of wild type and SlHB8 transgenic plants showed that the 116 DEGs (differential expressed genes) with reversible expression profiles in SlHB8-ox and SlHB8-cr plants were significantly enriched in the phenylpropanoid biosynthesis pathway and plant-pathogen pathway which were related to lignin biosynthesis and disease resistance. Meanwhile, the key genes involved in the lignin biosynthesis pathway such as SlCCR (cinnamoyl-CoA reductase), SlCYP73A14/C4H (cinnamate 4-hydroxylase), SlC3H (coumarate 3-hydroxylase) and SlCAD (cinnamoyl alcohol dehydrogenase) were down-regulated in both stem and leaves of SlHB8 overexpression plants, indicating a negative regulatory role of SlHB8 in the lignin biosynthesis and stem development.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Lycopersicon esculentum/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Zíper de Leucina , Lignina/genética , Lycopersicon esculentum/genética , Proteínas de Plantas/genética , Caules de Planta/genética , Fatores de Transcrição/genética
2.
World J Microbiol Biotechnol ; 38(1): 16, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34897563

RESUMO

The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.


Assuntos
Endófitos/fisiologia , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/microbiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Poaceae/microbiologia , Tolerância ao Sal , África do Norte , Aminoácidos Cíclicos/metabolismo , Endófitos/classificação , Interações entre Hospedeiro e Microrganismos , RNA Ribossômico 16S , Espécies Reativas de Oxigênio/metabolismo , Rizosfera , Salinidade , Estresse Salino , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , Microbiologia do Solo
3.
BMC Plant Biol ; 21(1): 597, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915853

RESUMO

BACKGROUND: Salinity is one of the most challenging abiotic stresses restricting the growth of plants. In vitro screening will increase the efficiency and speed of salinity tolerant genotypes identifications. The response of four tomato cultivars under salinity was analyzed in vitro to evaluate the seedlings growth, biochemical, and gene expression responses as well as the effect of nano zinc and iron on callus induction and plant regeneration. RESULTS: The results showed that an increase in salinity stress in the medium decreased the germination percentage, fresh and dry weight of shoot, root length, chlorophyll a, b and carotenoids content, K and Ca content, and on the other hand, Na content was increased. MDA content ('Nora', 'PS-10', 'Peto' and 'Roma': 1.71, 1.78, 1.66 and 2.16 folds, respectively), electrolyte leakage ('PS-10': 33.33%; 'Roma': 56.33%), were increased with salinity of 100 mM compared to control. Proline content was increased in 50 mM NaCl (10.8 fold). The most activity of antioxidant enzymes including CAT, SOD, APX, GPX, and GR was observed in the 'PS-10' cultivar, and the lowest activity of these enzymes was observed in 'Roma' under salinity stress. The AsA and GSH were decreased and DHA and GSSG were increased with the increased intensity of salinity. The relative expression of SOD, APX, and GR genes varied in different cultivars at different salinity concentrations. The most percentage of callus induction was observed with applying iron oxide nanoparticles, and the most regeneration rate was recorded using zinc oxide nanoparticles. CONCLUSION: The results showed that salt-tolerant cultivars such as 'PS-10' with better osmotic adjustment, are suitable candidates for the future production and breeding programs. The use of nutrient nanoparticles under salinity stress for different tomato cultivars increased their performance.


Assuntos
Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/farmacologia , Lycopersicon esculentum/fisiologia , Nanopartículas , Óxido de Zinco/farmacologia , Câmbio/citologia , Carotenoides/metabolismo , Clorofila/metabolismo , Lycopersicon esculentum/genética , Lycopersicon esculentum/crescimento & desenvolvimento , Estresse Oxidativo , Células Vegetais/metabolismo , Regeneração , Estresse Salino , Plântula/crescimento & desenvolvimento
4.
Plant Sci ; 313: 111066, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763858

