Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 584
Filtrar
1.
J Chromatogr A ; 1657: 462583, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34624711

RESUMO

Counter-current chromatography (CCC) is a widely used liquid-liquid separation technique. Much work has been performed to improve the retention of stationary phases and throughput. In previous research, high aspect ratio rectangular horizontal (RH) tubing has been proven to be able to improve resolution and throughput in comparison with standard circular (SC) tubing. However, those modifications and improvements of tubing shapes have only been tested on analytical tubing thus far. This study aims to verify whether RH tubing could achieve similar high stationary phase retention (Sf) and throughput on a semi-preparative CCC apparatus. First, a lighter and larger volume semi-preparative bobbin with thin-wall RH tubing was successfully manufactured. Then the Sf of this bobbin was tested with n-hexane-ethyl acetate-methanol-water (HEMWat) and dichloromethane-methanol-water (DMW) solvent systems, and its maximum throughput was explored with the mixture of Magnolia officinalis Rehd. Et Wils. The results show that the thin-wall RH tubing bobbin can retain high Sf for these solvent systems, even at a relatively high mobile phase flow rate, which is consistent with the analytical bobbin results. The throughput test demonstrates that 2.12 × throughput can be obtained with the RH tubing column bobbin compared to the conventional SC tubing column bobbin without changing the outside dimensions of the bobbin. The present study is a necessary step for the application of the RH tubing bobbin from a laboratory analytical scale to preparative industrial scale.


Assuntos
Distribuição Contracorrente , Magnolia , Cromatografia Líquida de Alta Pressão , Metanol , Solventes , Água
2.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576213

RESUMO

Diabetes mellitus is a chronic metabolic disease characterized by disturbances in carbohydrate, protein, and lipid metabolism, often accompanied by oxidative stress. Diabetes treatment is a complicated process in which, in addition to the standard pharmacological action, it is necessary to append a comprehensive approach. Introducing the aspect of non-pharmacological treatment of diabetes allows one to alleviate its many adverse complications. Therefore, it seems important to look for substances that, when included in the daily diet, can improve diabetic parameters. Magnolol, a polyphenolic compound found in magnolia bark, is known for its health-promoting activities and multidirectional beneficial effects on the body. Accordingly, the goal of this review is to systematize the available scientific literature on its beneficial effects on type 2 diabetes and its complications. Taking the above into consideration, the article collects data on the favorable effects of magnolol on parameters related to glycemia, lipid metabolism, or oxidative stress in the course of diabetes. After careful analysis of many scientific articles, it can be concluded that this lignan is a promising agent supporting the conventional therapies with antidiabetic drugs in order to manage diabetes and diabetes-related diseases.


Assuntos
Compostos de Bifenilo/farmacologia , Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Lignanas/metabolismo , Animais , Glicemia/análise , Nefropatias Diabéticas/tratamento farmacológico , Oftalmopatias/tratamento farmacológico , Homeostase , Humanos , Hipoglicemiantes/farmacologia , Inflamação , Lignanas/farmacologia , Metabolismo dos Lipídeos , Magnolia , Camundongos , Estresse Oxidativo , Casca de Planta , Polifenóis/química , Resultado do Tratamento
3.
Phytomedicine ; 90: 153647, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34362632

