Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129.282
Filtrar
1.
Nat Commun ; 11(1): 4909, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999291

RESUMO

Effectively activating macrophages against cancer is promising but challenging. In particular, cancer cells express CD47, a 'don't eat me' signal that interacts with signal regulatory protein alpha (SIRPα) on macrophages to prevent phagocytosis. Also, cancer cells secrete stimulating factors, which polarize tumor-associated macrophages from an antitumor M1 phenotype to a tumorigenic M2 phenotype. Here, we report that hybrid cell membrane nanovesicles (known as hNVs) displaying SIRPα variants with significantly increased affinity to CD47 and containing M2-to-M1 repolarization signals can disable both mechanisms. The hNVs block CD47-SIRPα signaling axis while promoting M2-to-M1 repolarization within tumor microenvironment, significantly preventing both local recurrence and distant metastasis in malignant melanoma models. Furthermore, by loading a stimulator of interferon genes (STING) agonist, hNVs lead to potent tumor inhibition in a poorly immunogenic triple negative breast cancer model. hNVs are safe, stable, drug loadable, and suitable for genetic editing. These properties, combined with the capabilities inherited from source cells, make hNVs an attractive immunotherapy.


Assuntos
Micropartículas Derivadas de Células/imunologia , Imunoterapia/métodos , Macrófagos/imunologia , Melanoma/terapia , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias de Mama Triplo Negativas/terapia , Animais , Antígeno CD47/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Melanoma/imunologia , Melanoma/secundário , Proteínas de Membrana/agonistas , Proteínas de Membrana/imunologia , Camundongos , Nanopartículas/administração & dosagem , Recidiva Local de Neoplasia/imunologia , Nucleotídeos Cíclicos/administração & dosagem , Receptores Imunológicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
2.
Theranostics ; 10(21): 9591-9600, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32863947

RESUMO

Cytokine storms, defined by the dysregulated and excessive production of multiple pro-inflammatory cytokines, are closely associated with the pathology and mortality of several infectious diseases, including coronavirus disease 2019 (COVID-19). Effective therapies are urgently needed to block the development of cytokine storms to improve patient outcomes, but approaches that target individual cytokines may have limited effect due to the number of cytokines involved in this process. Dysfunctional macrophages appear to play an essential role in cytokine storm development, and therapeutic interventions that target these cells may be a more feasible approach than targeting specific cytokines. Nanomedicine-based therapeutics that target macrophages have recently been shown to reduce cytokine production in animal models of diseases that are associated with excessive proinflammatory responses. In this mini-review, we summarize important studies and discuss how macrophage-targeted nanomedicines can be employed to attenuate cytokine storms and their associated pathological effects to improve outcomes in patients with severe infections or other conditions associated with excessive pro-inflammatory responses. We also discuss engineering approaches that can improve nanocarriers targeting efficiency to macrophages, and key issues should be considered before initiating such studies.


Assuntos
Anti-Infecciosos/uso terapêutico , Citocinas/imunologia , Infecções/imunologia , Macrófagos/imunologia , Nanomedicina/tendências , Animais , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Humanos , Infecções/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia
3.
J Environ Pathol Toxicol Oncol ; 39(3): 235-245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32865915

