Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.879
Filtrar
1.
Toxicology ; 460: 152881, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358621

RESUMO

Myocardial apoptosis and necroptosis are the major etiological factor during doxorubicin (DOX) induced cardiotoxicity, and one of the important reasons that limit the drug's clinical application. Up to date, its mechanism has not been fully elucidated. The protective role of phosphocreatine (PCr) in heart surgery and medical cardiology has been observed in numerous clinical trials. This study aimed to evaluate cardioprotective actions of PCr against DOX-induced cardiotoxicity and investigate the underlying mechanism involving in transforming growth factor ß-activated kinase 1 (TAK1) mediated myocardial survive signaling pathway. Male Sprague-Dawleyrats were intraperitoneally (ip) injected with normal saline (NS) or DOX (2 mg/kg) alone or DOX with PCr (200 mg/kg) used as animal model. The data showed that DOX significantly impaired cardiac function and structure, induced oxidative stress, myocardial apoptosis and necroptosis, and dramatically down-regulated the expression level of TAK1, while the intervention of PCr obviously attenuated cardiac dysfunction, oxidative stress, myocardial apoptosis and necroptosis, especially alleviated the decrease of TAK1 expression. In vitro analysis, after H9c2 cells were pretreated with or without PCr (0.5 mM) or N-Acetyl-L-cysteine (NAC, 0.5 mM) or 5Z-7-oxozeaenol (5z-7-Ox, 1 µM) for 1 h, subsequently treated with DOX (1 µM) for 24 h. The results revealed that inhibition of TAK1 further deteriorated apoptotic and necroptotic cell death induced by DOX in H9c2 cells, but didn't affect oxidative stress. While the pretreatment of PCr or NAC enhanced antioxidant activity to reduce oxidative stress, significantly alleviated apoptotic and necroptotic cell death induced by DOX in H9c2 cells. Consistent with the results in vivo, PCr or NAC significantly inhibited the decrease of TAK1 expression induced by DOX. In conclusion, oxidative stress induced by DOX inhibits the expression of TAK1, and leads to myocardial apoptotic and necroptotic death, while the intervention of PCr increases antioxidant activity to alleviate oxidative stress, which in turn activates TAK1 signaling pathway to promote myocardial survival, and finally attenuate DOX-induced cardiotoxicity.


Assuntos
Cardiotoxinas/toxicidade , Doxorrubicina/toxicidade , MAP Quinase Quinase Quinases/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfocreatina/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Masculino , Miocárdio/patologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
2.
Biomed Res Int ; 2021: 9938515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395629

RESUMO

Laryngeal carcinoma is a malignant disease with high morbidity and mortality. Several studies have indicated that miRNA dysfunction involves in the development of laryngeal carcinoma. In this study, the connection of miR-339-5p and laryngeal carcinoma was investigated, and qRT-PCR, CCK-8, and flow cytometry assay were used to observe the function of miR-339-5p on laryngeal carcinoma. Besides, the target database, dual-luciferase reporter assay, and western blot were used to explore the regulation mechanism of miR-339-5p on the progression of laryngeal carcinoma. The results showed that miR-339-5p was significantly downregulated in cisplatin-resistant cells of laryngeal carcinoma, and miR-339-5p upregulation could weaken the resistance of laryngeal carcinoma cells on cisplatin. Moreover, miR-339-5p could directly react with 3'-UTR of TAK1, and TAK1 could reverse the effects of miR-339-5p on the progression of autophagy. In conclusion, this study suggests that miR-339-5p can inhibit the autophagy to decrease the cisplatin resistance of laryngeal carcinoma via targeting TAK1.