RESUMO

BACKGROUND: Honokiol is a pleiotropic compound which been isolated from Magnolia species such as Magnolia grandiflora and Magnolia dealbata. Magnolia species Magnolia grandiflora is used in traditional medicine for the treatment of various diseases. PURPOSE: The objective of this review is to summarize the pharmacological potential and therapeutic insights of honokiol. STUDY DESIGN: Honokiol has been specified as a novel alternative to treat various disorders such as liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties and others. Therefore, this study designed to represent the in-depth therapeutic potential of honokiol. METHODS: Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using the keywords 'Honokiol', 'Health Benefits' and 'Therapeutic Insights' as the keywords for primary searches and secondary search terms were used as follows: 'Anticancer', 'Oxidative Stress', 'Neuroprotective', 'Antimicrobial', 'Cardioprotection', 'Hepatoprotective', 'Anti-inflammatory', 'Arthritis', 'Reproductive Disorders'. RESULTS: This promising bioactive compound presented an wide range of therapeutic and biological activities which include liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties, and others. Its pharmacokinetics has been established in experimental animals, while in humans, this is still speculative. Some of its mechanism for exhibiting its pharmacological effects includes apoptosis of diseased cells, reduction in the expression of defective proteins like P-glycoproteins, inhibition of oxidative stress, suppression of pro-inflammatory cytokines (TNF-α, IL-10 and IL-6), amelioration of impaired hepatic enzymes and reversal of morphological alterations, among others. CONCLUSION: All these actions displayed by this novel compound could make it serve as a lead in the formulation of drugs with higher efficacy and negligible side effects utilized in the treatment of several human diseases.


Assuntos
Compostos de Bifenilo , Lignanas , Magnolia , Animais , Compostos de Bifenilo/farmacologia , Humanos , Lignanas/farmacologia , Magnolia/química , Extratos Vegetais/farmacologia
4.
Arch Microbiol ; 203(8): 5215-5224, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34351458

RESUMO

Magnolia bark is an edible traditional Chinese medicine that has antibacterial activity against Staphylococcus aureus. In the present study, interactions between S. aureus DNA and raw magnolia bark (RMB) and ginger mix-fried magnolia bark (GMB) aqueous extracts were determined via spectroscopic methods. Fluorescence spectroscopy and Stern-Volmer constants showed that S. aureus DNA quenched the fluorescence of the extracts by static quenching. UV-Vis spectroscopy and iodide quenching experiments indicated that the interactions between S. aureus DNA and the fluorescent substances might involve groove binding or electrostatic interactions. In 4', 6-diamidino-2-phenylindole competitive assays, the fluorescence intensity at decreased as the extract amount was increased. This indicates that groove binding is responsible for the fluorescence quenching. The antibacterial activity of GMB aqueous extract treated under light, cold, heat and cycling hot-cold conditions decreased by 13.99, 9.31, 10.89 and 14.40%, respectively, whereas that of RMB aqueous extract treated under the same conditions decreased by 8.91, 14.99, 14.99 and 13.70%, respectively. The results indicate that S. aureus DNA quenches the fluorescence of GMB and RMB aqueous extracts by grooving interactions. Additionally, the antibacterial activities of GMB and RMB extracts are sensitive to light and temperature, respectively.


Assuntos
Magnolia , Staphylococcus aureus , Antibacterianos/farmacologia , DNA , Casca de Planta , Extratos Vegetais/farmacologia
5.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2686-2690, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34296564

RESUMO

Magnoliae Officinalis Cortex, a common Chinese medicinal in clinic, should undergo "sweating" process in producing area according to Chinese Pharmacopoeia, which affects its genuineness and quality. In light of the concept and research mode of quality marker(Q-marker) for decoction pieces, the active components of Magnoliae Officinalis Cortex pieces which altered significantly before and after "sweating" were identified in this study. The main pharmacodynamic material basis was clarified by pharmacodynamic, pharmacokinetic and drug property research, followed by the prediction of Q-markers of Magnoliae Officinalis Cortex before and after "sweating", for better improving its quality standard.


Assuntos
Medicamentos de Ervas Chinesas , Magnolia
6.
Chin J Nat Med ; 19(7): 481-490, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34247771

RESUMO

Honokiol is the dominant biphenolic compound isolated from the Magnolia tree, and has long been considered as the active constituent of the traditional Chinese herb, 'Houpo', which is widely used to treat symptoms due to 'stagnation of qi'. Pharmacological studies have shown that honokiol possesses a wide range of bioactivities without obvious toxicity. Honokiol protects the liver, kidneys, nervous system, and cardiovascular system through reducing oxidative stress and relieving inflammation. Moreover, honokiol shows anti-diabetic property through enhancing insulin sensitivity, and anti-obese property through promoting browning of adipocytes. In vivo and in vitro studies indicated that honokiol functions as an anti-cancer agent through multiple mechanisms: inhibiting angiogenesis, promoting cell apoptosis, and regulating cell cycle. A variety of therapeutic effects of honokiol may be associated with its physiochemical properties, which make honokiol readily cross the blood brain barrier and the blood-cerebrospinal fluid barrier, with high bioavailability. In the future, more clinical researches on honokiol are needed to fully authenticate its therapeutic values.


