Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.849
Filtrar
1.
Sci Data ; 10(1): 298, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208438

RESUMO

Nervonic acid (C24:1 Δ15, NA) is a very long-chain monounsaturated fatty acid, a clinically indispensable resource in maintaining the brain and nerve cells development and regeneration. Till now, NA has been found in 38 plant species, among which the garlic-fruit tree (Malania oleifera) has been evaluated to be the best candidate for NA production. Here, we generated a high-quality chromosome-scale assembly of M. oleifera employing PacBio long-read, short-read Illumina as well as Hi-C sequencing data. The genome assembly consisted of 1.5 Gb with a contig N50 of ~4.9 Mb and a scaffold N50 of ~112.6 Mb. ~98.2% of the assembly was anchored into 13 pseudo-chromosomes. It contains ~1123 Mb repeat sequences, and 27,638 protein-coding genes, 568 tRNAs, 230 rRNAs and 352 other non-coding RNAs. Additionally, we documented candidate genes involved in NA biosynthesis including 20 KCSs, 4 KCRs, 1 HCD and 1 ECR, and profiled the expression patterns of these genes in developing seeds. The high-quality assembly of the genome provides insights into the genome evolution of the M. oleifera genome and candidate genes involved in NA biosynthesis in the seeds of this important woody tree.


Assuntos
Cromossomos , Genoma , Magnoliopsida , Ácidos Graxos Monoinsaturados , Anotação de Sequência Molecular , Filogenia , Magnoliopsida/genética
2.
Sci Rep ; 13(1): 7436, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156827

RESUMO

The Zygophyllum and Tetraena genera are intriguingly important ecologically and medicinally. Based on morphological characteristics, T. hamiensis var. qatarensis, and T. simplex were transferred from Zygophyllum to Tetraena with the least genomic datasets available. Hence, we sequenced the T. hamiensis and T. simplex and performed in-depth comparative genomics, phylogenetic analysis, and estimated time divergences. The complete plastomes ranged between 106,720 and 106,446 bp-typically smaller than angiosperms plastomes. The plastome circular genomes are divided into large single-copy regions (~ 80,964 bp), small single-copy regions (~ 17,416 bp), and two inverted repeats regions (~ 4170 bp) in both Tetraena species. An unusual shrinkage of IR regions 16-24 kb was identified. This resulted in the loss of 16 genes, including 11 ndh genes which encode the NADH dehydrogenase subunits, and a significant size reduction of Tetraena plastomes compared to other angiosperms. The inter-species variations and similarities were identified using genome-wide comparisons. Phylogenetic trees generated by analyzing the whole plastomes, protein-coding genes, matK, rbcL, and cssA genes exhibited identical topologies, indicating that both species are sisters to the genus Tetraena and may not belong to Zygophyllum. Similarly, based on the entire plastome and proteins coding genes datasets, the time divergence of Zygophyllum and Tetraena was 36.6 Ma and 34.4 Ma, respectively. Tetraena stem ages were 31.7 and 18.2 Ma based on full plastome and protein-coding genes. The current study presents the plastome as a distinguishing and identification feature among the closely related Tetraena and Zygophyllum species. It can be potentially used as a universal super-barcode for identifying plants.


Assuntos
Magnoliopsida , Zygophyllaceae , Filogenia , Evolução Molecular , Evolução Biológica , Genômica
3.
Sci Data ; 10(1): 259, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37156769

RESUMO

Coriaria nepalensis Wall. (Coriariaceae) is a nitrogen-fixing shrub which forms root nodules with the actinomycete Frankia. Oils and extracts of C. nepalensis have been reported to be bacteriostatic and insecticidal, and C. nepalensis bark provides a valuable tannin resource. Here, by combining PacBio HiFi sequencing and Hi-C scaffolding techniques, we generated a haplotype-resolved chromosome-scale genome assembly for C. nepalensis. This genome assembly is approximately 620 Mb in size with a contig N50 of 11 Mb, with 99.9% of the total assembled sequences anchored to 40 pseudochromosomes. We predicted 60,862 protein-coding genes of which 99.5% were annotated from databases. We further identified 939 tRNAs, 7,297 rRNAs, and 982 ncRNAs. The chromosome-scale genome of C. nepalensis is expected to be a significant resource for understanding the genetic basis of root nodulation with Frankia, toxicity, and tannin biosynthesis.