RESUMO

Ulcerative colitis (UC) is an intractable ailment, in which may chronic inflammations/ulcerations may develop in the mucosal lining of the colon with multiple recurrences. Various drugs such as steroids, immunosuppressants, and antibiotics are extensively used to treat UC. The patients suffer from adverse effects of these advanced drugs. So, they need a harmless therapeutic agent from natural sources. The therapeutic D-carvone has an anti-inflammatory action against the investigational colon cancer models. Therefore, we analyzed the effect of D-carvone on dextran sulfate sodium (DSS) provoked colitis model in mice as follows: Group I: noncolitis healthy control mice; Group II: ulcerative colitis mice models; Group III: D-carvone (40 mg/kg) + ulcerative colitis models; Group IV: sulfasalazine (50 mg/kg) + ulcerative colitis models. On the 8th day, the experimental study was terminated and serum samples and colon tissues were processed for further analysis. The effect of D-carvone at different concentration was studied on the LPS challenged RAW 264.7 cell lines. The D-carvone (40 mg/kg) treatment maintained the colon length and decreased disease activity index (DAI) score in UC animals. The increased antioxidant enzymes status and decreased oxidative stress and pro-inflammatory markers were noted in the D-carvone (40 mg/ kg) + UC mice. Histopathological study of colon tissue of D-carvone (40 mg/kg) treated UC mice displayed less mucosal damage and improved crypt integrity and goblet cells compared with DSS only provoked mice. The im-munohistochemical expression of iNOS and COX-2 was drastically diminished in the D-carvone treated UC mice. D-carvone (40 mg/kg) treatment appreciably diminished the LPS provoked NO production and pro-inflammatory modulators in the RAW 264.7 macrophage cell lines. These findings proved that D-carvone has a potential therapeutic effect to prevent LPS induced inflammation in in vitro cells and chemically induced ulcerative colitis in vivo models.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Monoterpenos Cicloexânicos/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue , Animais , Anti-Inflamatórios/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Monoterpenos Cicloexânicos/administração & dosagem , Sulfato de Dextrana , Modelos Animais de Doenças , Lipopolissacarídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
4.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 32(4): 367-373, 2020 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-32935510

RESUMO

OBJECTIVE: To investigate the polarization of human acute monocytic leukemia THP-1 cells-derived macrophages induced by Nippostrongylus brasiliensis proteins in vitro, so as to provide insights into the elucidation of the mechanisms underlying host immune responses to hookworm infections. METHODS: The in-vitro culture of N. brasiliensis was established and maintained in the laboratory, and the third- (L3) and fifth-stage larvae (L5) were collected under a sterile condition for preparation of L3 and L5 proteins. The in-vitro culture of THP-1 cells was established, stimulated with 500 ng/mL PMA to yield M0 macrophages that were adherent to the plate wall. The LPS + IFN-γ group, IL-4 + IL-13 group, L3 protein group and L5 protein group were given stimulation with 500 ng/mL LPS plus 100 ng/mL IFN-γ, IL-4 and IL-13 (both 100 ng/mL), L3 protein (5 mg/mL) and L5 protein (5 mg/mL), respectively, while the negative control group was given no stimulation. The cell morphology was observed using microscopy, the mRNA expression of M1/M2 macrophages-specific genes was quantified using a quantitative real-time PCR (qPCR) assay, and the surface markers of M1/M2 macrophages were detected using flow cytometry, while the levels of cytokines secreted by M1/M2 macrophages were measured using enzyme-linked immunosorbent assay (ELISA) following stimulations, so as to examine the polarization of THP-1-derived macrophages induced by N. brasiliensis proteins in vitro. RESULTS: Following stimulation with PMA, THP-1 cells appeared wall-adherent M0 macrophages, and polarized to typical M1 macrophages following stimulation with LPS + IFN-γ, and typical M2 macrophages following stimulation with IL-4 + IL-13, IL-3 protein or L5 protein. There was a significant difference in the proportion of M1 macrophages among the negative control group, the LPS + IFN-γ group, the IL-4 + IL-13 group, the L3 protein group and the L5 protein group (χ2 = 3 721.00, P < 0.001), with the highest proportion detected in the LPS + IFN-γ group, and there was also a significant difference in the proportion of M2 macrophages among groups (χ2 = 105.43, P < 0.001). There were significant differences among groups in terms of the mRNA expression of CCL2 (F = 191.95, P < 0.001), TNF-α (F = 129.95, P < 0.001), IL-12b (F = 82.89, P < 0.001), PPARγ (F = 11.30, P < 0.001), IL-10 (F = 9.51, P < 0.001) and Mrc1 genes (F = 12.35, P < 0.001). In addition, there were significant differences in the proportion of positive CD86 and CD206 expression among groups (χ2 = 24 004.33 and 832.50, P < 0.001). Higher IL-1ß and TNF-α levels were measured in the LPS + IFN-γ group than in the IL-4 + IL-13 group, the L3 protein group and the L5 protein group (P < 0.001), and greater TGF-ß1 and IL-10 levels were seen in the IL-4 + IL-13 group, the L3 protein group and the L5 protein group than in the negative control group and the LPS + IFN-γ group (P < 0.05). CONCLUSIONS: Both L3 and L5 proteins of N. brasiliensis may induce the polarization of THP-1-derived macrophages to M2 type in vitro.