Assuntos
Compostos de Bifenilo , Medicamentos de Ervas Chinesas/farmacologia , Lignanas , Magnolia , Apoptose , Compostos de Bifenilo/farmacologia , Humanos , Lignanas/farmacologia
7.
Chin J Nat Med ; 19(7): 491-499, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34247772

RESUMO

Six new oligomeric neolignans including two trimeric neolignans (1 and 2) and four dimeric neolignans (3-6) were isolated from the leaves of Magnolia officinalis var. biloba. Their structures were determined based on HR-ESIMS and NMR data, as well as electronic circular dichroism (ECD) calculations. Compound 1 is formed from two obovatol moieties directly linked to an aromatic ring of the remaining obovatol moiety, which is an unprecedented type of linkage between monomers. All isolates were assessed for their inhibitory effects on NO production in LPS-stimulated RAW 264.7 macrophage cells. Compounds 1 and 3 showed significantly inhibitory activities with IC50 values of 6.04 and 3.26 µmol·L-1, respectively.


Assuntos
Lignanas , Magnolia , Animais , Lignanas/farmacologia , Magnolia/química , Camundongos , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Células RAW 264.7
8.
Biomed Res Int ; 2021: 6688414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34159200

RESUMO

Background. Magnolia officinalis Rehd. and Wils. is widely used in Asian countries because of its multiple pharmacological effects. This study investigated the gastroprotective effect and mechanisms of the ethanol extracts from the bark of Magnolia officinalis (MOE) against ethanol-induced gastric mucosal damage in rats. Methods. MOE was prepared by reflux extraction with 70% ethanol, and its main compounds were analyzed by UPLC-Q-Exactive Orbitrap-MS. DPPH, ABTS, and FRAP methods were used to evaluate the antioxidant capacity of MOE in vitro. The gastroprotective effects of MOE were evaluated by the area of gastric injury, H&E (hematoxylin-eosin), and PAS (periodic acid-Schiff). The mechanism was explored by measuring the levels of cytokines and protein in the NF-κB signaling pathway. Results. 30 compounds were identified from MOE, mainly including lignans and alkaloids. MOE presented a high antioxidant activity in several oxidant in vitro systems. Gastric ulcer index and histological examination showed that MOE reduced ethanol-induced gastric mucosal injury in a dose-dependent manner. MOE pretreatment significantly restored the depleted activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) enzymes, reduced malondialdehyde (MDA), and prostaglandin E2 (PGE2) levels in the gastric tissue in rats. In addition, MOE also inhibited the activation of nuclear factor kappa B (NF-κB) pathway and decreased the production of proinflammatory cytokines. Conclusions. The gastroprotective effect of MOE was attributed to the inhibition of oxidative stress and the NF-κB inflammatory pathway. The results provided substantial evidence that MOE could be a promising phytomedicine for gastric ulcer prevention.


Assuntos
Etanol , Mucosa Gástrica/efeitos dos fármacos , Casca de Planta/metabolismo , Extratos Vegetais/farmacologia , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Glutationa Peroxidase/metabolismo , Inflamação , Magnolia , Masculino , Malondialdeído/metabolismo , Espectrometria de Massas , NF-kappa B/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Úlcera Gástrica/metabolismo , Superóxido Dismutase/metabolismo
9.
J Alzheimers Dis ; 82(4): 1475-1485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151796