Assuntos
Genoma de Planta , Magnoliopsida , Haplótipos , Magnoliopsida/genética , Anotação de Sequência Molecular , Filogenia , Cromossomos de Plantas
4.
Molecules ; 28(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175283

RESUMO

This review identifies terpenes isolated from the medicinal Angiosperms of Asia and the Pacific with antibacterial and/or antifungal activities and analyses their distribution, molecular mass, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and library searches from 1968 to 2022. About 300 antibacterial and/or antifungal terpenes were identified during this period. Terpenes with a MIC ≤ 2 µg/mL are mostly amphiphilic and active against Gram-positive bacteria, with a molecular mass ranging from about 150 to 550 g/mol, and a polar surface area around 20 Ų. Carvacrol, celastrol, cuminol, dysoxyhainic acid I, ent-1ß,14ß-diacetoxy-7α-hydroxykaur-16-en-15-one, ergosterol-5,8-endoperoxide, geranylgeraniol, gossypol, 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide, 7-hydroxycadalene, 17-hydroxyjolkinolide B, (20R)-3ß-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide, mansonone F, (+)-6,6'-methoxygossypol, polygodial, pristimerin, terpinen-4-ol, and α-terpineol are chemical frameworks that could be candidates for the further development of lead antibacterial or antifungal drugs.


Assuntos
Antifúngicos , Magnoliopsida , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Ásia , Terpenos/farmacologia
5.
Database (Oxford) ; 20232023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37159239

RESUMO

SyntenyViewer is a public web-based tool relying on a relational database available at https://urgi.versailles.inrae.fr/synteny delivering comparative genomics data and associated reservoir of conserved genes between angiosperm species for both fundamental (evolutionary studies) and applied (translational research) applications. SyntenyViewer is made available for (i) providing comparative genomics data for seven major botanical families of flowering plants, (ii) delivering a robust catalog of 103 465 conserved genes between 44 species and inferred ancestral genomes, (iii) allowing us to investigate the evolutionary fate of ancestral genes and genomic regions in modern species through duplications, inversions, deletions, fusions, fissions and translocations, (iv) use as a tool to conduct translational research of key trait-related genes from model species to crops and (v) offering to host any comparative genomics data following simplified procedures and formats Database URL https://urgi.versailles.inrae.fr/synteny.


Assuntos
Magnoliopsida , Pesquisa Translacional Biomédica , Genômica , Produtos Agrícolas , Bases de Dados Factuais
6.
Am Nat ; 201(6): 794-812, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37229708

RESUMO

AbstractQuantifying the relative contribution of functional and developmental constraints on phenotypic variation is a long-standing goal of macroevolution, but it is often difficult to distinguish different types of constraints. Alternatively, selection can limit phenotypic (co)variation if some trait combinations are generally maladaptive. The anatomy of leaves with stomata on both surfaces (amphistomatous) present a unique opportunity to test the importance of functional and developmental constraints on phenotypic evolution. The key insight is that stomata on each leaf surface encounter the same functional and developmental constraints but potentially different selective pressures because of leaf asymmetry in light capture, gas exchange, and other features. Independent evolution of stomatal traits on each surface imply that functional and developmental constraints alone likely do not explain trait covariance. Packing limits on how many stomata can fit into a finite epidermis and cell size-mediated developmental integration are hypothesized to constrain variation in stomatal anatomy. The simple geometry of the planar leaf surface and knowledge of stomatal development make it possible to derive equations for phenotypic (co)variance caused by these constraints and compare them with data. We analyzed evolutionary covariance between stomatal density and length in amphistomatous leaves from 236 phylogenetically independent contrasts using a robust Bayesian model. Stomatal anatomy on each surface diverges partially independently, meaning that packing limits and developmental integration are not sufficient to explain phenotypic (co)variation. Hence, (co)variation in ecologically important traits like stomata arises in part because there is a limited range of evolutionary optima. We show how it is possible to evaluate the contribution of different constraints by deriving expected patterns of (co)variance and testing them using similar but separate tissues, organs, or sexes.