Assuntos
Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Laríngeas/genética , MAP Quinase Quinase Quinases/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Laríngeas/metabolismo , MAP Quinase Quinase Quinases/metabolismo
3.
Exp Brain Res ; 239(9): 2701-2709, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34223957

RESUMO

To investigate the role of GluN2A and GluN2B in neuroprotective effect of sevoflurane preconditioning against cerebral ischemia-reperfusion injury (CIRI). Rats were randomly divided into five groups as follows: control, ischemia-reperfusion (I/R) 6 h, sevoflurane preconditioning (SP), SP + amantadine, SP + NMDA. Immunoblot and immunoprecipitation were used to detect the tyrosine phosphorylation of GluN2A/GluN2B, the interaction of GluN2A/GluN2B-PSD-95-MLK3 and the expression of phosphorylation of MLK3, MKK7 and JNK3. Cresyl violet staining was employed to analyse neuronal injury in rat hippocampal CA1 subfields. Sevoflurane preconditioning inhibits the tyrosine phosphorylation of GluN2A/GluN2B, the interaction of GluN2A/GluN2B-PSD-95-MLK3 and the phosphorylation of MLK3, MKK7 and JNK3 in rat hippocampus. An N-methyl-D-aspartate receptor (NMDAR) antagonist amantadine reversed the MLK3-MKK7- JNK3 signal events. Such reversion was also realized by NMDA (60 and 80 nmol) and low doses of NMDA (0-40 nmol) could not change the inhibitory effect of sevoflurane preconditioning on MLK3-MKK7-JNK3 signal events. Finally, Cresyl violet staining also confirmed that low dose of NMDA reduced neuronal loss in rat hippocampal CA1 subfields. Sevoflurane preconditioning provides neuroprotection against CIRI by inhibiting NMDAR over-activation.


Assuntos
Lesões Encefálicas , Traumatismo por Reperfusão , Animais , MAP Quinase Quinase Quinases/metabolismo , Neuroproteção , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Sevoflurano
4.
Cell Death Dis ; 12(7): 678, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226501

RESUMO

Oncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-ß-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.


Assuntos
Neoplasias dos Ductos Biliares/enzimologia , Movimento Celular , Colangiocarcinoma/enzimologia , Ubiquitina Tiolesterase/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/genética , Colangiocarcinoma/secundário , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitinação
5.
Nat Cell Biol ; 23(7): 796-807, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239062

RESUMO

Inflammatory bowel diseases present with elevated levels of intestinal epithelial cell (IEC) death, which compromises the gut barrier, activating immune cells and triggering more IEC death. The endogenous signals that prevent IEC death and break this vicious cycle, allowing resolution of intestinal inflammation, remain largely unknown. Here we show that prostaglandin E2 signalling via the E-type prostanoid receptor 4 (EP4) on IECs represses epithelial necroptosis and induces resolution of colitis. We found that EP4 expression correlates with an improved IBD outcome and that EP4 activation induces a transcriptional signature consistent with resolution of intestinal inflammation. We further show that dysregulated necroptosis prevents resolution, and EP4 agonism suppresses necroptosis in human and mouse IECs. Mechanistically, EP4 signalling on IECs converges on receptor-interacting protein kinase 1 to suppress tumour necrosis factor-induced activation and membrane translocation of the necroptosis effector mixed-lineage kinase domain-like pseudokinase. In summary, our study indicates that EP4 promotes the resolution of colitis by suppressing IEC necroptosis.


Assuntos
Colite/metabolismo , Colo/metabolismo , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Necroptose , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/patologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células HT29 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necroptose/efeitos dos fármacos , Organoides , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/genética , Transdução de Sinais
6.
Biomed Pharmacother ; 138: 111543, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311538

RESUMO

Acute lung injury (ALI) is a severe lung disease with limited therapeutic strategies. Munronoid I, a limonoid, which is extracted and purified from Munronia sinica, exhibits effective anti-neoplastic activities. In this study, we attempted to determine the anti-inflammatory effects of Munronoid I using both the lipopolysaccharide (LPS)-induced in vivo murine ALI models and in vitro assays. Our results demonstrated that Munronoid I treatment ameliorated LPS-induced ALI and inflammation in mice. Moreover, it also significantly inhibited LPS-induced pathological injuries, infiltration of inflammatory cells, and production of IL-1ß and IL-6. Furthermore, the in vitro assay showed that Munronoid I could inhibit the LPS-induced expression of inflammatory mediators such as iNOS, COX2, and production of pro-inflammatory cytokines by suppressing the activation of NF-κB signaling pathway in mouse peritoneal macrophages. Munronoid I reduced the LPS-, tumor necrosis factor alpha (TNF-α)- or interleukin 1 beta (IL-1ß)-induced transforming growth factor beta-activated kinase 1 (TAK1) phosphorylation and protein expression. Furthermore, the Munronoid I also promoted K48-linked ubiquitination and proteasomal degradation of TAK1. Taken together, these results demonstrated that Munronoid I exhibited anti-inflammatory activities both in vitro and in vivo, which might be a potential therapeutic candidate for the treatment of ALI and pulmonary inflammation.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios/farmacologia , Limoninas/farmacologia , Pulmão/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Limoninas/isolamento & purificação , Lipopolissacarídeos , Pulmão/enzimologia , Pulmão/patologia , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/patologia , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Proteólise , Ubiquitinação
7.
Nat Commun ; 12(1): 4019, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188043