RESUMO

BACKGROUND: Dysfunction of microglia has been increasingly recognized as a causative factor in Alzheimer's disease (AD); thus, developing medicines capable of restoring microglial functions is critically important and constitutes a promising therapeutic strategy. Honokiol is a natural neuroprotective compound extracted from Magnolia officinalis, which may play roles in AD therapy. OBJECTIVE: This study aimed to evaluate the role and the underlying mechanisms of honokiol in microglial phagocytosis. METHODS: MTT and flow cytometry were used to assess the cell viability and apoptosis, respectively. Phagocytic capacity, mitochondrial reactive oxygen species production, and membrane potential were evaluated using fluorescence microscopy. Seahorse XF24 extracellular flux analyzer was for cell glycolysis and oxidative phosphorylation detection. Mass spectrometry was applied for metabolites measurement. Quantitative real-time polymerase chain reaction and western blotting were performed to detect the mRNA and protein level of PPARγ and PGC1α, respectively. RESULTS: Honokiol alleviated Aß42-induced BV2 neurotoxicity. Honokiol promoted phagocytic efficiency of BV2 cells through reversing a metabolic switch from oxidative phosphorylation to anaerobic glycolysis and enhancing ATP production. Meanwhile, honokiol reduced mitochondrial reactive oxygen species production and elevated mitochondrial membrane potential. Moreover, honokiol increased the expression of PPARγ and PGC1α, which might play positive roles in energy metabolism and microglial phagocytosis. CONCLUSION: In this study, honokiol was identified as an effect natural product capable of enhancing mitochondrial function thus promoting microglial phagocytic function.


Assuntos
Compostos de Bifenilo/administração & dosagem , Lignanas/administração & dosagem , Microglia/metabolismo , Fagocitose , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular , Humanos , Magnolia , Camundongos , Espécies Reativas de Oxigênio/metabolismo
10.
Physiol Plant ; 172(4): 2129-2141, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33937990

RESUMO

An understanding of the seed dynamics of endangered plant species, such as Magnolia zenii Cheng, is important for successful conservation. This study examined the morphological, physiological and biochemical changes that occur in M. zenii Cheng during seed development to determine the appropriate harvest stage. The appearance of the seeds was influenced by the physiological and biochemical changes occurring during the developmental period, during which the colour of the fruits changed from green to red, while that of the seed changed from light brown to dark brown. There was a significant decrease in the seed moisture content from 90 to 120 days after flowering (DAF); however, there was no significant change from 135 to 165 DAF. The seeds from 135 DAF onwards showed developed cotyledonary embryos. The seed viability exceeded 95% from 135 DAF onwards; however, the germination percentage was 0, hypothesising that the seeds of M. zenii Cheng might exhibit physiological dormancy under certain conditions of this experiment. There was a significant increase in the fat, soluble sugar and soluble starch content of the seeds while approaching maturity. There were significant changes in malate dehydrogenase (MDH), glucose-6-phosphate dehydrogenase (G-6-PDH), 6-phosphogluconate dehydrogenase (6-PGDH) and ß-amylase activities in the seeds during the developmental period. At 135-165 DAF, the MDH activity remained stable, whereas that of 6-PGDH reached its maximum, indicating that the seeds underwent vigorous metabolism. The findings of this study provide a theoretical basis for researching seed dormancy and seed harvest time.


Assuntos
Magnolia , Germinação , Dormência de Plantas , Sementes , Amido
11.
Sci Rep ; 11(1): 10842, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035372

RESUMO

Magnolia sieboldii K. Koch (M. sieboldii) is a deciduous Chinese tree species of the Magnoliaceae family with high ornamental, medicinal, and economic benefits. The germination of M. sieboldii seeds under natural conditions is extremely difficult, thereby hindering the cultivation and breeding of this important species. The molecular mechanisms underlying M. sieboldii seed germination remain unclear due to the lack of genomic and transcriptomic resources. Here, we integrated both mRNA and miRNA sequencing to identify the genes and pathways related to M. sieboldii germination. A comprehensive full-length transcriptome containing 158,083 high-quality unigenes was obtained by single-molecule real-time (SMRT) sequencing technology. We identified a total of 13,877 genes that were differentially expressed between non-germinated and germinated seeds. These genes were mainly involved in plant hormone signal transduction and diverse metabolic pathways such as those involving lipids, sugars, and amino acids. Our results also identified a complex regulatory network between miRNAs and their target genes. Taken together, we present the first transcriptome of M. sieboldii and provide key genes and pathways associated with seed germination for further characterization. Future studies of the molecular basis of seed germination will facilitate the genetic improvement M. sieboldii.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Magnolia/crescimento & desenvolvimento , MicroRNAs/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Magnolia/genética , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Análise de Sequência de RNA , Imagem Individual de Molécula
12.
Biomolecules ; 11(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808894