RESUMO

Tomato fruit ripening is a complicated and well-coordinated process with numerous metabolic changes resulted from endogenous hormone and genetic regulators. Although the regulation of MADS-box transcription factor (MADS-RIN) controlling fruit ripening has been widely reported, its mechanisms underlying need to be further improved. Here, we characterized a novel tomato E6-like gene, E6-2, whose transcripts showed a high accumulation in fruit ripening stages (Breaker, Breaker+4 and Breaker+7), but a low level was observed in Never ripe (Nr) and ripening inhibitor (rin) mutants. MADS-RIN directly activates the expression of E6-2 in vivo. Additionally, a remarkable reduction of E6-2 was observed in wild-type (WT) tomato fruits at the MG stage treated with 1-MCP. RNAi-mediated silencing of E6-2 resulted in delayed fruit ripening, reduced accumulation of the total carotenoid and lycopene, reduced content of ethylene production, and increased contents of the total pectin, cellulose, starch and soluble sugar. Moreover, the expression of carotenoid biosynthesis genes (PSY1, PDS and ZDS), ripening-related genes (CNR, PG and ERF4), ethylene biosynthesis genes (ACS2, ACO1 and ACO3), ethylene-responsive genes (E4 and E8) and cell wall metabolism genes (TBG4, PL, EXP1 and XTH5) were inhibited in E6-2 -RNAi lines. These results indicate that E6-2 plays an important role in regulating tomato fruit ripening targeted by RIN.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/genética , Desenvolvimento Vegetal/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
5.
Arq. Ciênc. Vet. Zool. UNIPAR (Online) ; 24(2, cont.): e2404, jul-dez. 2021. tab, tab
Artigo em Português | ID: biblio-1352309

RESUMO

O tomateiro é uma das hortaliças de maior importância econômica a nível mundial. No entanto, sua produção pode ser limitada por diversos fatores, sendo o manejo da água o principal fator limitante. Dessa forma, o uso de tecnologias que melhorem a eficiência no uso da água é de extrema importância, destacando-se entre estas o uso de hidrogel. Nesse sentido, objetivou-se nesse trabalho avaliar as taxas de crescimento e produção do tomateiro sob lâminas de irrigação e volumes de hidrogel. O experimento foi conduzido em esquema fatorial 3x4, em blocos ao acaso com quatro repetições, sendo os fatores: três volumes de hidrogel previamente hidratado (0, 50 e 100 ml por planta); e 4 lâminas de irrigação (40, 60, 80 e 100% da evapotranspiração da cultura). Foram avaliadas as taxas de crescimento absoluto e relativo da altura de planta e diâmetro do caule, massa média dos frutos e a produtividade por planta. Os resultados evidenciaram que a redução das lâminas de irrigação levou a redução linear das taxas de crescimento absolutas e relativas de altura e diâmetro. Perante essas mesmas condições, também houve redução da massa média dos frutos e da produtividade por planta. O uso de hidrogel não afetou nenhuma das características avaliadas, dessa forma, recomenda-se a sua não utilização nas condições desse estudo. Indica-se a utilização da lâmina de reposição de 100% da ETc.(AU)


Tomato is one of the most economically relevant vegetables worldwide. However, its production can be limited by several factors, with water management being the main limiting factor. Thus, the use of technologies that improve efficiency in the use of water are extremely important, with emphasis on the use of hydrogel. In this sense, the objective of this study was to evaluate the growth and production rates of tomato under irrigation depths and hydrogel volumes. The experiment was carried out in a 3x4 factorial scheme, in randomized blocks with four replications, with the following factors: three volumes of previously hydrated hydrogel (0, 50 and 100 ml per plant); and 4 irrigation depths (40, 60, 80 and 100% evapotranspiration of the crop). The absolute and relative growth rates of plant height and stem diameter, average fruit mass, and productivity per plant were evaluated. The results showed that the reduction of irrigation depths led to a linear reduction in absolute and relative growth rates in both height and diameter. Under these same conditions, there was also a reduction in the average fruit mass and productivity per plant. The use of hydrogel did not affect any of the evaluated characteristics; therefore, it is recommended not to use it under the conditions of this study. It is recommended to use the 100% ETc replacement blade.(AU)


El tomate es una de las hortalizas de mayor importancia económica a nivel mundial. Sin embargo, su producción puede verse limitada por varios factores, siendo la gestión del agua el principal factor limitante. Por ello, el uso de tecnologías que mejoren la eficiencia en el uso del agua es de suma importancia, con énfasis en el uso de hidrogel. En ese sentido, el objetivo de este estudio fue evaluar las tasas de crecimiento y producción de tomate en láminas de riego y volúmenes de hidrogel. El experimento se realizó en un esquema factorial 3x4, en bloques al azar con cuatro repeticiones, siendo los factores: tres volúmenes de hidrogel previamente hidratado (0, 50 y 100 ml por planta); y 4 láminas de riego (40, 60, 80 y 100% evapotranspiración del cultivo). Se evaluaron las tasas de crecimiento absoluto y relativo de la altura de la planta y el diámetro del tallo, la masa promedio de frutos y la productividad por planta. Los resultados mostraron que la reducción de las láminas de riego condujo a una reducción lineal en las tasas de crecimiento absoluto y relativo en altura y diámetro. En estas mismas condiciones, también se redujo la masa media de frutos y de la productividad por planta. El uso de hidrogel no afectó ninguna de las características evaluadas, por lo que se recomienda no utilizarlo en las condiciones de ese estudio. Se recomienda utilizar la lámina de repuesto del 100% del ETc.(AU)