RESUMO

The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53-HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A/p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Neoplasias Colorretais/patologia , Fatores de Transcrição de Choque Térmico/metabolismo , Perda de Heterozigosidade/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células HCT116 , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Proteína Supressora de Tumor p53/genética
8.
Eur J Med Chem ; 223: 113576, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34153577

RESUMO

Using cheminformatics tools RDKit and literature investigation, four series of 24 thienopyrimidine/N-methylpicolinamide derivatives substituted with pyrimidine were designed, synthesized and evaluated for activities against three cancer cell lines (MDA-MB-231, HCT116 and A549), TAK1 kinase and NF-κB signaling pathway. Almost all compounds showed selectivity toward the A549 cell lines and the most promising compound 38 could inhibit TAK1 kinase and NF-κB signaling pathway with the IC50 values of 0.58 and 0.84 µM. Moreover, 38 can induce cell cycle arrest of A549 cells at the G2/M checkpoint with 30.57% and induce apoptosis (34.94%) in a concentration-dependent manner. And western blot showed that compound 38 could inhibit TNF-α-induced IκBα phosphorylation, IκBα degradation, p65 phosphorylation and TAK1 phosphorylation, and reduce the expression of p65. What's more, the studies of docking, molecular dynamics, MM/PBSA and frequency analysis theoretically supported the conclusions of the bioevaluation.


Assuntos
Antineoplásicos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Ácidos Picolínicos/farmacologia , Pirimidinas/farmacologia , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , MAP Quinase Quinase Quinases/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , NF-kappa B/metabolismo , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/síntese química , Pirimidinas/metabolismo , Tiofenos/síntese química , Tiofenos/metabolismo
9.
Acta Biochim Biophys Sin (Shanghai) ; 53(8): 1009-1016, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34184741

RESUMO

Acetoacetate (AA) is an important ketone body that is used as an oxidative fuel to supply energy for the cellular activities of various tissues, including the brain and skeletal muscle. We recently revealed a new signaling role for AA by showing that it promotes muscle cell proliferation in vitro, enhances muscle regeneration in vivo, and ameliorates the dystrophic muscle phenotype of Mdx mice. In this study, we provide new molecular insight into this function of AA. We show that AA promotes C2C12 cell proliferation by transcriptionally upregulating the expression of muscle-specific miR-133b, which in turn stimulates muscle cell proliferation by targeting serum response factor. Furthermore, we show that the AA-induced upregulation of miR-133b is transcriptionally mediated by MEF2 via the Mek-Erk1/2 signaling pathway. Mechanistically, our findings provide further convincing evidence that AA acts as signaling metabolite to actively regulate various cellular activities in mammalian cells.


Assuntos
Acetoacetatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/metabolismo , Mioblastos/metabolismo , Fator de Resposta Sérica/metabolismo , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fatores de Transcrição MEF2/metabolismo , Camundongos
10.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071450