Assuntos
Magnoliopsida , Estômatos de Plantas , Estômatos de Plantas/anatomia & histologia , Magnoliopsida/anatomia & histologia , Teorema de Bayes , Folhas de Planta/anatomia & histologia , Fenótipo
7.
Sci Data ; 10(1): 327, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236921

RESUMO

The Checklist of the Vascular Plants of the Republic of Guinea (CVPRG) is a specimen-based, expert-validated knowledge product, which provides a concise synthesis and overview of current knowledge on 3901 vascular plant species documented from Guinea (Conakry), West Africa, including their accepted names and synonyms, as well as their distribution and status within Guinea (indigenous or introduced, endemic or not). The CVPRG is generated automatically from the Guinea Collections Database and the Guinea Names Backbone Database, both developed and maintained at the Royal Botanic Gardens, Kew, in collaboration with the staff of the National Herbarium of Guinea. A total of 3505 indigenous vascular plant species are reported of which 3328 are flowering plants (angiosperms); this represents a 26% increase in known indigenous angiosperms since the last floristic overview. Intended as a reference for scientists documenting the diversity and distribution of the Guinea flora, the CVPRG will also inform those seeking to safeguard the rich plant diversity of Guinea and the societal, ecological and economic benefits accruing from these biological resources.


Assuntos
Magnoliopsida , Traqueófitas , Humanos , Guiné , Lista de Checagem , Plantas
8.
Genes (Basel) ; 14(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37239470

RESUMO

The Dalbergia plants are widely distributed across more than 130 tropical and subtropical countries and have significant economic and medicinal value. Codon usage bias (CUB) is a critical feature for studying gene function and evolution, which can provide a better understanding of biological gene regulation. In this study, we comprehensively analyzed the CUB patterns of the nuclear genome, chloroplast genome, and gene expression, as well as systematic evolution of Dalbergia species. Our results showed that the synonymous and optimal codons in the coding regions of both nuclear and chloroplast genome of Dalbergia preferred ending with A/U at the third codon base. Natural selection was the primary factor affecting the CUB features. Furthermore, in highly expressed genes of Dalbergia odorifera, we found that genes with stronger CUB exhibited higher expression levels, and these highly expressed genes tended to favor the use of G/C-ending codons. In addition, the branching patterns of the protein-coding sequences and the chloroplast genome sequences were very similar in the systematic tree, and different with the cluster from the CUB of the chloroplast genome. This study highlights the CUB patterns and features of Dalbergia species in different genomes, explores the correlation between CUB preferences and gene expression, and further investigates the systematic evolution of Dalbergia, providing new insights into codon biology and the evolution of Dalbergia plants.


Assuntos
Dalbergia , Fabaceae , Genoma de Cloroplastos , Magnoliopsida , Uso do Códon/genética , Dalbergia/genética , Fabaceae/genética , Códon/genética , Magnoliopsida/genética
9.
Naturwissenschaften ; 110(3): 16, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140757

RESUMO

The introduction and spread of non-native flora threatens native pollinators and plants. Non-native angiosperms can compete with native plants for pollinators, space, and other resources which can leave native bees without adequate nutritional or nesting resources, particularly specialist species. In the current study, we conducted flower preference experiments through field observations and controlled binary choice tests in an artificial arena to determine the impact of field vs. laboratory methods on flower preferences of native bees for native or non-native flowers within their foraging range. We conducted counts of insect pollinators foraging on the flowers of three plant species in a suburban green belt including one native (Arthropodium strictum) and two non-native (Arctotheca calendula and Taraxacum officinale) plant species. We then collected native halictid bees foraging on each of the three plant species and conducted controlled binary tests to determine their preferences for the flowers of native or non-native plant species. In the field counts, halictid bees visited the native plant significantly more than the non-native species. However, in the behavioural assays when comparing A. strictum vs. A. calendula, Lasioglossum (Chilalictus) lanarium (Family: Halictidae), bees significantly preferred the non-native species, regardless of their foraging history. When comparing A. strictum vs. T. officinale, bees only showed a preference for the non-native flower when it had been collected foraging on the flowers of that plant species immediately prior to the experiment; otherwise, they showed no flower preference. Our results highlight the influence that non-native angiosperms have on native pollinators and we discuss the complexities of the results and the possible reasons for different flower preferences under laboratory and field conditions.