Assuntos
Lycopersicon esculentum/crescimento & desenvolvimento , Hidrogéis , Laminas/análise , Irrigação Agrícola , Tecnologia
6.
PLoS One ; 16(9): e0257925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34591899

RESUMO

Tuta absoluta is one of the most damaging pests of tomato crops worldwide. Damage due to larvae may cause up to 100% loss of tomato production. Use of natural enemies to control the pest, notably predatory mirids such as Nesidiocoris tenuis and Macrolophus pygmaeus, is increasingly being promoted. However, considering the potential damage caused to tomatoes by these omnivorous predators in the absence of T. absoluta, an alternative solution could be required to reduce tomato damage and improve the predators' performance. The use of companion plants can be an innovative solution to cope with these issues. The present study aimed to determine the influence of companion plants and alternative preys on the predators' performance in controlling T. absoluta and protecting tomato plants. We evaluated the effect of predators (alone or combined) and a companion plant (sesame (Sesamum indicum)) on T. absoluta egg predation and crop damage caused by N. tenuis. The influence of an alternative prey (Ephestia kuehniella eggs) on the spatial distribution of predators was also evaluated by caging them in the prey presence or absence, either on tomato or sesame plants or on both. We found that the presence of sesame did not reduce the efficacy of N. tenuis or M. pygmaeus in consuming T. absoluta eggs; hatched egg proportion decreased when N. tenuis, M. pygmaeus, or both predators were present. More specifically, this proportion was more strongly reduced when both predators were combined. Sesame presence also reduced necrotic rings caused by N. tenuis on tomato plants. Nesidiocoris tenuis preferred sesame over tomato plants (except when food was provided only on the tomato plant) and the upper part of the plants, whereas M. pygmaeus preferred tomato to sesame plants (except when food was provided only on the sesame plant) and had no preference for a plant part. Combination of predators N. tenuis and M. pygmaeus allows for better coverage of cultivated plants in terms of occupation of different plant parts and better regulation of T. absoluta populations. Sesamum indicum is a potential companion plant that can be used to significantly reduce N. tenuis damage to tomatoes.


Assuntos
Heterópteros/fisiologia , Lepidópteros/patogenicidade , Lycopersicon esculentum/crescimento & desenvolvimento , Sesamum/crescimento & desenvolvimento , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia , Larva/fisiologia , Lepidópteros/parasitologia , Lycopersicon esculentum/parasitologia , Controle Biológico de Vetores , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/parasitologia , Comportamento Predatório , Sesamum/parasitologia
7.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445561

RESUMO

Among numerous contaminants, the ubiquitous occurrence of nonsteroidal anti-inflammatory drugs (NSAIDs) in the environment and their plausible harmful impact on nontarget organisms have made them one of the most important areas of concern in recent years. Crop plants can also potentially be exposed to NSAIDs, since the concentration of these pharmaceuticals is constantly rising in the surface water and soil. Our goal was to evaluate the stress response of two crop plants, maize and tomato, to treatment with selected NSAIDs, naproxen and diclofenac. The focus of the research was on the growth response, photosynthetic efficiency, selected oxidative stress factors (such as the H2O2 level and the rate of lipid peroxidation) as well as the total phenolic content, which represents the non-enzymatic protectants against oxidative stress. The results indicate that susceptibility to the NSAIDs that were tested is dependent on the plant species. A higher sensitivity of tomato manifested in growth inhibition, a decrease in the content of the photosynthetic pigments and a reduction in the maximum quantum efficiency of PSII and the activity of PSII, which was estimated using the Fv/Fm and Fv/F0 ratios. Based on the growth results, it was also possible to reveal that diclofenac had a more toxic effect on tomato. In contrast to tomato, in maize, neither the content of the photosynthetic pigments nor growth appeared to be affected by DFC and NPX. However, both drugs significantly decreased in maize Fv and Fm, which are particularly sensitive to stress. A higher H2O2 concentration accompanied, in most cases, increasing lipid peroxidation, indicating that oxidative stress occurred in response to the selected NSAIDs in the plant species that were studied. The higher phenolic content of the plants after NSAIDs treatment may, in turn, indicate the activation of defense mechanisms in response to the oxidative stress that is triggered by these drugs.