RESUMO

Natural products have been fundamental materials in drug discovery. Traditional strategies for observing natural products with novel structure and/or biological activity are challenging due to large cost and time consumption. Implementation of the MS/MS-based molecular networking strategy with the in silico annotation tool is expected to expedite the dereplication of secondary metabolites. In this study, using this tool, two new dilignans with a 2-phenyl-3-chromanol motif, obovatolins A (1) and B (2), were discovered from the stem barks of Magnolia obovata Thunb. along with six known compounds (3-8), expanding chemical diversity of lignan skeletons in this natural source. Their structures and configurations were elucidated using spectroscopic data. All isolates were evaluated for their PCSK9 mRNA expression inhibitory activity. Obovatolins A (1) and B (2), and magnolol (3) showed potent lipid controlling activities. To identify transcriptionally controlled genes by 1 along with downregulation of PCSK9, using small set of genes (42 genes) related to lipid metabolism selected from the database, focused bioinformatic analysis was carried out. As a result, it showed the correlations between gene expression under presence of 1, which led to detailed insight of the lipid metabolism caused by 1.


Assuntos
Magnolia/química , Magnoliaceae/química , Pró-Proteína Convertase 9/metabolismo , Western Blotting , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Estrutura Molecular , Casca de Planta/química , Caules de Planta/química , Pró-Proteína Convertase 9/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
13.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804803

RESUMO

Cachexia causes high mortality, low quality of life, and rapid weight loss in cancer patients. Sarcopenia, a condition characterized by the loss of muscle, is generally present in cachexia and is associated with inflammation. M2 macrophages, also known as an anti-inflammatory or alternatively activated macrophages, have been shown to play a role in muscle repair. Magnoliae Cortex (M.C) is a widely used medicinal herb in East Asia reported to have a broad range of anti-inflammatory activities; however, the effects of M.C on sarcopenia and on M2 macrophage polarization have to date not been studied. This study was designed to investigate whether the oral administration of M.C could decrease cisplatin-induced sarcopenia by modulating M2 macrophage polarization in mice. C57BL/6 mice were injected intraperitoneally with cisplatin (2.5 mg/kg) to mimic chemotherapy-induced sarcopenia. M.C extract (50, 100, and 200 mg/kg) was administered orally every 3 days (for a total of 12 times). M.C (100 and 200 mg/kg) significantly alleviated the cisplatin-induced loss of body mass, skeletal muscle weight, and grip strength. In addition, M.C increased the expression of M2 macrophage markers, such as MRC1, CD163, TGF-ß, and Arg-1, and decreased the expression of M1-specific markers, including NOS2 and TNF-α, in skeletal muscle. Furthermore, the levels of like growth factor-1(IGF-1), as well as the number of M2a and M2c macrophages, significantly increased in skeletal muscle after M.C administration. M.C did not interfere with the anticancer effect of cisplatin in colon cancer. Our results demonstrated that M.C can alleviate cisplatin-induced sarcopenia by increasing the number of M2 macrophages. Therefore, our findings suggest that M.C could be used as an effective therapeutic agent to reverse or prevent cisplatin-induced sarcopenia.