Assuntos
Magnoliopsida , Polinização , Abelhas , Animais , Parques Recreativos , Flores , Plantas , Insetos
10.
PeerJ ; 11: e15067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013144

RESUMO

Typical cockroaches are flat, broad, with large pronotum and wings covering the body. This conserved morphotype dates back to the Carboniferous, during which the ancestral cockroaches, or roachoids, originated. On the other hand, the ovipositor of cockroaches gradually reduced during the Mesozoic, coupled with a major shift of reproductive strategy. By the Cretaceous, long external ovipositors became rare, most cockroaches used very short or even hidden internal ovipositors to fabricate egg cases (oothecae), which is an innovation for egg protection. Here, we describe two cockroaches from mid-Cretaceous Myanmar amber: Ensiferoblatta oecanthoides gen. et sp. nov. (Ensiferoblattidae fam. nov.) and Proceroblatta colossea gen. et sp. nov. They are slim, elongate, fusiform, with longitudinal pronotum, and have long external ovipositors. The combination of these traits represents a unique morphotype, which resembles crickets and katydids (Ensifera) more than general cockroaches. Ensiferoblatta and Proceroblatta may be arboreal, feeding on and/or laying eggs into certain angiosperms that newly emerged. Their open habit causes latent impairment to viability, and may contribute to their extinction. These new taxa are the youngest members of the ancient, extinct group of cockroaches, namely Eoblattodea, which are characterized by long ovipositors. We speculate that the extinction of certain gymnosperm hosts almost ended the 200-My triumph of Eoblattodea. Despite an attempt to adapt to angiosperm hosts, Ensiferoblatta, Proceroblatta and suchlike cockroaches as an evolutionary dead end failed to save Eoblattodea from extinction. The lack of protection for eggs (maternal care in particular) might accelerate the extinction of Eoblattodea as a whole.


Assuntos
Baratas , Besouros , Magnoliopsida , Animais , Fósseis , Evolução Biológica
11.
Planta ; 257(6): 100, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37084157

RESUMO

MAIN CONCLUSION: The appearance of new cellular structures and characteristics in the tapetum suggests that there is still much to discover that would help to better understand the tapetum functions. The ultrastructure of the tapetum provides important information for the understanding of the functions performed by this tissue. Since there are no reviews on the subject, we aim to collect all the detailed information about the tapetum ultrastructure present until this moment in order to lay the foundations for future research. Detailed information on the tapetal ultrastructure of 80 species from 45 different families: 2 species with invasive non-syncytial tapetum, 11 with plasmodial and 67 with a secretory tapetum was collected. These studies allowed to establish (a) the most usual cytological characteristics of this tissue, (b) unique characteristics and/or cellular structures in tapetum cells, (c) the ultrastructural changes that occur in different types of tapetum, during the progress of microsporogenesis and microgametogenesis, and (d) the most recognized ultrastructural traits of the tapetum that cause androsterility. The structure of these cells is related to their function in each developmental stage. Since most species present their particular ultrastructure and may sometimes, share some traits within families, there is not a model plant on tapetum ultrastructure. However, knowing the general cytological aspect of the tapetum may help distinguish between patterns of cytoplasmic disorganization due to tapetum degeneration from technical failures of the preparation. Moreover, as the amount of species analyzed increases, unknown tapetal organelles or traits may be identified that might be associated to particular functions of this tissue. On the other hand, different ultrastructural changes may be related to the metabolisms and the regulation of normal/abnormal tapetum development.