Assuntos
Diclofenaco/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lycopersicon esculentum/efeitos dos fármacos , Naproxeno/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Peróxido de Hidrogênio/farmacologia , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Oxidantes/farmacologia , Fenóis/farmacologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
8.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360893

RESUMO

Flowering is a morphogenetic process in which angiosperms shift from vegetative growth to reproductive growth. Flowering time has a strong influence on fruit growth, which is closely related to productivity. Therefore, research on crop flowering time is particularly important. To better understand the flowering period of the tomato, we performed transcriptome sequencing of early flower buds and flowers during the extension period in the later-flowering "Moneymaker" material and the earlier-flowering "20965" homozygous inbred line, and we analyzed the obtained data. At least 43.92 million clean reads were obtained from 12 datasets, and the similarity with the tomato internal reference genome was 92.86-94.57%. Based on gene expression and background annotations, 49 candidate genes related to flowering time and flower development were initially screened, among which the greatest number belong to the photoperiod pathway. According to the expression pattern of candidate genes, the cause of early flowering of "20965" is predicted. The modes of action of the differentially expressed genes were classified, and the results show that they are closely related to hormone regulation and participated in a variety of life activities in crops. The candidate genes we screened and the analysis of their expression patterns provide a basis for future functional verification, helping to explore the molecular mechanism of tomato flowering time more comprehensively.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Flores/crescimento & desenvolvimento , Flores/genética , Genes de Plantas , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/genética , Transcriptoma , Produtos Agrícolas/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Estudos de Associação Genética/métodos , Lycopersicon esculentum/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , RNA-Seq/métodos , Transdução de Sinais/genética
9.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361121

RESUMO

The first line of plant defence responses against pathogens can be induced by the bacterial flg22 and can be dependent on various external and internal factors. Here, we firstly studied the effects of daytime and ethylene (ET) using Never ripe (Nr) mutants in the local and systemic defence responses of intact tomato plants after flg22 treatments. Flg22 was applied in the afternoon and at night and rapid reactions were detected. The production of hydrogen peroxide and nitric oxide was induced by flg22 locally, while superoxide was induced systemically, in wild type plants in the light period, but all remained lower at night and in Nr leaves. Flg22 elevated, locally, the ET, jasmonic acid (JA) and salicylic acid (SA) levels in the light period; these levels did not change significantly at night. Expression of Pathogenesis-related 1 (PR1), Ethylene response factor 1 (ERF1) and Defensin (DEF) showed also daytime- and ET-dependent changes. Enhanced ERF1 and DEF expression and stomatal closure were also observable in systemic leaves of wild type plants in the light. These data demonstrate that early biotic signalling in flg22-treated leaves and distal ones is an ET-dependent process and it is also determined by the time of day and inhibited in the early night phase.


Assuntos
Ritmo Circadiano , Etilenos/farmacologia , Lycopersicon esculentum/imunologia , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Lycopersicon esculentum/efeitos dos fármacos , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais
10.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359841

RESUMO

Seed transmission is an important factor in the epidemiology of plant pathogens. Geminiviruses are serious pests spread in tropical and subtropical regions. They are transmitted by hemipteran insects, but a few cases of transmission through seeds were recently reported. Here, we investigated the tomato seed transmissibility of the begomovirus tomato yellow leaf curl Sardinia virus (TYLCSV), one of the agents inducing the tomato yellow leaf curl disease, heavily affecting tomato crops in the Mediterranean area. None of the 180 seedlings originating from TYLCSV-infected plants showed any phenotypic alteration typical of virus infection. Moreover, whole viral genomic molecules could not be detected in their cotyledons and true leaves, neither by membrane hybridization nor by rolling-circle amplification followed by PCR, indicating that TYLCSV is not a seed-transmissible pathogen for tomato. Examining the localization of TYLCSV DNA in progenitor plants, we detected the virus genome by PCR in all vegetative and reproductive tissues, but viral genomic and replicative forms were found only in leaves, flowers and fruit flesh, not in seeds and embryos. Closer investigations allowed us to discover for the first time that these embryos were superficially contaminated by TYLCSV DNA but whole genomic molecules were not detectable. Therefore, the inability of TYLCSV genomic molecules to colonize tomato embryos during infection justifies the lack of seed transmissibility observed in this host.