RESUMO

Receptor-interacting protein kinase 1 (RIPK1) is a key component of the tumor necrosis factor (TNF) receptor signaling complex that regulates both pro- and anti-apoptotic signaling. The reciprocal functions of RIPK1 in TNF signaling are determined by the state of the posttranslational modifications (PTMs) of RIPK1. However, the underlying mechanisms associated with the PTMs of RIPK1 are unclear. In this study, we found that RING finger protein 4 (RNF4), a RING finger E3 ubiquitin ligase, is required for the RIPK1 autophosphorylation and subsequent cell death. It has been reported that RNF4 negatively regulates TNF-α-induced activation of the nuclear factor-κB (NF-κB) through downregulation of transforming growth factor ß-activated kinase 1 (TAK1) activity, indicating the possibility that RNF4-mediated TAK1 suppression results in enhanced sensitivity to cell death. However, interestingly, RNF4 was needed to induce RIPK1-mediated cell death even in the absence of TAK1, suggesting that RNF4 can promote RIPK1-mediated cell death without suppressing the TAK1 activity. Thus, these observations reveal the existence of a novel mechanism whereby RNF4 promotes the autophosphorylation of RIPK1, which provides a novel insight into the molecular basis for the PTMs of RIPK1.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Adolescente , Animais , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Immunoblotting , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos Knockout , Fosforilação , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
11.
Anticancer Res ; 41(6): 2885-2894, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34083279

RESUMO

BACKGROUND/AIM: We evaluated the radiosensitizing effect of the combination treatment of trametinib, a MEK inhibitor, and temsirolimus, an mTOR inhibitor, on non-small-cell lung carcinoma (NSCLC) cells. MATERIALS AND METHODS: The effects of combining trametinib and temsirolimus with radiation in NSCLC cell lines were evaluated using clonogenic survival and apoptosis assays. DNA double-strand breaks and cell cycle distribution were analyzed using flow cytometry. Tumor volume was measured to determine the radiosensitivity in lung cancer xenograft models. RESULTS: Exposure of lung cancer cells to a combination of trametinib and temsirolimus reduced clonogenic survival and promoted radiation-induced apoptosis. Combined inhibition of MEK and mTOR induced prolonged expression of γH2AX after irradiation and resulted in prolonged G2/M cell cycle arrest after irradiation in A549 cells. In vivo studies revealed that co-administration of the drugs sensitizes lung cancer xenografts to radiotherapy. CONCLUSION: The combination of trametinib and temsirolimus can enhance lung cancer radiosensitivity in vitro and in vivo.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , MAP Quinase Quinase Quinases/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Quimioterapia Combinada , Humanos , Neoplasias Pulmonares/patologia , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Células Tumorais Cultivadas
12.
Phytomedicine ; 88: 153609, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126414

RESUMO

BACKGROUD: Schisandra chinensis, a traditional Chinese medicine for liver protection, can significantly improve liver fibrosis. However, it is still unclear which active components in Schisandra chinensis play an anti-fibrosis role. PURPOSE: The purpose of present study was to observe the anti-fibrosis effect of schisantherin A (SCA) on liver fibrosis and explore its underlying mechanism. METHODS: The liver fibrosis model of mice was constructed by the progressive intraperitoneal injection of thioacetamide (TAA), and SCA (1, 2, and 4 mg/kg) was administered by gavage for 5 weeks. The biochemical indicators and inflammatory cytokines were measured, changes in the pathology of the mice liver were observed by hematoxylin & eosin (H&E) and Masson stainings for studying the anti-fibrosis effect of SCA. A hepatic stellate cell (HSCs) activation model induced by transforming growth factor-ß1 (TGF-ß1) was established, and the effect of SCA on the HSCs proliferation was observed by MTT assay. The expressions of target proteins related to transforming growth factor-ß-activated kinase 1 (TAK1)/mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways were evaluated by western blotting, immunohistochemistry or immunofluorescence analysis, to explore the potential mechanism of SCA. RESULTS: SCA could significantly ameliorate the pathological changes of liver tissue induced by TAA, and reduce the serum transaminase level, the hydroxyproline level and the expression of α-smooth muscle actin (α-SMA) and collagen 1A1 (COL1A1) proteins in the liver tissue. SCA could significantly lower the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) in the serum and liver tissue, and down-regulate the expression of target proteins related to TAK1/MAPK and NF-κB pathways in the liver tissue. The in vitro studies demonstrated that SCA significantly inhibited the proliferation and activation of HCS-T6 cells induced by TGF-ß1, decreased TNF-α and IL-6 levels, and inhibited the TAK1 activation induced by TGF-ß1 and then the expression of MAPK and NF-κB signaling pathway-related proteins. CONCLUSION: Together, SCA can ameliorate the liver fibrosis induced by TAA and the HSC-T6 cell activation induced by TGF-ß1 in mice, and its mechanism may be to inhibit the HSCs activation and inflammatory response by inhibiting TGF-ß1 mediated TAK1/MAPK and signal pathways.