Assuntos
Cisplatino/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Magnolia/química , Atrofia Muscular/metabolismo , Extratos Vegetais/farmacologia , Sarcopenia/etiologia , Sarcopenia/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Extratos Vegetais/química , Sarcopenia/tratamento farmacológico , Sarcopenia/patologia
14.
Bioorg Med Chem Lett ; 43: 128045, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33865968

RESUMO

Inhibiting myocardial fibrosis can help prevent cardiovascular diseases, including heart failure. Magnolol (Mag), a natural component of Magnoliae officinalis, has been reported to inhibit fibrosis. However, the mechanism of Mag activity and its effects on myocardial fibrosis remain unclear. Here, we investigated the involvement of ALDH2, an endogenous protective agent against myocardial fibrosis, in the Mag-mediated inhibition of cardiac fibroblast proliferation and collagen synthesis. We found that Mag significantly inhibited cardiac fibroblast proliferation and collagen synthesis, based on the results of MTT, EdU and western blot assays. Moreover, molecular docking, molecular dynamics simulation and surface plasmon resonance (SPR) assays showed that Mag could bind directly and stably to ALDH2. Further analysis of the mechanism of these effects indicated that treatment with Mag dose-dependently enhanced ALDH2 activity without altering protein expression. Mag could enhance the activity of recombinant human ALDH2 proteins with a half-maximal effective concentration of 5.79 × 10-5 M. In addition, ALDH2 activation via Alda-1 inhibited cardiac fibroblast proliferation and collagen synthesis, while ALDH2 inhibition via daidzin partially blocked the suppressive effects of Mag. In summary, Mag may act as a natural ALDH2 agonist and inhibit cardiac fibroblast proliferation and collagen synthesis.


Assuntos
Aldeído-Desidrogenase Mitocondrial/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Colágeno/antagonistas & inibidores , Fibroblastos/efeitos dos fármacos , Lignanas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Aldeído-Desidrogenase Mitocondrial/metabolismo , Compostos de Bifenilo/química , Compostos de Bifenilo/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Colágeno/biossíntese , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Humanos , Lignanas/química , Lignanas/isolamento & purificação , Magnolia/química , Estrutura Molecular , Miócitos Cardíacos/metabolismo , Relação Estrutura-Atividade
15.
J Pharm Pharmacol ; 73(2): 247-262, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793803

RESUMO

OBJECTIVES: To explore the intervention mechanism of combining Polygala tenuifolia (PT) with Magnolia officinalis (MO) on gastrointestinal motility disorders caused by PT. METHODS: Urine and faeces of rats were collected; the effects of PT and MO on the gastric emptying and small intestine advancing rates in mice were analysed via ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) to determine the potential metabolites. Changes in the metabolic profiles of the urine and faeces were revealed by untargeted metabolomics, followed by multivariate statistical analysis. The integration of urine and faeces was applied to reveal the intervention mechanism of PT-MO on PT-induced disorders. KEY FINDINGS: PT + MO (1:2) improved the gastrointestinal function in mice suffering from PT-induced gastrointestinal motility disorder. Metabolomics indicated that the PT-MO mechanism was mainly associated with the regulations of 17 and 12 metabolites and 11 and 10 pathways in urine and faeces, respectively. The common metabolic pathways were those of tyrosine, purine, tricarboxylic acid cycle, pyruvate and gluconeogenesis, which were responsible for the PT-MO intervention mechanism. CONCLUSIONS: The PT-MO (1:2) couple mechanism mitigated the PT-induced disorders, which were related to the energy, amino acid and fatty metabolisms.


Assuntos
Motilidade Gastrointestinal/efeitos dos fármacos , Magnolia/química , Extratos Vegetais/farmacologia , Polygala/química , Aminoácidos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Fezes , Feminino , Masculino , Espectrometria de Massas , Metabolômica/métodos , Camundongos , Extratos Vegetais/toxicidade , Ratos , Ratos Sprague-Dawley
16.
Molecules ; 26(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923456