Assuntos
Magnoliopsida , Plantas , Citoplasma
12.
New Phytol ; 238(6): 2284-2304, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37010081

RESUMO

Allopolyploids result from hybridization between different evolutionary lineages coupled with genome doubling. Homoeologous chromosomes (chromosomes with common shared ancestry) may undergo recombination immediately after allopolyploid formation and continue over successive generations. The outcome of this meiotic pairing behavior is dynamic and complex. Homoeologous exchanges (HEs) may lead to the formation of unbalanced gametes, reduced fertility, and selective disadvantage. By contrast, HEs could act as sources of novel evolutionary substrates, shifting the relative dosage of parental gene copies, generating novel phenotypic diversity, and helping the establishment of neo-allopolyploids. However, HE patterns vary among lineages, across generations, and even within individual genomes and chromosomes. The causes and consequences of this variation are not fully understood, though interest in this evolutionary phenomenon has increased in the last decade. Recent technological advances show promise in uncovering the mechanistic basis of HEs. Here, we describe recent observations of the common patterns among allopolyploid angiosperm lineages, underlying genomic and epigenomic features, and consequences of HEs. We identify critical research gaps and discuss future directions with far-reaching implications in understanding allopolyploid evolution and applying them to the development of important phenotypic traits of polyploid crops.


Assuntos
Genoma de Planta , Magnoliopsida , Epigenômica , Magnoliopsida/genética , Genômica , Poliploidia
13.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108751

RESUMO

Understanding plant-insect interactions requires the uncovering of the host plant use of insect herbivores, but such information is scarce for most taxa, including nocturnal moth species, despite their vital role as herbivores and pollinators. In this study, we determined the plant species visited by an important moth species, Spodoptera exigua, by analyzing attached pollen on migratory individuals in Northeast China. Pollen grains were dislodged from 2334 S. exigua long-distance migrants captured between 2019 and 2021 on a small island in the center of the Bohai Strait, which serves as a seasonal migration pathway for this pest species, and 16.1% of the tested moths exhibited pollen contamination, primarily on the proboscis. Subsequently, 33 taxa from at least 23 plant families and 29 genera were identified using a combination of DNA barcoding and pollen morphology, primarily from the Angiosperm, Dicotyledoneae. Moreover, the sex, inter-annual, and seasonal differences in pollen adherence ratio and pollen taxa were revealed. Notably, compared to previously reported pollen types found on several other nocturnal moths, we found that almost all of the above 33 pollen taxa can be found in multiple nocturnal moth species, providing another important example of conspecific attraction. Additionally, we also discussed the indicative significance of the pollen present on the bodies of migratory individuals for determining their migratory route. Overall, by delineating the adult feeding and pollination behavior of S. exigua, we advanced our understanding of the interactions of the moths with their host plants, and its migration pattern, as well as facilitated the design of (area-wide) management strategies to preserve and optimize ecosystem services that they provide.


Assuntos
Magnoliopsida , Mariposas , Animais , Spodoptera , Polinização , Ecossistema , Pólen/genética , Mariposas/genética , Plantas , Ásia Oriental
14.
Genes (Basel) ; 14(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107708

RESUMO

Plant glutathione peroxidases (GPXs) are the main enzymes in the antioxidant defense system that sustain H2O2 homeostasis and normalize plant reaction to abiotic stress conditions. However, the genome-wide identification of the GPX gene family and its responses to environmental stresses, especially salt stress, in Nitraria sibirica, which is a shrub that can survive in saline environments, has not yet been reported. Here, we first report the genome-wide analysis of the GPX gene family in N. sibirica, leading to a total of seven NsGPX genes that are distributed on six of the twelve chromosomes. Phylogenetic analysis showed that NsGPX genes were grouped into four major groups (Group I-IV). Three types of cis-acting elements were identified in the NsGPX promoters, mainly related to hormones and stress response. The quantitative real-time PCR (qRT-PCR) analysis indicated that NsGPX1 and NsGPX3 were significantly up-regulated in stem and leaf, while NsGPX7 transcriptionally in root in response to salt stress. The current study identified a total seven NsGPX genes in N. sibirica via genome-wide analysis, and discovered that NsGPXs may play an important role in response to salt stress. Taken together, our findings provide a basis for further functional studies of NsGPX genes, especially in regarding to the resistance to salt stress of this halophyte plant N. sibirica, eventually aid in the discovery of new methods to restore overtly saline soil.