Assuntos
Ciclo-Octanos/farmacologia , Dioxóis/farmacologia , Lignanas/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/patologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Tioacetamida/toxicidade
13.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33913483

RESUMO

Regeneration after damage requires early signals to trigger the tissue repair machinery. Reactive oxygen species (ROS) act as early signals that are sensed by the MAP3 kinase Ask1, which in turn activates by phosphorylation the MAP kinases p38 and JNK. The sustained or high activation of these kinases can result in apoptosis, whereas short or low activation can promote regeneration. Using the Ask1-dependent regeneration program, we demonstrate in Drosophila wing that PI3K/Akt signaling is necessary for Ask1 to activate p38, but not JNK. In addition, nutrient restriction or mutations that target Ser83 of the Drosophila Ask1 protein, a PI3K/Akt-sensitive residue, block regeneration. However, these effects can be reversed by the ectopic activation of p38, but not of JNK. Our results demonstrate that Ask1 controls the activation of p38 through Ser83, and that the phosphorylation of p38 during regeneration is nutrient sensitive. This mechanism is important for discriminating between p38 and JNK in the cells involved in tissue repair and regenerative growth.


Assuntos
Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração , Asas de Animais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
J Biol Chem ; 296: 100676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33865857

RESUMO

Human cell division is a highly regulated process that relies on the accurate capture and movement of chromosomes to the metaphase plate. Errors in the fidelity of chromosome congression and alignment can lead to improper chromosome segregation, which is correlated with aneuploidy and tumorigenesis. These processes are known to be regulated by extracellular signal-regulated kinase 2 (ERK2) in other species, but the role of ERK2 in mitosis in mammals remains unclear. Here, we have identified the dual-specificity phosphatase 7 (DUSP7), known to display selectivity for ERK2, as important in regulating chromosome alignment. During mitosis, DUSP7 bound to ERK2 and regulated the abundance of active phospho-ERK2 through its phosphatase activity. Overexpression of DUSP7, but not catalytically inactive mutants, led to a decrease in the levels of phospho-ERK2 and mitotic chromosome misalignment, while knockdown of DUSP7 also led to defective chromosome congression that resulted in a prolonged mitosis. Consistently, knockdown or chemical inhibition of ERK2 or chemical inhibition of the MEK kinase that phosphorylates ERK2 led to chromosome alignment defects. Our results support a model wherein MEK-mediated phosphorylation and DUSP7-mediated dephosphorylation regulate the levels of active phospho-ERK2 to promote proper cell division.


Assuntos
Cromossomos Humanos/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mitose , Cromossomos Humanos/genética , Fosfatases de Especificidade Dupla/genética , Células HCT116 , Células HeLa , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Mutação , Fosforilação/genética
15.
Mol Cell Biochem ; 476(8): 3009-3020, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33791919