RESUMO

In this study, Magnolia citrata Noot and Chalermglin (Magnoliaceae) essential oil (MCEO) was evaluated for insecticidal activity against the yellow fever mosquito Aedes aegypti and attractant activity for the Mediterranean fruit fly Ceratitis capitata. The leaves of Magnolia citrata (Gioi chanh) were collected from northwestern Vietnam, and the water-distilled MCEO was analyzed by gas-chromatography and mass spectrometry (GC-MS). The major constituents of MCEO were identified as linalool 19%, geranial 16%, citronellal 14%, neral 14%, and sabinene 12%. MCEO showed 100% mortality at 1 µg/µL against 1st instar larvae of Ae. aegypti (Orlando strain, ORL), and the oil exhibited 54% (ORL) and 68% (Puerto Rico strain) mortality at 5 µg/mosquito against Ae. aegypti adult females. Initial screens showed that MCEO had weak insecticidal activity compared to the positive control permethrin. In bioassays with sterile male C. capitata, MCEO exhibited moderately strong attraction, comparable to that observed with a positive control, Tetradenia riparia essential oil (TREO). Herein, the insecticidal and attractant activities of MCEO are reported for the first time.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Inseticidas/farmacologia , Magnolia/química , Aedes/efeitos dos fármacos , Animais , Ceratitis capitata/efeitos dos fármacos , Magnoliaceae/química , Óleos Voláteis/farmacologia
17.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671662

RESUMO

Plant species conservation through cryopreservation using plant vitrification solutions (PVS) is based in empiricism and the mechanisms that confer cell integrity are not well understood. Using ESI-MS/MS analysis and quantification, we generated 12 comparative lipidomics datasets for membranes of embryogenic cells (ECs) of Magnolia officinalis during cryogenic treatments. Each step of the complex PVS-based cryoprotocol had a profoundly different impact on membrane lipid composition. Loading treatment (osmoprotection) remodeled the cell membrane by lipid turnover, between increased phosphatidic acid (PA) and phosphatidylglycerol (PG) and decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The PA increase likely serves as an intermediate for adjustments in lipid metabolism to desiccation stress. Following PVS treatment, lipid levels increased, including PC and PE, and this effectively counteracted the potential for massive loss of lipid species when cryopreservation was implemented in the absence of cryoprotection. The present detailed cryobiotechnology findings suggest that the remodeling of membrane lipids and attenuation of lipid degradation are critical for the successful use of PVS. As lipid metabolism and composition varies with species, these new insights provide a framework for technology development for the preservation of other species at increasing risk of extinction.


Assuntos
Criopreservação/métodos , Magnolia/citologia , Lipídeos de Membrana/química , Pressão Osmótica/fisiologia , Sementes/citologia , Crioprotetores/química , Crioprotetores/farmacologia , Lipídeos de Membrana/análise , Lipídeos de Membrana/metabolismo , Células Vegetais/química , Sementes/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Temperatura
18.
Protoplasma ; 258(3): 621-632, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33389128

RESUMO

Magnolia, a basal angiosperm genus important for evolutionary and phylogenetic studies, is known to have male meiotic features not seen in the vast majority of angiosperms. However, knowledge about male meiosis in Magnolia is still fragmentary. Here, we report findings from an extensive investigation into male meiosis in Magnolia denudata using a combination of light and electron microscopy methods. Male meiosis in M. denudata was synchronous in prophase I but asynchronous in subsequent nuclear divisions. The polarized microspore mother cells from late prophase I onward had an elongated cell shape and thickened callose wall areas at the two smaller ends of the cell. The first nuclear division occurred along the long axis of the cell and the first callose furrow formed at the equatorial plane of the first nuclear division at the late telophase I stage. The second equatorial callose furrow formed after telophase II in a plane perpendicular to the first callose furrow. While cytokinesis occurred centripetally from the two furrows, a central callose wall island (CWI) appeared in the center of the cell and dense assemblies of vesicles and short tubules decorated the cytoplasmic regions between the furrows and the CWI. This cytokinesis mode differs from either the centripetal or the centrifugal mode of cytokinesis in microsporogenesis in the vast majority of angiosperms. As a result of this unusual cytokinesis, a large central callose mass remains in the mature tetrads. These observations may be useful to studies of cytokinetic mechanisms, evolution of microsporogenesis, and phylogenetics of angiosperms.