Assuntos
Leucemia Monocítica Aguda , Animais , Antígenos de Helmintos/farmacologia , Criança , Humanos , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Nippostrongylus/química , Células THP-1/citologia , Células THP-1/efeitos dos fármacos
5.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 32(4): 432-435, 2020 Feb 24.
Artigo em Chinês | MEDLINE | ID: mdl-32935525

RESUMO

Macrophages are important members of innate immunity and play an extremely important role in the host defense against pathogenic infections, tumors, and allergic diseases. Macrophages have a high degree of plasticity, and may be polarized into classical activated macrophages (M1 macrophages) and alternative activated macrophages (M2 macrophages) under the stimulation of different environments. M1 macrophages are found to promote inflammatory responses, which facilitates the clearance of pathogens, while M2 macrophages may inhibit inflammatory responses, which facilitates the survival and reproduction of pathogens. This review summarizes the role of macrophage polarization in parasitic infections, so as to provide insights into the prevention and treatment of parasitic diseases.


Assuntos
Ativação de Macrófagos , Doenças Parasitárias , Humanos , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Doenças Parasitárias/imunologia
6.
Anticancer Res ; 40(10): 5679-5685, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988893

RESUMO

BACKGROUND/AIM: The presence of circulating tumor cells (CTC) has been reported to have an impact on prognosis in different tumor entities. Little is known about CTC morphology and heterogeneity. PATIENTS AND METHODS: In a multicenter setting, pre-therapeutic peripheral blood specimens were drawn from patients with non-metastatic esophageal adenocarcinoma (EAC). CTCs were captured by size-based filtration (ScreenCell®), subsequently Giemsa-stained and evaluated by two trained readers. The isolated cells were categorized in groups based on morphologic criteria. RESULTS: Small and large single CTCs, as well as CTC-clusters, were observed in 69.2% (n=81) of the 117 specimens; small CTCs were observed most frequently (59%; n=69), followed by large CTCs (40%; n=47) and circulating cancer-associated macrophage-like cells (CAMLs; 34.2%, n=40). Clusters were rather rare (12%; n=14). CTC/CAML were heterogeneous in the cohort, but also within one specimen. Neither the presence of the CTC subtypes/CAMLs nor the exact cell count were associated with the primary clinical TNM stage. CONCLUSION: Morphologically heterogenic CTCs and CAMLs are present in patients with non-metastatic, non-pretreated EAC.


Assuntos
Adenocarcinoma/sangue , Biomarcadores Tumorais/sangue , Neoplasias Esofágicas/sangue , Células Neoplásicas Circulantes/metabolismo , Adenocarcinoma/patologia , Contagem de Células , Separação Celular , Neoplasias Esofágicas/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/patologia , Prognóstico
7.
Nat Commun ; 11(1): 4611, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929072

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) and cancer-associated cachexia (CAC) are multifactorial and characterized by dysregulated inflammatory networks. Whether the proinflammatory cytokine IL-20 is involved in the complex networks of PDAC and CAC remains unclear. Here, we report that elevated IL-20 levels in tumor tissue correlate with poor overall survival in 72 patients with PDAC. In vivo, we establish a transgenic mouse model (KPC) and an orthotopic PDAC model and examine the therapeutic efficacy of an anti-IL-20 monoclonal antibody (7E). Targeting IL-20 not only prolongs survival and attenuates PD-L1 expression in both murine models but also inhibits tumor growth and mitigates M2-like polarization in the orthotopic PDAC model. Combination treatment with 7E and an anti-PD-1 antibody shows better efficacy in inhibiting tumor growth than either treatment alone in the orthotopic PDAC model. Finally, 7E mitigates cachexic symptoms in CAC models. Together, we conclude IL-20 is a critical mediator in PDAC progression.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/metabolismo , Interleucinas/antagonistas & inibidores , Modelos Biológicos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Caquexia , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Análise de Sobrevida , Resultado do Tratamento , Triglicerídeos/sangue , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(4): 525-530, 2020 Apr 30.
Artigo em Chinês | MEDLINE | ID: mdl-32895145