RESUMO

Hypertrophic Scar (HS) is a complicated fibrotic disease. In addition, its pathogenesis is still to be further explored. Long non-coding RNAs (lncRNAs) have been proved to be participated in multiple diseases, including HS. However, the role of lncRNA TUG1 in HS remains unclear. The expression level of RNA and protein in cells were detected by q-PCR and western blot, respectively. MTT assay was performed to test the cell proliferation. Cell migration was detected by transwell assay. Cell apoptosis was measured by flow cytometry. Dual luciferase report assay and RNA pull down were used to verify the relationship between TUG1, miR-27b-3p and TAK1.TUG1 and TAK1 were upregulated in HS, while miR-27b-3p was downregulated. Knockdown of TUG1 significantly suppressed the proliferation and migration and induced the apoptosis of HS fibroblasts (HSF). In addition, silencing of TUG1 notably inhibited the extracellular matrix (ECM) biosynthesis in HSF. Overexpression of miR-27b-3p has the same effect on HS as that of TUG1 knockdown. Meanwhile, TUG1 could sponge miR-27b-3p, and TAK1 was the direct target of miR-27b-3p. Furthermore, knockdown of TUG1 significantly suppressed the fibrosis in HS via miR-27b-3p/TAK1/YAP/TAZ axis mediation. LncRNA TUG1 promotes the fibrosis in HS via sponging miR-27b-3p and then activates TAK1/YAP/TAZ pathway, which may serve as a potential target for treatment of HS.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cicatriz Hipertrófica/patologia , Fibrose/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Apoptose , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/metabolismo , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases/genética , MicroRNAs/genética , Prognóstico , Fatores de Transcrição/genética
16.
Int J Mol Sci ; 22(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800547

RESUMO

Despite recent groundbreaking advances in the treatment of cutaneous melanoma, it remains one of the most treatment-resistant malignancies. Due to resistance to conventional chemotherapy, the therapeutic focus has shifted away from aiming at melanoma genome stability in favor of molecularly targeted therapies. Inhibitors of the RAS/RAF/MEK/ERK (MAPK) pathway significantly slow disease progression. However, long-term clinical benefit is rare due to rapid development of drug resistance. In contrast, immune checkpoint inhibitors provide exceptionally durable responses, but only in a limited number of patients. It has been increasingly recognized that melanoma cells rely on efficient DNA repair for survival upon drug treatment, and that genome instability increases the efficacy of both MAPK inhibitors and immunotherapy. In this review, we discuss recent developments in the field of melanoma research which indicate that targeting genome stability of melanoma cells may serve as a powerful strategy to maximize the efficacy of currently available therapeutics.


Assuntos
Instabilidade Genômica , Melanoma/genética , Neoplasias Cutâneas/genética , Animais , Ensaios Clínicos como Assunto , Dano ao DNA , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Genoma Humano , Humanos , Imunoterapia/métodos , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Melanoma/metabolismo , Camundongos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Radioterapia , Neoplasias Cutâneas/metabolismo
17.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799767

RESUMO

Possessing a variety of medicinal functions, Olea europaea L. is widely cultivated across the world. However, the anti-inflammatory mechanism of Olea europaea is not yet fully elucidated. In this study, how the methanol extract of the leaves of Olea europaea (Oe-ME) can suppress in vitro inflammatory responses was examined in terms of the identification of the target protein. RAW264.7 and HEK293T cells were used to study macrophage-mediated inflammatory responses and to validate the target protein using PCR, immunoblotting, nuclear fraction, overexpression, and cellular thermal shift assay (CETSA) under fixed conditions. Oe-ME treatment inhibited the mRNA expression levels of cyclooxygenase (COX)-2, matrix metallopeptidase (MMP)-9, and intercellular adhesion molecule-1 (ICAM-1) in activated RAW264.7 cells. Oe-ME diminished the activation of activator protein (AP)-1 and the phosphorylation of its upstream signaling cascades, including extracellular signal regulated kinase (ERK), mitogen-activated protein kinase kinase 1/2 (MEK1/2), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 3/6 (MKK3/6), p38, MKK7, and transforming growth factor-ß-activated kinase 1 (TAK1), in stimulated-RAW264.7 cells. Overexpression and CETSA were carried out to verify that TAK1 is the target of Oe-ME. Our results suggest that the anti-inflammatory effect of Oe-ME could be attributed to its control of posttranslational modification and transcription of TAK1.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Olea/metabolismo , Animais , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/fisiologia , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo
18.
Mol Cell Biol ; 41(7): e0007821, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33875576