Assuntos
Divisão do Núcleo Celular/fisiologia , Polaridade Celular/fisiologia , Citocinese/fisiologia , Magnolia/química , Meiose/fisiologia
19.
Eur J Med Chem ; 209: 112922, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069436

RESUMO

Magnolol and honokiol are the two major active ingredients with similar structure and anticancer activity from traditional Chinese medicine Magnolia officinalis, and honokiol is now in a phase I clinical trial (CTR20170822) for advanced non-small cell lung cancer (NSCLC). In search of potent lead compounds with better activity, our previous study has demonstrated that magnolol derivative C2, 3-(4-aminopiperidin-1-yl)methyl magnolol, has better activity than honokiol. Here, based on the core of 3-(4-aminopiperidin-1-yl)methyl magnolol, we synthesized fifty-one magnolol derivatives. Among them, compound 30 exhibited the most potent antiproliferative activities on H460, HCC827, H1975 cell lines with the IC50 values of 0.63-0.93 µM, which were approximately 10- and 100-fold more potent than those of C2 and magnolol, respectively. Besides, oral administration of 30 and C2 on an H460 xenograft model also demonstrated that 30 has better activity than C2. Mechanism study revealed that 30 induced G0/G1 phase cell cycle arrest, apoptosis and autophagy in cancer cells. Moreover, blocking autophagy by the autophagic inhibitor enhanced the anticancer activity of 30in vitro and in vivo, suggesting autophagy played a cytoprotective role on 30-induced cancer cell death. Taken together, our study implied that compound 30 combined with autophagic inhibitor could be another choice for NSCLC treatment in further investigation.


Assuntos
Antineoplásicos Fitogênicos/química , Autofagia/efeitos dos fármacos , Compostos de Bifenilo/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lignanas/química , Neoplasias Pulmonares/tratamento farmacológico , Magnolia/química , Extratos Vegetais/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Lignanas/farmacologia , Camundongos Endogâmicos BALB C , Solubilidade , Relação Estrutura-Atividade
20.
Ann Bot ; 127(1): 75-90, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966556

RESUMO

BACKGROUND AND AIMS: The biogeographic patterns of the East-Asia-endemic shrub Magnolia sieboldii, in which the range of the subsp. sieboldii is interposed with the disjunct distribution of subsp. japonica, implies a complex evolutionary history, involving rapid speciation and hybridization. Here, we aim to reveal the evolutionary and phylogeographic histories of the species with a particular focus on the time of subspecies divergence, the hypothesis of secondary hybridization and the Pleistocene survival of each subspecies, using a combination of genetic analyses and ecological niche modelling. METHODS: Genetic variation, genetic structures and phylogenetic relationships were elucidated based on nuclear low-copy genes, chloroplast DNA, and nuclear simple sequence repeats (SSRs). A scenario selection analysis and divergence time estimation were performed using coalescent simulation in DIYABC and *BEAST. Ecological niche modelling and a test of niche differentiation were performed using Maxent and ENMTools. KEY RESULTS: All marker types showed deep, but pronouncedly incongruent, west-east genetic divergences, with the subspecies being delineated only by the nuclear low-copy genes. Phylogenetic tree topologies suggested that ancient hybridization and introgression were likely to have occurred; however, this scenario did not receive significant support in the DIYABC analysis. The subspecies differentiated their niches, but both showed a dependence on high humidity and were predicted to have persisted during the last glacial cycle by maintaining a stable latitudinal distribution via migration to lower altitudes. CONCLUSIONS: We found a deep genetic divergence and a pronounced phylogenetic incongruence among the two subspecies of M. sieboldii, which may have been driven by major paleogeographic and paleoclimatic events that have occurred since the Neogene in East Asia, including global cooling, climate oscillations and the formation of land bridges. Both subspecies were, however, considered to persist in situ in stable climatic conditions during the late Pleistocene.


Assuntos
Magnolia , Teorema de Bayes , DNA de Cloroplastos , Extremo Oriente , Variação Genética , Haplótipos , Filogenia , Filogeografia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...