RESUMO

OBJECTIVE: To investigate the molecular mechanism underlying the inhibitory effect of propofol on pyroptosis of macrophages. METHODS: Macrophages derived from bone marrow were extracted and divided into three groups: control group, LPS+ATP group and propofol+LPS+ATP group. The control group was not given any treatment; LPS+ATP group was given LPS 1 µg/mL stimulation for 4 h, then ATP 4 mM stimulation for 1 h; Propofol+LPS+ATP group was given propofol+LPS 1 µg/mL stimulation for 4 h, then ATP stimulation for 1 h. After treatment, the supernatant and cells of cell culture were collected. the cell activity was detected by CCK8 and flow cytometry. The inflammatory cytokines IL-1ßand IL-18 were detected by Elisa. Western blot was used to detect the expression of caspase-1 protein and TLR4 on cell membran Immunohistochemical fluorescence was used to detect apoptosis of cells. RESULTS: LPS+ATP significantly decreased the viability of the macrophages and increased the cellular production of IL-1ß and IL-18, activation of caspase-1 protein and the expression of TLR-4 on the cell membrane (P < 0.05). Treatment with propofol obviously reversed the changes induced by LPS+ATP. CONCLUSIONS: LPS+ATP can induce pyroptosis of mouse bone marrow-derived macrophages, and propofol effectively inhibits such cell death, suggesting that propofol anesthesia is beneficial during operation and helps to regulate the immune function of in patients with sepsis.


Assuntos
Piroptose , Animais , Caspase 1 , Lipopolissacarídeos , Macrófagos , Camundongos , Propofol
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(6): 828-836, 2020 Jun 30.
Artigo em Chinês | MEDLINE | ID: mdl-32895198

RESUMO

OBJECTIVE: To investigate enterovirus 71 (EV71)-induced of autophagy, apoptosis and the related signaling pathways in THP-1 macrophages. METHODS: THP-1 macrophages were infected with EV71 at the multiplicity of infection (MOI) of 0.1 for 2, 8 or 16 h, and the cell proliferation and toxicity were analyzed using CCK-8 kit. The intracellular viral nucleic acid in THP-1 macrophages were detected by fluorescence quantitative PCR, and the ultrastructural changes of the cells were observed using transmission electron microscopy. Cell apoptosis induced by EV71 infection was detected using Hoechst 33342 staining and AnnexinV/PI double staining. Western blotting was performed for analysis of changes in autophagy and apoptosis of the cells and in the expressions of the related proteins. The effect of EV71 infection on apoptosis of THP-1 macrophages incubated with 3-MA and Ac-DEVD-CHO inhibitor for 2 h was assessed using Western blotting. RESULTS: EV71 infection significantly lowered the cell survival rate of THP-1 macrophages at 2, 8 h and 16 h after the infection (P < 0.05). The total copy number of viral nucleic acid in THP-1 macrophages incubated with EV71 increased significantly and progressively over time (P < 0.01). Intracellular autophagosomes and virions could be seen in EV71-infected THP-1 macrophages. The total apoptotic rate of the infected cell also increased significantly over time (P < 0.01). EV71 infection significantly increased LC3 conversion (LC3-Ⅱ/ LC3-I) and the expression of cleaved caspase 3 protein and decreased the protein expressions of p62, Bcl-2 and caspase-3 (P < 0.01) without causing obvious changes in cleaved caspase-8 (P>0.05). 3-MA significantly inhibited the EV71-induced autophagy of THP-1 macrophages and reduced LC3 conversion (LC3-Ⅱ/LC3-I) and p62 protein expression at 8 h after EV71 infection (P < 0.01). Compared with DMSO, Ac-DEVD-CHO significantly inhibited EV71-induced apoptosis of THP-1 macrophages (15.5% vs 7.7%, P < 0.01). CONCLUSIONS: EV71 not only can infect and replicate in THP-1 macrophages, but also induces autophagy and cell apoptosis possibly by activating LC3/p62 autophagy pathway and caspase apoptosis pathway.