Assuntos
Begomovirus/genética , DNA Viral/genética , Flores/virologia , Frutas/virologia , Genoma Viral , Lycopersicon esculentum/virologia , Folhas de Planta/virologia , Begomovirus/metabolismo , Begomovirus/patogenicidade , DNA Viral/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Lycopersicon esculentum/genética , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/virologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
11.
Cells ; 10(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34359909

RESUMO

Ripening of tomato fleshy fruit is coordinated by transcription factor RIN, which triggers ethylene and carotenoid biosynthesis, sugar accumulation, and cell wall modifications. In this study, we identified and characterized complete sequences of the RIN chromosomal locus in two tomato Solanum lycopersicum cultivars, its rin/RIN genotype, and three wild green-fruited species differing in fruit color and composition. The results reveal that S. lycopersicum cultivars and some wild species (S. pennellii, S. habrochaites, and S. huaylasense) had a 3'-splicing site enabling the transcription of RIN1i and RIN2i isoforms. The other wild species (S. arcanum, S. chmielewskii, S. neorickii, and S. peruvianum) had a 3'-splicing site only for RIN2i, which was consistent with RIN1i and RIN2i expression patterns. The genotype rin/RIN, which had an extended 3'-terminal deletion in the rin allele, mainly expressed the chimeric RIN-MC transcript, which was also found in cultivars (RIN/RIN). The RIN1, but not RIN2, protein is able to induce the transcription of the reporter gene in the Y2H system, which positively correlated with the transcription profile of RIN1i and RIN target genes. We suggest that during fruit ripening, RIN1 activates ripening-related genes, whereas RIN2 and RIN-MC act as modulators by competing for RIN-binding sites in gene promoters, which should be confirmed by further studies on the association between RIN-splicing mechanisms and tomato fruit ripening.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Carotenoides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Loci Gênicos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Cells ; 10(7)2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34359978

RESUMO

Drought limits the growth and productivity of plants. Reproductive development is sensitive to drought but the underlying physiological and molecular mechanisms remain unclear in tomatoes. Here, we investigated the effect of drought on tomato floral development using morpho-physiological and transcriptome analyses. Drought-induced male sterility through abnormal anther development includes pollen abortion, inadequate pollen starch accumulation and anther indehiscence which caused floral bud and opened flower abortions and reduced fruit set/yield. Under drought stress (DS), pollen mother cell to meiotic (PMC-MEI) anthers survived whereas tetrad to vacuolated uninucleate microspore (TED-VUM) anthers aborted. PMC-MEI anthers had lower ABA increase, reduced IAA and elevated sugar contents under DS relative to well-watered tomato plants. However, TED-VUM anthers had higher ABA increase and IAA levels, and lower accumulation of soluble sugars, indicating abnormal carbohydrate and hormone metabolisms when exposed to drought-stress conditions. Moreover, RNA-Seq analysis identified altogether >15,000 differentially expressed genes that were assigned to multiple pathways, suggesting that tomato anthers utilize complicated mechanisms to cope with drought. In particular, we found that tapetum development and ABA homeostasis genes were drought-induced while sugar utilization and IAA metabolic genes were drought-repressed in PMC-MEI anthers. Our results suggest an important role of phytohormones metabolisms in anther development under DS and provide novel insight into the molecular mechanism underlying drought resistance in tomatoes.


Assuntos
Secas , Flores/anatomia & histologia , Flores/fisiologia , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Transporte Biológico , Fertilidade , Flores/citologia , Flores/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Pólen/citologia , Pólen/genética , Pólen/ultraestrutura , Transdução de Sinais , Solubilidade , Amido/metabolismo , Sacarose/metabolismo
13.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203117