Assuntos
Genoma de Planta , Magnoliopsida , Filogenia , Glutationa Peroxidase/genética , Peróxido de Hidrogênio , Perfilação da Expressão Gênica , Magnoliopsida/genética
15.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108516

RESUMO

While most of the species in Goodeniaceae family, excluding the Scaevola genus, are endemic to Australasia, S. taccada and S. hainanensis have expanded their distribution range to the tropical coastlines of the Atlantic and Indian Oceans. S. taccada appears to be highly adapted to coastal sandy lands and cliffs, and it has become invasive in places. S. hainanensis is found mainly in salt marshes near mangrove forests, and is at risk of extinction. These two species provide a good system to investigate adaptive evolution outside the common distribution range of this taxonomic group. Here, we report their chromosomal-scale genome assemblies with the objective of probing their genomic mechanisms related to divergent adaptation after leaving Australasia. The scaffolds were assembled into eight chromosome-scale pseudomolecules, which covered 90.12% and 89.46% of the whole genome assembly for S. taccada and S. hainanensis, respectively. Interestingly, unlike many mangroves, neither species has undergone whole-genome duplication. We show that private genes, specifically copy-number expanded genes are essential for stress response, photosynthesis, and carbon fixation. The gene families that are expanded in S. hainanensis and contracted in S. taccada might have facilitated adaptation to high salinity in S. hainanensis. Moreover, the genes under positive selection in S. hainanensis have contributed to its response to stress and its tolerance of flooding and anoxic environments. In contrast, compared with S. hainanensis, the more drastic copy number expansion of FAR1 genes in S. taccada might have facilitated its adaptation to the stronger light radiation present in sandy coastal lands. In conclusion, our study of the chromosomal-scale genomes of S. taccada and S. hainanensis provides novel insights into their genomic evolution after leaving Australasia.


Assuntos
Magnoliopsida , Adaptação Fisiológica/genética , Aclimatação , Plantas , Cromossomos
16.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108580

RESUMO

Ligusticopsis litangensis is identified and described as a cryptic species from Sichuan Province, China. Although the distribution of this cryptic species overlaps with that of Ligusticopsis capillacea and Ligusticopsis dielsiana, the morphological boundaries between them are explicit and have obviously distinguishable characters. The main distinguishing features of the cryptic species are as follows: long conical multi-branched roots, very short pedicels in compound umbels, unequal rays, oblong-globose fruits, 1-2 vittae per furrow and 3-4 vittae on the commissure. The above-mentioned features differ somewhat from other species within the genus Ligusticopsis, but generally coincide with the morphological boundaries defined for the genus Ligusticopsis. To determine the taxonomic position of L. litangensis, we sequenced and assembled the plastomes of L. litangensis and compared them with the plastomes of 11 other species of the genus Ligusticopsis. Notably, both phylogenetic analyses based on ITS sequences and the complete chloroplast genome robustly supported that three accessions of L. litangensis are monophyletic clade and then nested in Ligusticopsis genus. Moreover, the plastid genomes of 12 Ligusticopsis species, including the new species, were highly conserved in terms of gene order, gene content, codon bias, IR boundaries and SSR content. Overall, the integration of morphological, comparative genomic and phylogenetic evidence indicates that Ligusticopsis litangensis actually represents a new species.


Assuntos
Apiaceae , Genomas de Plastídeos , Magnoliopsida , Filogenia , Magnoliopsida/genética , Apiaceae/genética , Evolução Molecular , Plastídeos/genética
17.
Sci Adv ; 9(14): eadd8553, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018407

RESUMO

As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.


Assuntos
Magnoliopsida , Humanos , Filogenia , Mudança Climática , Biodiversidade
18.
Zootaxa ; 5254(4): 556-566, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37044702

RESUMO

Fourteen species are recorded for the first time for Argentina: Amethysphaerion guarani Martins & Napp, 1992 (Cerambycinae, Elaphidiini); Apyrauna annulicornis Martins, 2005 (Cerambycinae, Elaphidiini); Coleoxestia pubicornis (Gounelle, 1909) (Cerambycinae, Cerambycini); Eburodacrys truncata Fuchs, 1956 (Cerambycinae, Eburiini); Ectenessidia nigriventris (Belon, 1902) (Cerambycinae, Ectenessini); Gorybia apatheia Martins, 1976 (Cerambycinae, Piezocerini); Hemilissa sulcicollis Bates, 1870 (Cerambycinae, Piezocerini); Pronoplon rubriceps (Gounelle, 1909) (Cerambycinae, Hexoplonini); Callisema rufipes Martins & Galileo 1990 (Lamiinae, Calliini); Recchia goiana Martins & Galileo, 1985 (Lamiinae, Aerenicini); Rosalba approximata (Melzer, 1934) (Lamiinae, Apomecynini); Rosalba digna (Melzer, 1934) (Lamiinae, Apomecynini); Hypsioma steinbachi Dillon & Dillon, 1945 (Lamiinae, Onciderini); Trypanidius maculatus Monné & Delfino, 1980 (Lamiinae, Acanthocinini).