Assuntos
Autofagia , Enterovirus Humano A , Apoptose , Linhagem Celular , Humanos , Macrófagos
10.
Nat Commun ; 11(1): 4375, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873797

RESUMO

In the testis, interstitial macrophages are thought to be derived from the yolk sac during fetal development, and later replaced by bone marrow-derived macrophages. By contrast, the peritubular macrophages have been reported to emerge first in the postnatal testis and solely represent descendants of bone marrow-derived monocytes. Here, we define new monocyte and macrophage types in the fetal and postnatal testis using high-dimensional single-cell analyses. Our results show that interstitial macrophages have a dominant contribution from fetal liver-derived precursors, while peritubular macrophages are generated already at birth from embryonic precursors. We find that bone marrow-derived monocytes do not substantially contribute to the replenishment of the testicular macrophage pool even after systemic macrophage depletion. The presence of macrophages prenatally, but not postnatally, is necessary for normal spermatogenesis. Our multifaceted data thus challenge the current paradigms in testicular macrophage biology by delineating their differentiation, homeostasis and functions.


Assuntos
Macrófagos/fisiologia , Testículo/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Diferenciação Celular , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Camundongos Knockout , Monócitos/fisiologia , Análise de Célula Única , Espermatogênese/fisiologia
11.
PLoS Comput Biol ; 16(9): e1008179, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898132

RESUMO

Detection and segmentation of macrophage cells in fluorescence microscopy images is a challenging problem, mainly due to crowded cells, variation in shapes, and morphological complexity. We present a new deep learning approach for cell detection and segmentation that incorporates previously learned nucleus features. A novel fusion of feature pyramids for nucleus detection and segmentation with feature pyramids for cell detection and segmentation is used to improve performance on a microscopic image dataset created by us and provided for public use, containing both nucleus and cell signals. Our experimental results indicate that cell detection and segmentation performance significantly benefit from the fusion of previously learned nucleus features. The proposed feature pyramid fusion architecture clearly outperforms a state-of-the-art Mask R-CNN approach for cell detection and segmentation with relative mean average precision improvements of up to 23.88% and 23.17%, respectively.


Assuntos
Células Eucarióticas/citologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Redes Neurais de Computação , Biologia Computacional , Aprendizado Profundo , Humanos , Macrófagos/citologia , Células THP-1
12.
J Toxicol Sci ; 45(9): 569-579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879256

RESUMO

Indoxyl, a derivative of indole originating from tryptophan, may undergo phase-II sulfate-conjugation pathway, thereby forming indoxyl sulfate (IS) in vivo. We previously reported that IS, a well-known uremic toxin, can increase the intracellular oxidation level and decrease the phagocytic activity in a differentiated HL-60 human macrophage cell model. Using the same cell model, the current study aimed to investigate whether indole and indoxyl (the metabolic precursors of indoxyl and IS, respectively) may cause macrophage immune dysfunction. Results obtained indicated that intracellular oxidation level and cytotoxicity markedly increased upon treatment with indole and indoxyl, in comparison with IS. Incubation of the cells with indole and indoxyl also resulted in attenuated phagocytic activity. Human serum albumin (HSA)-binding assay confirmed that tryptophan and IS, but not indole and indoxyl, could selectively bind to the site II in HSA. Collectively, the results indicated that indole and indoxyl may strongly down-regulate the phagocytic immune function of macrophages, whereas IS, formed upon sulfate conjugation of indoxyl, may exhibit enhanced HSA-binding capability, thereby reducing the adverse effects of indoxyl.