RESUMO

Three phosphate glass compositions, VF1, VF2, and VF3, containing macro and micronutrients with different [K2O/(CaO+MgO)] ratio, were formulated to be used as controlled release fertilizers for tomato crop, depending on their chemical durability in water and their propriety with respect to the standards of controlled-release fertilizers. This study investigated the influence of [K2O/(CaO+MgO)] ratio variation on glass properties. For this, the elaborated glasses have undergone a chemical characterization using inductively coupled plasma atomic emission spectroscopy, a thermal characterization using differential thermal analysis, a physicochemical characterization based on density and molar volume measurements, and a structural characterization using Raman spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. In addition, the chemical durability was determined by measuring the percentage of weight loss and the pH. Results revealed that the glass structure and composition have the mean role in controlling the release of nutrients in water. By increasing [K2O/(CaO+MgO)] ratio, the dissolution rates of the glasses increased due to the shrinking in the rate of crosslinking between phosphate chains, accompanied with a diminution in transition and crystallization temperatures, and an increase in the molar volume. An agronomic valorization of VF1 and VF2 glass fertilizers, which showed dissolution profiles adequate to the criteria of controlled-release fertilizers, was carried out to evaluate their efficiency on tomato crops. These glass fertilizers improved soil mineral content and tomato performances in comparison to the control and NPK treatments with the distinction of VF2. The results highlight the effectiveness of these smart fertilizers toward their potential large-scale application to improve crop production and quality for high nutritional value foods.


Assuntos
Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Frutas/crescimento & desenvolvimento , Vidro/química , Lycopersicon esculentum/crescimento & desenvolvimento , Fosfatos , Solo , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Fosfatos/química , Fosfatos/farmacologia
14.
Int J Mol Sci ; 22(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299293

RESUMO

Brassinosteroids (BRs) are growth-promoting phytohormones that can efficiently function by exogenous application at micromolar concentrations or by endogenous fine-tuning of BR-related gene expression, thus, precisely controlling BR signal strength is a key factor in exploring the agricultural potential of BRs. BRASSINOSTEROID INSENSITIVE1 (BRI1), a BR receptor, is the rate-limiting enzyme in BR signal transduction, and the phosphorylation of each phosphorylation site of SlBRI1 has a distinct effect on BR signal strength and botanic characteristics. We recently demonstrated that modifying the phosphorylation sites of tomato SlBRI1 could improve the agronomic traits of tomato to different extents; however, the associated agronomic potential of SlBRI1 phosphorylation sites in tomato has not been fully exploited. In this research, the biological functions of the phosphorylation site threonine-825 (Thr-825) of SlBRI1 in tomato were investigated. Phenotypic analysis showed that, compared with a tomato line harboring SlBRI1, transgenic tomato lines expressing SlBRI1 with a nonphosphorylated Thr-825 (T825A) exhibited a larger plant size due to a larger cell size and higher yield, including a greater plant height, thicker stems, longer internodal lengths, greater plant expansion, a heavier fruit weight, and larger fruits. Molecular analyses further indicated that the autophosphorylation level of SlBRI1, BR signaling, and gibberellic acid (GA) signaling were elevated when SlBRI1 was dephosphorylated at Thr-825. Taken together, the results demonstrated that dephosphorylation of Thr-825 can enhance the functions of SlBRI1 in BR signaling, which subsequently activates and cooperates with GA signaling to stimulate cell elongation and then leads to larger plants and higher yields per plant. These results also highlight the agricultural potential of SlBRI1 phosphorylation sites for breeding high-yielding tomato varieties through precise control of BR signaling.


Assuntos
Brassinosteroides/metabolismo , Lycopersicon esculentum/genética , /genética , Tamanho Celular , Frutas/metabolismo , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/genética , Treonina/metabolismo
15.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299327

RESUMO

Adenylate kinase (ADK) is widely distributed in organisms and plays an important role in cellular energy homeostasis. In plants, ADK has important functions in plant growth and development regulation as well as in adaptation to the environment. However, little information is available about the ADK genes in tomato (Solanum lycopersicum), an important economic crop. To investigate the characteristics and functions of ADK genes in tomato, a total of 11 ADK genes were identified and named according to their chromosomal locations. The ADK family in Arabidopsis, tomato, potato, and rice was divided into six groups, and motif analysis revealed that each SlADK protein contained five to eight conserved motifs. A total of 4 to 19 exons were identified in tomato ADK gene family members, and interestingly, most members possessed 4 exons. Several stress response elements were identified in the promoter regions of SlADKs. The 11 SlADKs were randomly distributed on 9 of the 12 tomato chromosomes. Three duplication events were observed between tomato chromosomes, and a high degree of conservation of synteny was demonstrated between tomato and potato. The online TomExpress platform prediction revealed that SlADKs were expressed in various tissues and organs, basically consistent with the data obtained from real-time quantitative PCR (qPCR). The qPCR verification was also performed to determine the expression level of SlADKs and demonstrated that the genes responded to multiple abiotic stresses, such as drought, salt, and cold. Besides, the qPCR results showed that SlADK transcription was responsive to most of the applied hormone treatment. For correlation network analysis under 44 global conditions, the results showed that the number of 17, 3, 4, and 6 coexpressed genes matched with SlADK5, 8, 9, and 11, respectively. For specific gene function analysis, expression of SlADK10 was inhibited using virus-induced gene silencing (VIGS). Compared to wild-type plants, plants with silenced SlADK10 gene had poor drought resistance, indicating SlADK10 regulated drought tolerance of tomato positively. In summary, the information provided in the present study will be helpful to understand the evolutionary relationship and their roles of tomato ADK gene family in further research.


Assuntos
Adenilato Quinase/genética , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/genética , Adenilato Quinase/biossíntese , Adenilato Quinase/metabolismo , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/metabolismo , Secas , Expressão Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Estudo de Associação Genômica Ampla/métodos , Lycopersicon esculentum/enzimologia , Família Multigênica , Filogenia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
16.
Sci Rep ; 11(1): 13710, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211083

RESUMO

It is widely known that during the reproductive stage (flowering), plants do not root well. Most protocols of shoot regeneration in plants utilize juvenile tissue. Adding these two realities together encouraged us to study the role of florigen in shoot regeneration. Mature tobacco tissue that expresses the endogenous tobacco florigen mRNA regenerates poorly, while juvenile tissue that does not express the florigen regenerates shoots well. Inhibition of Nitric Oxide (NO) synthesis reduced shoot regeneration as well as promoted flowering and increased tobacco florigen level. In contrast, the addition of NO (by way of NO donor) to the tissue increased regeneration, delayed flowering, reduced tobacco florigen mRNA. Ectopic expression of florigen genes in tobacco or tomato decreased regeneration capacity significantly. Overexpression pear PcFT2 gene increased regeneration capacity. During regeneration, florigen mRNA was not changed. We conclude that florigen presence in mature tobacco leaves reduces roots and shoots regeneration and is the possible reason for the age-related decrease in regeneration capacity.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Florígeno/metabolismo , Lycopersicon esculentum/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Pyrus/crescimento & desenvolvimento , Tabaco/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Óxido Nítrico/metabolismo , Persea/genética , Persea/crescimento & desenvolvimento , Persea/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Pyrus/genética , Pyrus/metabolismo , RNA Mensageiro/genética , Tabaco/genética , Tabaco/metabolismo
17.
Sci Rep ; 11(1): 13745, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215802

RESUMO

Tomato (Solanum lycopersicum L.) is an important vegetable cultivated around the world. Under field conditions, tomato can be negatively affected by water scarcity in arid and semiarid regions. The application of native plant growth-promoting rhizobacteria (PGPR) isolated from arid environments has been proposed as an inoculant to mitigate abiotic stresses in plants. In this study, we evaluated rhizobacteria from Cistanthe longiscapa (syn Calandrinia litoralis and Calandrinia longiscapa), a representative native plant of flowering desert (FD) events (Atacama Desert, Chile), to determine their ability to reduce water scarcity stress on tomato seedlings. The isolated bacterial strains were characterized with respect to their PGPR traits, including P solubilization, 1-aminocyclopropane-1-carboxylate deaminase activity, and tryptophan-induced auxin and exopolysaccharide production. Three PGPR consortia were formulated with isolated Bacillus strains and then applied to tomato seeds, and then, the seedlings were exposed to different levels of water limitations. In general, tomato seeds and seedlings inoculated with the PGPR consortia presented significantly (P ≤ 0.05) greater plant growth (48 to 60 cm of height and 171 to 214 g of weight) and recovery rates (88 to 100%) compared with those without inoculation (37 to 51 cm of height; 146 to 197 g of fresh weight; 54 to 92% of recovery) after exposure to a lack of irrigation over different time intervals (24, 72 and 120 h) before transplantation. Our results revealed the effectiveness of the formulated PGPR consortia from FD to improve the performance of inoculated seeds and seedlings subjected to water scarcity; thus, the use of these consortia can represent an alternative approach for farmers facing drought events and water scarcity associated with climate change in semiarid and arid regions worldwide.


Assuntos
Burkholderiales/metabolismo , Lycopersicon esculentum/crescimento & desenvolvimento , Desenvolvimento Vegetal , Plântula/crescimento & desenvolvimento , Burkholderiales/crescimento & desenvolvimento , Chile , Secas , Germinação/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Sementes/crescimento & desenvolvimento , Microbiologia do Solo , Insegurança Hídrica
18.
J Plant Physiol ; 263: 153460, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34217838

RESUMO

Ethylene is a gaseous hormone with a well-established role in the regulation of plant growth and development. However, its role in the modulation of carbon assimilation and central metabolism remains unclear. Here, we investigated the morphophysiological and biochemical responses of tomato plants (Solanum lycopersicum) following the application of ethylene in the form of ethephon (CEPA - 2-chloroethylphosphonic acid), forcing the classical triple response phenotype. CEPA-treated plants were characterized by growth inhibition, as revealed by significant reductions in both shoot and root dry weights, coupled with a reduced number of leaves and lower specific leaf area. Growth inhibition was associated with a reduction in carbon assimilation due to both lower photosynthesis rates and stomatal conductance, coupled with impairments in carbohydrate turnover. Furthermore, exogenous ethylene led to the accumulation of cell wall compounds (i.e., cellulose and lignin) and phenolics, indicating that exposure to exogenous ethylene also led to changes in specialized metabolism. Collectively, our findings demonstrate that exogenous ethylene disrupts plant growth and leaf structure by affecting both central and specialized metabolism, especially that involved in carbohydrate turnover and cell wall biosynthesis, ultimately leading to metabolic responses that mimic stress situations.


Assuntos
Etilenos/metabolismo , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
19.
Nat Plants ; 7(6): 800-813, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135484

RESUMO

The vegetative-to-floral transition is a dramatic developmental change of the shoot apical meristem, promoted by the systemic florigen signal. However, poor molecular temporal resolution of this dynamic process has precluded characterization of how meristems respond to florigen induction. Here, we develop a technology that allows sensitive transcriptional profiling of individual shoot apical meristems. Computational ordering of hundreds of tomato samples reconstructed the floral transition process at fine temporal resolution and uncovered novel short-lived gene expression programs that are activated before flowering. These programs are annulled only when both florigen and a parallel signalling pathway are eliminated. Functional screening identified genes acting at the onset of pre-flowering programs that are involved in the regulation of meristem morphogenetic changes but dispensable for the timing of floral transition. Induced expression of these short-lived transition-state genes allowed us to determine their genetic hierarchies and to bypass the need for the main flowering pathways. Our findings illuminate how systemic and autonomous pathways are integrated to control a critical developmental switch.


Assuntos
Flores/genética , Perfilação da Expressão Gênica/métodos , Lycopersicon esculentum/genética , Meristema/genética , Proteínas de Plantas/genética , Simulação por Computador , Florígeno/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Lycopersicon esculentum/citologia , Lycopersicon esculentum/crescimento & desenvolvimento , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Microscopia Eletrônica de Varredura , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
20.
Plant Cell Physiol ; 62(5): 775-783, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100555

RESUMO

Tomato (Solanum lycopersicum) contains α-tomatine, a steroidal glycoalkaloid that contributes to the plant defense against pathogens and herbivores through its bitter taste and toxicity. It accumulates at high levels in all the plant tissues, especially in leaves and immature green fruits, whereas it decreases during fruit ripening through metabolic conversion to the nontoxic esculeoside A, which accumulates in the mature red fruit. This study aimed to identify the gene encoding a C-27 hydroxylase that is a key enzyme in the metabolic conversion of α-tomatine to esculeoside A. The E8 gene, encoding a 2-oxoglutalate-dependent dioxygenase, is well known as an inducible gene in response to ethylene during fruit ripening. The recombinant E8 was found to catalyze the C-27 hydroxylation of lycoperoside C to produce prosapogenin A and is designated as Sl27DOX. The ripe fruit of E8/Sl27DOX-silenced transgenic tomato plants accumulated lycoperoside C and exhibited decreased esculeoside A levels compared with the wild-type (WT) plants. Furthermore, E8/Sl27DOX deletion in tomato accessions resulted in higher lycoperoside C levels in ripe fruits than in WT plants. Thus, E8/Sl27DOX functions as a C-27 hydroxylase of lycoperoside C in the metabolic detoxification of α-tomatine during tomato fruit ripening, and the efficient detoxification by E8/27DOX may provide an advantage in the domestication of cultivated tomatoes.


Assuntos
Frutas/metabolismo , Lycopersicon esculentum/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Tomatina/análogos & derivados , Frutas/crescimento & desenvolvimento , Lycopersicon esculentum/genética , Lycopersicon esculentum/crescimento & desenvolvimento , Oxigenases de Função Mista/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saponinas/metabolismo , Especificidade por Substrato , Tomatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...