Assuntos
Besouros , Magnoliopsida , Animais , Argentina
19.
PeerJ ; 11: e14934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967995

RESUMO

Affected by the pressure and constraints of available resources, plant growth and development, as well as plant life history strategies, usually vary with environmental conditions. Plant buds play a crucial role in the life history of woody plants. Nitraria tangutorum is a common dominant woody species in desertified areas of northern China and its growth is critical to the desert ecosystem. Revealing the allometry of N. tangutorum aboveground bud fates and the linkage between bud traits and plant nutrient contents and stoichiometric ratios can be useful in understanding plant adaptation strategy. We applied seven nitrogen and phosphorus fertilizer addition treatments to natural N. tangutorum ramets in Ulan Buh Desert in three consecutive years. We surveyed three types of aboveground buds (dormant buds, vegetative buds, and reproductive buds) in each N. tangutorum ramet, then measured the plant carbon (C), nitrogen (N), and phosphorus (P) contents and ratios during three consecutive years. We specified that reserve growth potential (RGP), vegetative growth intensity (VGI) and sexual reproduction effort (SRE) are the three indices of bud dynamic pattern. The results showed that the bud dynamic pattern of N. tangutorum ramets differed significantly among different fertilizer addition treatments and sampling years. The allometry of RGP, VGI, and SRE was obvious, showing size dependence. The allometric growth relationship fluctuated among the sampling years. The linkage between bud traits and plant stoichiometric characteristics of N. tangutorum ramets showed close correlation with plant P content, C:P and N:P ratios, no significant correlation with plant C content, N content and C:N ratio. These results contribute to an improved understanding of the adaptive strategies of woody plants growing in desert ecosystems and provide insights for adoption of effective measures to restore and conserve plant communities in arid and semi-arid regions.


Assuntos
Ecossistema , Magnoliopsida , Fertilizantes , Plantas , Fósforo , Nitrogênio
20.
Ecology ; 104(5): e4021, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36883377

RESUMO

Applications of ecological theory to natural communities often assume that competitive, negative density-dependent processes are the only type of interaction important for diversity maintenance. Recent advances suggest that positive interactions within trophic levels (e.g., plant-plant) may also affect plant coexistence. Though positive plant-plant interactions theoretically might result in positive or nonmonotonic frequency or density dependence (FD/DD), less is known about how commonly these patterns occur or which ecological processes might result in such patterns in natural plant communities. In this study we tested for signals of variable frequency and density dependence in annual flowering plant communities in Western Australia and searched for evidence that interactions among plants during flowering might induce positive or nonmonotonic FD/DD in flowering plants. Using four common annual wildflower species, we ask if plant fecundity exhibited positive or nonmonotonic FD/DD and if pollinator-mediated plant-plant interactions during flowering change patterns of FD/DD relative to pollinator-independent plant interactions. Three species exhibited nonmonotonic (hump-shaped) density dependence, and only one species experienced strictly negative density dependence. Each species exhibited a different pattern of frequency dependence (positive, negative, weakly nonmonotonic, and no detectable frequency dependence). Pollinator-mediated plant-plant interactions during flowering induced both nonmonotonic density dependence and negative frequency dependence in one species. Importantly, the extent of variation in FD/DD observed in our study brings into question the dominance of negative density and frequency dependence in theory, suggesting instead that demographic responses of plants to their communities fall along a continuum of possible density- and frequency-dependent patterns.


Assuntos
Magnoliopsida , Polinização , Polinização/fisiologia , Plantas , Reprodução , Austrália Ocidental , Flores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...