Assuntos
Indóis/efeitos adversos , Macrófagos/imunologia , Macrófagos/metabolismo , Oxirredução/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células HL-60 , Humanos , Indicã/metabolismo , Macrófagos/efeitos dos fármacos , Ligação Proteica , Albumina Sérica/metabolismo , Triptofano/metabolismo
13.
DNA Cell Biol ; 39(10): 1838-1849, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32876480

RESUMO

The breast cancer gene 1 (BRCA1) is a tumor suppressor, and mutations or epigenetic inactivation will increase the risk of breast cancer oncogenesis. The current research aimed to explore the relationship between BRCA1 expression, prognosis, and tumor immunity in hepatocellular carcinoma (HCC). In this study, BRCA1 expression was analyzed via multiple online databases and its association with clinical characteristics, prognosis and genetic alterations was identified using the original The Cancer Genome Atlas-liver hepatocellular carcinoma cohorts. DNA methylation sites and their prognostic values were analyzed using MethSurv. The correlations between BRCA1 and immune infiltration were investigated via Tumor Immune Estimation Resource. As results, BRCA1 was significantly upregulated in tumor tissues in multiple HCC cohorts. Besides, high BRCA1 expression was correlated with race, advanced T stage, clinical stage, poor tumor grade, MSI status, and worse prognosis. Notably, BRCA1 expression was positively correlated with infiltration levels of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells. The current findings imply that BRCA1 is associated with prognosis and immune infiltration, laying foundations for in-depth research on the role of BRCA1 in HCC.


Assuntos
Proteína BRCA1/genética , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteína BRCA1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Movimento Celular , Metilação de DNA , Células Dendríticas/imunologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Linfócitos/imunologia , Macrófagos/imunologia
14.
Front Immunol ; 11: 2056, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973814

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19), a disease which causes severe lung injury and multiple organ damage, presents an urgent need for new drugs. The case severity and fatality of COVID-19 are associated with excessive inflammation, namely, a cytokine storm. Metformin, a widely used drug to treat type 2 diabetes (T2D) mellitus and metabolic syndrome, has immunomodulatory activity that reduces the production of proinflammatory cytokines using macrophages and causes the formation of neutrophil extracellular traps (NETs). Metformin also inhibits the cytokine production of pathogenic Th1 and Th17 cells. Importantly, treatment with metformin alleviates various lung injuries in preclinical animal models. In addition, a recent proteomic study revealed that metformin has the potential to directly inhibit SARS-CoV-2 infection. Furthermore, retrospective clinical studies have revealed that metformin treatment reduces the mortality of T2D with COVID-19. Therefore, metformin has the potential to be repurposed to treat patients with COVID-19 at risk of developing severe illness. This review summarizes the immune pathogenesis of SARS-CoV-2 and addresses the effects of metformin on inhibiting cytokine storms and preventing SARS-CoV-2 infection, as well as its side effects.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Metformina/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Animais , Antivirais/efeitos adversos , Antivirais/farmacologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/antagonistas & inibidores , Reposicionamento de Medicamentos/métodos , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Metformina/efeitos adversos , Metformina/farmacologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
15.
Vaccine ; 38(42): 6487-6499, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32907757

RESUMO

The many carbohydrate chains on Covid-19 coronavirus SARS-CoV-2 and its S-protein form a glycan-shield that masks antigenic peptides and decreases uptake of inactivated virus or S-protein vaccines by APC. Studies on inactivated influenza virus and recombinant gp120 of HIV vaccines indicate that glycoengineering of glycan-shields to present α-gal epitopes (Galα1-3Galß1-4GlcNAc-R) enables harnessing of the natural anti-Gal antibody for amplifying vaccine efficacy, as evaluated in mice producing anti-Gal. The α-gal epitope is the ligand for the natural anti-Gal antibody which constitutes ~1% of immunoglobulins in humans. Upon administration of vaccines presenting α-gal epitopes, anti-Gal binds to these epitopes at the vaccination site and forms immune complexes with the vaccines. These immune complexes are targeted for extensive uptake by APC as a result of binding of the Fc portion of immunocomplexed anti-Gal to Fc receptors on APC. This anti-Gal mediated effective uptake of vaccines by APC results in 10-200-fold higher anti-viral immune response and in 8-fold higher survival rate following challenge with a lethal dose of live influenza virus, than same vaccines lacking α-gal epitopes. It is suggested that glycoengineering of carbohydrate chains on the glycan-shield of inactivated SARS-CoV-2 or on S-protein vaccines, for presenting α-gal epitopes, will have similar amplifying effects on vaccine efficacy. α-Gal epitope synthesis on coronavirus vaccines can be achieved with recombinant α1,3galactosyltransferase, replication of the virus in cells with high α1,3galactosyltransferase activity as a result of stable transfection of cells with several copies of the α1,3galactosyltransferase gene (GGTA1), or by transduction of host cells with replication defective adenovirus containing this gene. In addition, recombinant S-protein presenting multiple α-gal epitopes on the glycan-shield may be produced in glycoengineered yeast or bacteria expression systems containing the corresponding glycosyltransferases. Prospective Covid-19 vaccines presenting α-gal epitopes may provide better protection than vaccines lacking this epitope because of increased uptake by APC.