RESUMO

Mixed-lineage kinase 3 (MLK3) activates mammalian mitogen-activated protein kinase (MAPK) signaling pathways in response to cytokines and stress stimuli. MLK3 is important for proliferation, migration, and invasion of different types of human tumor cells. We observed that endogenous MLK3 was localized to both the cytoplasm and the nucleus in immortalized ovarian epithelial (T80) and ovarian cancer cells, and mutation of arginines 474 and 475 within a putative MLK3 nuclear localization sequence (NLS) resulted in exclusion of MLK3 from the nucleus. The large tumor suppressor (LATS) Ser/Thr kinase regulates cell proliferation, morphology, apoptosis, and mitotic exit in response to cell-cell contact. RNA interference (RNAi)-mediated knockdown of LATS1 increased nuclear, endogenous MLK3 in T80 cells. LATS1 phosphorylated MLK3 on Thr477, which is within the putative NLS, and LATS1 expression enhanced the association between MLK3 and the adapter protein 14-3-3ζ. Thr477 is essential for MLK3-14-3-3ζ association and MLK3 retention in the cytoplasm, and a T477A MLK3 mutant had predominantly nuclear localization and significantly increased invasiveness of SKOV3 ovarian cancer cells. This study identified a novel link between the MAPK and Hippo/LATS1 signaling pathways. Our results reveal LATS1 as a novel regulator of MLK3 that controls MLK3 nuclear/cytoplasmic localization and MLK3-dependent ovarian cancer cell invasion.


Assuntos
Células Epiteliais/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Neoplasias Ovarianas/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia
19.
J Biochem ; 170(1): 69-77, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751071

RESUMO

SF3B1, an essential RNA splicing factor, is frequently mutated in various types of cancers, and the cancer-associated SF3B1 mutation causes aberrant RNA splicing. The aberrant splicing of several transcripts, including MAP3K7, promotes tumorigenesis. Here, we identify a premature termination codon in the aberrantly spliced transcript of MAP3K7. Treatment of HEK293T cells transfected with the K700E-mutated SF3B1 with cycloheximide leads to increased accumulation of the aberrant spliced transcript of MAP3K7, demonstrating that the aberrantly spliced transcript of MAP3K7 is targeted by nonsense-mediated decay. The aberrantly spliced MAP3K7 transcript uses an aberrant 3' splice sites and an alternative branchpoint sequence. In addition, the aberrant splicing of MAP3K7 requires not only the polypyrimidine tract associated with normal splicing but also an alternative polypyrimidine tract upstream of the aberrant 3' splice site. Other cancer-associated SF3B1 mutations also cause the aberrant splicing of MAP3K7, which depends on the same sequence features. Our data provide a further understanding of the mechanisms underlying aberrant splicing induced by cancer-associated SF3B1 mutation, and reveal an important role of alternative polypyrimidine tract in diseases.


Assuntos
MAP Quinase Quinase Quinases/genética , Neoplasias/genética , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Splicing de RNA/genética , Células Cultivadas , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/metabolismo , Mutação , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo
20.
Toxicol Appl Pharmacol ; 418: 115494, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722668

RESUMO

Tumor progression locus 2 (Tpl2, gene name MAP3K8), a mitogen-activated protein kinase, is widely expressed in immune and non-immune cells to integrate tumor necrosis factor (TNF), toll-like receptors (TLRs), and interleukin-1 (IL1) receptor signaling to regulate inflammatory response. Given its central role in inflammatory response, Tpl2 is an attractive small molecule drug target. However, the role of Tpl2 as an oncogene or tumor suppressor gene remains controversial, and its function outside immune cells is not understood. We therefore utilized a Tpl2 kinase dead (Tpl2-KD) mouse model in an 18-month aging study to further elucidate Tpl2 effects on lifespan and chronic disease. Histopathological studies revealed the incidence and severity of spontaneous tumors and non-neoplastic lesions were comparable between wild type and Tpl2-KD mice. The only finding was that male Tpl2-KD mice had higher bodyweight and an increased incidence of liver steatosis, suggesting a sex-specific role for Tpl2 in hepatic lipid metabolism. In conclusion, loss of Tpl2 kinase activity did not lead to increased tumorigenesis over aging in mice but affected likely alterations in lipid metabolism in male animals.


Assuntos
Fígado Gorduroso/enzimologia , Inflamação/enzimologia , Fígado/enzimologia , MAP Quinase Quinase Quinases/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores Etários , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Genótipo , Inflamação/genética , Metabolismo dos Lipídeos , Fígado/patologia , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...