Assuntos
Antígenos Virais/genética , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Glicoproteína da Espícula de Coronavírus/genética , Trissacarídeos/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/biossíntese , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/virologia , Engenharia Genética , Proteína do Núcleo p24 do HIV/química , Proteína do Núcleo p24 do HIV/genética , Proteína do Núcleo p24 do HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Imunogenicidade da Vacina , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Trissacarídeos/química , Vacinas Virais/administração & dosagem , Vacinas Virais/biossíntese , Vacinas Virais/genética
16.
Mem Inst Oswaldo Cruz ; 115: e200140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32965329

RESUMO

Although Leishmania infantum is well-known as the aethiological agent of visceral leishmaniasis (VL), in some Central American countries it may cause atypical non-ulcerated cutaneous leishmaniasis (NUCL). However, the mechanisms favoring its establishment in the skin are still unknown. Lipophosphoglycan (LPG) is the major Leishmania multivirulence factor involved in parasite-host interaction. In the case of viscerotropic L. infantum, it causes an immunosuppression during the interaction with macrophages. Here, we investigated the biochemical and functional roles of LPGs from four dermotropic L. infantum strains from Honduras during in vitro interaction with murine macrophages. LPGs were extracted, purified and their repeat units analysed. They did not have side chains consisting of Gal(ß1,4)Man(α1)-PO4 common to all LPGs. Peritoneal macrophages from BALB/c and C57BL/6 were exposed to LPG for nitric oxide (NO) and cytokine (TNF-α and, IL-6) production. LPGs from dermotropic strains from Honduras triggered higher NO and cytokine levels compared to those from viscerotropic strains. In conclusion, LPGs from dermotropic strains are devoid of side-chains and exhibit high pro-inflammatory activity.


Assuntos
Glicoesfingolipídeos , Leishmania infantum/fisiologia , Animais , América Central , Honduras , Humanos , Macrófagos/imunologia , Masculino , Camundongos
17.
Nat Commun ; 11(1): 4498, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908142

RESUMO

The androgen receptor (AR) is the master regulator of prostate cancer (PCa) development, and inhibition of AR signalling is the most effective PCa treatment. AR is expressed in PCa cells and also in the PCa-associated stroma, including infiltrating macrophages. Macrophages have a decisive function in PCa initiation and progression, but the role of AR in macrophages remains largely unexplored. Here, we show that AR signalling in the macrophage-like THP-1 cell line supports PCa cell line migration and invasion in culture via increased Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) signalling and expression of its downstream cytokines. Moreover, AR signalling in THP-1 and monocyte-derived macrophages upregulates IL-10 and markers of tissue residency. In conclusion, our data suggest that AR signalling in macrophages may support PCa invasiveness, and blocking this process may constitute one mechanism of anti-androgen therapy.


Assuntos
Macrófagos/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Idoso , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Anilidas/farmacologia , Anilidas/uso terapêutico , Biópsia , Buffy Coat/citologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Quimioterapia Adjuvante , Técnicas de Cocultura , Intervalo Livre de Doença , Humanos , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Invasividade Neoplásica/imunologia , Invasividade Neoplásica/prevenção & controle , Nitrilos/farmacologia , Nitrilos/uso terapêutico , Intervalo Livre de Progressão , Próstata/patologia , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/terapia , Procedimentos Cirúrgicos Robóticos , Transdução de Sinais/imunologia , Análise de Célula Única , Células THP-1 , Compostos de Tosil/farmacologia , Compostos de Tosil/uso terapêutico
18.
Nat Commun ; 11(1): 4561, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917873

RESUMO

The protein high-mobility group box 1 (HMGB1) is released into the extracellular space in response to many inflammatory stimuli, where it is a potent signaling molecule. Although research has focused on downstream HMGB1 signaling, the means by which HMGB1 exits the cell is controversial. Here we demonstrate that HMGB1 is not released from bone marrow-derived macrophages (BMDM) after lipopolysaccharide (LPS) treatment. We also explore whether HMGB1 is released via the pore-forming protein gasdermin D after inflammasome activation, as is the case for IL-1ß. HMGB1 is only released under conditions that cause cell lysis (pyroptosis). When pyroptosis is prevented, HMGB1 is not released, despite inflammasome activation and IL-1ß secretion. During endotoxemia, gasdermin D knockout mice secrete HMGB1 normally, yet secretion of IL-1ß is completely blocked. Together, these data demonstrate that in vitro HMGB1 release after inflammasome activation occurs after cellular rupture, which is probably inflammasome-independent in vivo.


Assuntos
Proteína HMGB1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Animais , Modelos Animais de Doenças , Endotoxemia/metabolismo , Feminino , Proteína HMGB1/genética , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Piroptose , Transdução de Sinais
19.
Nat Commun ; 11(1): 4549, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917889

RESUMO

Arterial macrophages have different developmental origins, but the association of macrophage ontogeny with their phenotypes and functions in adulthood is still unclear. Here, we combine macrophage fate-mapping analysis with single-cell RNA sequencing to establish their cellular identity during homeostasis, and in response to angiotensin-II (AngII)-induced arterial inflammation. Yolk sac erythro-myeloid progenitors (EMP) contribute substantially to adventitial macrophages and give rise to a defined cluster of resident immune cells with homeostatic functions that is stable in adult mice, but declines in numbers during ageing and is not replenished by bone marrow (BM)-derived macrophages. In response to AngII inflammation, increase in adventitial macrophages is driven by recruitment of BM monocytes, while EMP-derived macrophages proliferate locally and provide a distinct transcriptional response that is linked to tissue regeneration. Our findings thus contribute to the understanding of macrophage heterogeneity, and associate macrophage ontogeny with distinct functions in health and disease.


Assuntos
Artérias/citologia , Arterite/imunologia , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Macrófagos/fisiologia , Envelhecimento/fisiologia , Angiotensina II/administração & dosagem , Angiotensina II/imunologia , Animais , Artérias/fisiologia , Medula Óssea/fisiologia , Transplante de Medula Óssea , Linhagem da Célula , Modelos Animais de Doenças , Feminino , Células-Tronco Hematopoéticas/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , RNA-Seq , Regeneração/fisiologia , Análise de Célula Única , Quimeras de Transplante
20.
Nat Commun ; 11(1): 4591, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929084

RESUMO

Although the efficacy of cancer radiotherapy (RT) can be enhanced by targeted immunotherapy, the immunosuppressive factors induced by radiation on tumor cells remain to be identified. Here, we report that CD47-mediated anti-phagocytosis is concurrently upregulated with HER2 in radioresistant breast cancer (BC) cells and RT-treated mouse syngeneic BC. Co-expression of both receptors is more frequently detected in recurrent BC patients with poor prognosis. CD47 is upregulated preferentially in HER2-expressing cells, and blocking CD47 or HER2 reduces both receptors with diminished clonogenicity and augmented phagocytosis. CRISPR-mediated CD47 and HER2 dual knockouts not only inhibit clonogenicity but also enhance macrophage-mediated attack. Dual antibody of both receptors synergizes with RT in control of syngeneic mouse breast tumor. These results provide the evidence that aggressive behavior of radioresistant BC is caused by CD47-mediated anti-phagocytosis conjugated with HER2-prompted proliferation. Dual blockade of CD47 and HER2 is suggested to eliminate resistant cancer cells in BC radiotherapy.


Assuntos
Neoplasias da Mama/metabolismo , Antígeno CD47/metabolismo , Tolerância a Radiação , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/patologia , Antígeno CD47/genética , Proliferação de Células , Células Clonais , Feminino , Humanos , Células MCF-7 , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , NF-kappa B/metabolismo , Fagocitose , Transdução de Sinais , Transcrição Genética , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA