Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.219
Filtrar
1.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443365

RESUMO

(±)-Anastatins A and B are flavonoids isolated from Anastatica hierochuntica. In a previous study, twenty-four di- and tri-substituted novel derivatives of anastatins were designed and their preliminary antioxidant activities were evaluated. In the present study, the protective effect of myocardial ischemia-reperfusion (I/R) and the systematic antioxidant capacity of 24 derivatives were further studied. Compound 13 was the most potent among all the compounds studied, which increased the survival of H9c2 cells to 80.82%. The antioxidant capability of compound 13 was evaluated in ferric reducing antioxidant power, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging, and 2,2-diphenyl-1-picrylhydrazyl assays. It was observed that compound 13 significantly reduced infarcted areas and improved histopathological and electrocardiogram changes in rats with myocardial I/R injury. Moreover, compound 13 decreased the leakage rates of serum lactate dehydrogenase, creatine kinase, and malonyldialdehyde from rat myocardial tissues and increased the level of glutathione and superoxide dismutase activities following myocardial I/R injury in rats. Taken together, we concluded that compound 13 had potent cardioprotective effects against myocardial I/R injury both in vitro and in vivo owing to its extensive antioxidant activities.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/uso terapêutico , Glutationa/metabolismo , Masculino , Malondialdeído/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
2.
Undersea Hyperb Med ; 48(3): 287-295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34390633

RESUMO

Objective: Decompression sickness (DCS) causes serious brain hypoxic-ischemic injury. This experiment was designed to observe whether hyperbaric oxygen (HBO2) pretreatment played a neuroprotective effect in decompression sickness rat models and to explore the mechanism of protective effects. Methods: Sprague-Dawley (SD) male rats were pretreated with HBO2 and then underwent decompression to establish the DCS rat model. Antioxidant capacities were evaluated by detecting peroxides (GPx), superoxide dismutase (SOD), catalase (CAT) activity and malondialdehyde (MDA) content in brains. The levels of metal elements manganese (Mn), zinc (Zn), iron (Fe) and magnesium (Mg) in brain tissues were assessed by flame atomic absorption spectrometry. Necrosis and apoptosis of neurons were assessed by H-E staining and immunohistochemical staining. Results: HBO2 pretreatment reduced the degree of necrosis and apoptosis in brain tissues of decompression sickness rat models. In addition, HBO2 pretreatment increased GPx, SOD and CAT activities and reduced MDA accumulation. It also increased the content of Mn, Zn, Fe and Mg in brain tissue, which are all related to free radical metabolism. Conclusion: These results suggested that HBO2 pretreatment has protective effects on brain injury of rats with decompression sickness. The mechanism of the protective effects may be related to reducing oxidative damage by affecting metal elements in vivo.


Assuntos
Encéfalo/metabolismo , Doença da Descompressão/complicações , Oxigenação Hiperbárica/métodos , Animais , Apoptose , Encéfalo/patologia , Química Encefálica , Caspase 3/análise , Catalase/análise , Catalase/metabolismo , Descompressão , Doença da Descompressão/metabolismo , Hipóxia-Isquemia Encefálica/etiologia , Ferro/análise , Ferro/metabolismo , Magnésio/análise , Magnésio/metabolismo , Masculino , Malondialdeído/análise , Malondialdeído/metabolismo , Manganês/análise , Manganês/metabolismo , Necrose , Neurônios/patologia , Proteínas Proto-Oncogênicas c-bcl-2/análise , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo , Zinco/análise , Zinco/metabolismo , Proteína X Associada a bcl-2/análise
3.
Andrologia ; 53(9): e14176, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34309867

RESUMO

Exposure to acrylamide (Ac) through food is almost inevitable and this kind of toxicity may cause lifelong harm. In present study, we researched effects of Crocin (Cr) on testis histopathology in Ac-induced testis of rats. Adult male rats were grouped as: group 1, 1 ml saline only; group 2, 50 mg/kg Cr only; group 3, 25 mg/kg Ac only and group 4, 25 mg/kg Ac + 50 mg/kg Cr. All administrations were given as 1 ml/day by gavage for 21 days. It was found that Ac adversely influenced the levels of FSH, testosterone and LH in the blood serum; malondialdehyde (MDA), total antioxidant status (TOS), oxidative stress index (OSI)/ glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), total antioxidant status (TAS) oxidant/antioxidant parameters in testis tissue (p < .01) and the histopathological parameters like Johnson's score, seminiferous tubule diameter, seminiferous epithelial height and H-score for caspase-3 immunoreactivity. In contrary, Cr treatment resulted in increase in testosterone, follicle stimulating hormone (FSH), luteinizan hormone (LH) levels and SOD, CAT, GSH, TAS levels (p < .01) and improved all the histopathological changes. In conclusion, Cr has a promising protective potential against Ac-caused toxic damages in testicular tissue.


Assuntos
Acrilamida , Testículo , Acrilamida/toxicidade , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Carotenoides/farmacologia , Catalase/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Testículo/metabolismo
4.
Nutrients ; 13(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204516

RESUMO

Peptic ulcer has a serious impact on people's health around the world, and traditional medicines can cause adverse reactions. This study investigated the protective effects of tilapia collagen oligopeptides (TCOPs) on gastroduodenal injury. Seventy-two specific pathogen-free (SPF) male Sprague Dawley (SD) rats were randomly divided into six groups according to body weight: normal control group, ethanol group, whey protein group (500 mg/kg BW), and three TCOPs dose groups (250, 500, 1000 mg/kg BW). After intragastric administration for 30 days, the acute gastroduodenal injury was induced by anhydrous ethanol (5 mL/kg, intragastrically) in all groups except the normal control group. Biomarkers in gastric and duodenal tissue and serum were measured. Furthermore, western blot was used to detect the expression of apoptosis-related proteins. The results showed that the administration with TCOPs significantly reduced gastric and duodenal ulcer index, increased gastric juice pH, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, along with the reduction of malondialdehyde (MDA) contents. TCOPs decreased tumor Necrosis Factor-α (TNF-α), interleukin-1ß (IL-1ß), and myeloperoxidase (MPO) levels, while interleukin- 10 (IL-10) levels were increased. Furthermore, pepsinogens 1 (PG1), pepsinogens 2 (PG2), gastrin (GAS), and the pepsinogen ratio (PGR) were decreased, the prostaglandin E2 (PGE2) and NO contents were increased after TCOPs intervention. Moreover, TCOPs up-regulated the expression of Bcl-2 and inhibited the expression of Bax and Caspase-3. In conclusion, TCOPs have protective effects on ethanol-induced gastroduodenal injury through gastrointestinal mucosal microcirculation promotion, antioxidation, anti-inflammation, and anti-apoptosis mechanisms.


Assuntos
Anti-Inflamatórios/farmacologia , Etanol/efeitos adversos , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/farmacologia , Tilápia/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores , Catalase/metabolismo , Colágeno , Citocinas/metabolismo , Modelos Animais de Doenças , Trato Gastrointestinal/lesões , Interleucina-1beta , Masculino , Malondialdeído/metabolismo , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199160

RESUMO

Acadesine (ACA), a pharmacological activator of AMP-activated protein kinase (AMPK), showed a promising beneficial effect in a mouse model of colitis, indicating this drug as an alternative tool to manage IBDs. However, ACA displays some pharmacodynamic limitations precluding its therapeutical applications. Our study was aimed at evaluating the in vitro and in vivo effects of FA-5 (a novel direct AMPK activator synthesized in our laboratories) in an experimental model of colitis in rats. A set of experiments evaluated the ability of FA5 to activate AMPK and to compare the efficacy of FA5 with ACA in an experimental model of colitis. The effects of FA-5, ACA, or dexamethasone were tested in rats with 2,4-dinitrobenzenesulfonic acid (DNBS)-induced colitis to assess systemic and tissue inflammatory parameters. In in vitro experiments, FA5 induced phosphorylation, and thus the activation, of AMPK, contextually to the activation of SIRT-1. In vivo, FA5 counteracted the increase in spleen weight, improved the colon length, ameliorated macroscopic damage score, and reduced TNF and MDA tissue levels in DNBS-treated rats. Of note, FA-5 displayed an increased anti-inflammatory efficacy as compared with ACA. The novel AMPK activator FA-5 displays an improved anti-inflammatory efficacy representing a promising pharmacological tool against bowel inflammation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Benzofuranos/uso terapêutico , Desenvolvimento de Medicamentos , Ativadores de Enzimas/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Animais , Benzofuranos/farmacologia , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Colo/efeitos dos fármacos , Colo/patologia , Dinitrofluorbenzeno/análogos & derivados , Eletroforese em Gel Bidimensional , Ontologia Genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-10/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
6.
Biomed Pharmacother ; 139: 111660, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243628

RESUMO

The current study investigates the biochemical and histopathological effects of taxifolin on acrylamide-induced kidney damage. A 50 mg/kg dose of taxifolin was administered via oral gavage to the taxifolin + acrylamide (TACR) group (n-6) consisting of male albino Wistar rats. The same volume of distilled water used as solvent was orally administered to the acrylamide (ACR) (n-6) and healthy (HG) (n-6) groups. One hour after the administration of taxifolin and distilled water, a 20 mg/kg dose of acrylamide was orally administered to the TACR and ACR groups. This procedure was repeated once a day for 30 days. In the acrylamide group, malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1ß) levels were found to be high, total glutathione (tGSH) levels were found to be low, and there was severe interstitial haemorrhage; additionally, tubular necrosis, tubular atrophy, leucocyte infiltration, and glomerular structures with expanded Bowman's space were observed. In the taxifolin group, where the increase of MDA, IL-1ß, and TNF-α and the decrease of tGSH associated with acrylamide have been prevented, any histopathological finding other than mild necrosis and atrophic tubules was not found. This suggests that Taxifolin would prevent kidney tissue from acrylamide-induced damage would be effective in treating acrylamide-induced nephrotoxicity, inhibiting the increase of MDA, IL-1ß and TNF-α, and decreasing tGSH associated with acrylamide.


Assuntos
Acrilamida/farmacologia , Inflamação/tratamento farmacológico , Nefropatias/tratamento farmacológico , Substâncias Protetoras/farmacologia , Quercetina/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Glutationa/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
7.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198932

RESUMO

The effects of the phytoestrogen-enriched plant Pueraria mirifica (PM) extract on ovari-ectomy (OVX)-induced cognitive impairment and hippocampal oxidative stress in mice were investigated. Daily treatment with PM and 17ß-estradiol (E2) significantly elevated cognitive behavior as evaluated by using the Y maze test, the novel object recognition test (NORT), and the Morris water maze test (MWM), attenuated atrophic changes in the uterus and decreased serum 17ß-estradiol levels. The treatments significantly ameliorated ovariectomy-induced oxidative stress in the hippocampus and serum by a decrease in malondialdehyde (MDA), an enhancement of superoxide dismutase, and catalase activity, including significantly down-regulated expression of IL-1ß, IL-6 and TNF-α proinflammatory cytokines, while up-regulating expression of PI3K. The present results suggest that PM extract suppresses oxidative brain damage and dysfunctions in the hippocampal antioxidant system, including the neuroinflammatory system in OVX animals, thereby preventing OVX-induced cognitive impairment. The present results indicate that PM exerts beneficial effects on cognitive deficits for which menopause/ovariectomy have been implicated as risk factors.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Hipocampo/metabolismo , Ovariectomia/efeitos adversos , Fitoestrógenos/administração & dosagem , Pueraria/química , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Estradiol/administração & dosagem , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Malondialdeído/sangue , Malondialdeído/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fitoestrógenos/química , Fitoestrógenos/farmacologia
8.
Int J Mol Sci ; 22(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281256

RESUMO

Plants are often challenged by an array of unfavorable environmental conditions. During cold exposure, many changes occur that include, for example, the stabilization of cell membranes, alterations in gene expression and enzyme activities, as well as the accumulation of metabolites. In the presented study, the carbohydrate metabolism was analyzed in the very early response of plants to a low temperature (2 °C) in the leaves of 5-week-old potato plants of the Russet Burbank cultivar during the first 12 h of cold treatment (2 h dark and 10 h light). First, some plant stress indicators were examined and it was shown that short-term cold exposure did not significantly affect the relative water content and chlorophyll content (only after 12 h), but caused an increase in malondialdehyde concentration and a decrease in the expression of NDA1, a homolog of the NADH dehydrogenase gene. In addition, it was shown that the content of transitory starch increased transiently in the very early phase of the plant response (3-6 h) to cold treatment, and then its decrease was observed after 12 h. In contrast, soluble sugars such as glucose and fructose were significantly increased only at the end of the light period, where a decrease in sucrose content was observed. The availability of the monosaccharides at constitutively high levels, regardless of the temperature, may delay the response to cold, involving amylolytic starch degradation in chloroplasts. The decrease in starch content, observed in leaves after 12 h of cold exposure, was preceded by a dramatic increase in the transcript levels of the key enzymes of starch degradation initiation, the α-glucan, water dikinase (GWD-EC 2.7.9.4) and the phosphoglucan, water dikinase (PWD-EC 2.7.9.5). The gene expression of both dikinases peaked at 9 h of cold exposure, as analyzed by real-time PCR. Moreover, enhanced activities of the acid invertase as well as of both glucan phosphorylases during exposure to a chilling temperature were observed. However, it was also noticed that during the light phase, there was a general increase in glucan phosphorylase activities for both control and cold-stressed plants irrespective of the temperature. In conclusion, a short-term cold treatment alters the carbohydrate metabolism in the leaves of potato, which leads to an increase in the content of soluble sugars.


Assuntos
Metabolismo dos Carboidratos , Resposta ao Choque Frio/fisiologia , Solanum tuberosum/metabolismo , Amilases/metabolismo , Metabolismo dos Carboidratos/genética , Clorofila/metabolismo , Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Complexo I de Transporte de Elétrons/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Malondialdeído/metabolismo , Fosforilases/metabolismo , Fosfotransferases (Aceptores Pareados)/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Amido/metabolismo , Água/metabolismo , beta-Frutofuranosidase/metabolismo
9.
Nutrients ; 13(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209454

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) exacerbates the oxidative stress status of the pregnant women. Τo improve the oxidative stress status, several therapeutic interventions have been suggested. The aim of this network meta-analysis is to assess the effect of different dietary supplements on the oxidative stress status in pregnant women with GDM. METHODS: A network meta-analysis of randomized control trials was performed comparing the changes delta (Δ) in total antioxidant capacity (TAC) and concentration of malondialdehyde (MDA) as primary outcomes, following different therapeutic interventions with dietary supplements in pregnant women with GDM. Four electronic databases and grey literature sources were searched. The secondary outcomes were other markers of oxidative stress. RESULTS: The meta-analysis included 16 studies of 1173 women with GDM. Regarding ΔTAC: probiotics and omega-3 with vitamin E were superior to placebo/no intervention. Regarding ΔMDA: vitamin D with calcium, omega-3, vitamin D, omega-3 with vitamin E, magnesium with zinc and calcium, and probiotics were superior to placebo/no intervention. CONCLUSIONS: Administration of dietary supplements in women with GDM can be helpful in limiting the oxidative stress which develop in these pregnancies.


Assuntos
Diabetes Gestacional/patologia , Suplementos Nutricionais , Estresse Oxidativo , Antioxidantes/metabolismo , Feminino , Glutationa/metabolismo , Humanos , Malondialdeído/metabolismo , Gravidez , Gestantes , Viés de Publicação , Risco
10.
Ecotoxicol Environ Saf ; 220: 112401, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118747

RESUMO

Cadmium (Cd) is a trace element causing severe toxicity symptoms in plants, besides posing hazardous fitness issue due to its buildup in the human body through food chain. Nanoparticles (NPs) are recently employed as a novel strategy to directly ameliorate the Cd stress and acted as nano-fertilizers. The intend of the current study was to explore the effects of zinc oxide nanoparticles (ZnO-NPs; 50 mg/L) on plant growth, photosynthetic activity, elemental status and antioxidant activity in Oryza sativa (rice) under Cd (0.8 mM) stress. To this end, the rice plants are treated by Cd stress at 15 days after sowing (DAS), and the treatment was given directly into the soil. Supply of ZnO-NPs as foliar spray was given for five consecutive days from 30 to 35 DAS, and sampling was done at 45 DAS. However, rice plants supplemented with ZnO-NPs under the Cd toxicity revealed significantly increased shoot length (SL; 34.0%), root fresh weight (RFW; 30.0%), shoot dry weight (SDW; 23.07%), and root dry weight (RDW; 12.24%). Moreover, the ZnO-NPs supplement has also positive effects on photosynthesis related parameters, SPAD value (40%), chloroplast structure, and qualitatively high fluorescence observed by confocal microscopy even under Cd stress. ZnO-NPs also substantially prevented the increases of hydrogen peroxide (H2O2) and malondialdehyde (MDA) triggered by Cd. Physiological and biochemical analysis showed that ZnO-NPs increased enzymatic activities of superoxide dismutase (SOD; 59%), catalase (CAT; 52%), and proline (17%) that metabolize reactive oxygen species (ROS); these increases coincided with the changes observed in the H2O2 and MDA accumulation after ZnO-NPs application. In conclusion, ZnO-NPs application to foliage has great efficiency to improve biomass, photosynthesis, protein, antioxidant enzymes activity, mineral nutrient contents and reducing Cd levels in rice. This can be attributed mainly from reduced oxidative damage resulted due to the ZnO-NPs application.


Assuntos
Antioxidantes/metabolismo , Cádmio/efeitos adversos , Nanopartículas , Oryza/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Óxido de Zinco/farmacologia , Biomassa , Catalase/metabolismo , Produtos Agrícolas/efeitos adversos , Produtos Agrícolas/fisiologia , Fertilizantes , Humanos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta , Solo/química , Superóxido Dismutase/metabolismo , Óxido de Zinco/administração & dosagem
11.
Ecotoxicol Environ Saf ; 220: 112390, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34098428

RESUMO

Due to its immense capability to concentrate in rice grain and ultimately in food chain, cadmium (Cd) has become the cause of an elevated concern among agriculturists, scientists and the environmental activists. Symbiotic association of Piriformospora indica (P. indica) has been characterized as a potential aid in combating heavy metal stress in plants for sustainable crop production but our scant knowledge regarding ameliorative tendency of P. indica against Cd, specifically in rice, necessitates an in-depth investigation. This study aimed at elaborating the underlying mechanisms involved in P. indica-mediated tolerance against Cd stress in two rice genotypes, IR8 and ZX1H, varying in Cd accumulation pattern. Either colonized or un-inoculated with P. indica, seedlings of both genotypes were subjected to Cd stress. The results showed that P. indica colonization significantly supported plant biomass, photosynthetic attributes and chlorophyll contents in Cd stressed plants. P. indica colonization sustained chloroplast integrity and reduced Cd translocation (46% and 64%), significantly lowering malondialdehyde (MDA) content (11.3% and 50.4%) compared to uninoculated roots under Cd stress in IR8 and ZX1H, respectively. A genotypic difference was evident when a 2-fold enhancement in root peroxidase (POD) activity was recorded in P. indica colonized IR8 plants as compared to ZX1H. The root proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ) and the results showed that P. indica alleviates Cd stress in rice via down-regulation of key glycolysis cycle enzymes in a bid to reduce energy consumption by the plants and possibly re-directing it to Cd defense response pathways; and up-regulation of glutamine synthetase, a key enzyme in the L-Arg-dependent pathway for nitric oxide (NO) production, which acts as a stress signaling molecule, thus conferring tolerance by reduction of NO-mediated modification of essential proteins in response to Cd stress. Conclusively, both the tested genotypes benefited from P. indica symbiosis at varying levels by an enhanced detoxification capacity and signaling efficiency in response to stress. Hence, a step forward towards the employment of an environmentally sound and self-renewing approach holding the hope for a healthy future.


Assuntos
Basidiomycota/fisiologia , Cádmio/toxicidade , Oryza/efeitos dos fármacos , Oryza/microbiologia , Raízes de Plantas/efeitos dos fármacos , Antioxidantes/metabolismo , Biomassa , Clorofila/metabolismo , Poluentes Ambientais/toxicidade , Malondialdeído/metabolismo , Oryza/metabolismo , Fotossíntese , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteômica , Plântula/metabolismo , Simbiose
12.
Phytomedicine ; 88: 153602, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102522

RESUMO

BACKGROUND: Chronic fatigue syndrome (CFS) is a complex disease with few effective and safe therapies. Young Yum Pill (YYP), a proprietary herbal drug, has been used to relieve CFS-like symptoms. The pharmacological basis of this application of YYP is unknown. PURPOSE: This study aimed to investigate the pharmacological effects and mechanisms of action of YYP in a mouse model of CFS. STUDY DESIGN AND METHODS: A food restriction and exhaustive swimming-induced mouse CFS model was used to evaluate the effects of YYP. Lymphocyte proliferation was assessed by MTT assays. T-lymphocyte subsets were analyzed by flow cytometry. Serum biochemical parameters were determined using commercial kits. Protein levels were measured by immunoblotting. RESULTS: Intragastric administration of YYP (2.85, 5.70, 11.40 g/kg) daily for 21 consecutive days significantly prolonged swimming time and diminished body weight loss of CFS mice. Mechanistic investigations revealed that YYP increased thymus and spleen indices of CFS mice, enhanced proliferation of lipopolysaccharide- or concanavalin A-stimulated spleen lymphocytes, and increased CD3+CD4+ and CD3+CD8+ T-cells in the spleen. YYP increased glycogen content in gastrocnemius muscle and liver, and lowered levels of triglyceride, lactic acid and urea nitrogen in sera of CFS mice. YYP suppressed the elevation of serum level of malondialdehyde, the increase of activities of lactic dehydrogenase and creatine phosphokinase, and the decrease of activity of the serum antioxidant enzyme superoxide dismutase in CFS mice. Moreover, YYP upregulated protein level of activated AMPK in gastrocnemius muscle and liver of CFS mice. CONCLUSIONS: YYP ameliorates CFS by reversing metabolic changes, reducing oxidative damage, and improving some immune function parameters in mice. This study provides pharmacological justifications for the use of YYP in treating fatigue, including CFS.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Síndrome de Fadiga Crônica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Síndrome de Fadiga Crônica/imunologia , Síndrome de Fadiga Crônica/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos ICR , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo , Natação
13.
Medicine (Baltimore) ; 100(22): e25817, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34087824

RESUMO

INTRODUCTION: The efficacy of soy diet for nonalcoholic fatty liver disease remains controversial. We conduct a systematic review and meta-analysis to explore the influence of soy diet vs placebo on the treatment of non-alcoholic fatty liver disease. METHODS: We search PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through October 2020 for randomized controlled trials assessing the efficacy of soy diet vs placebo for nonalcoholic fatty liver disease. This meta-analysis is performed using the random-effect model. RESULTS: Five randomized controlled trials are included in the meta-analysis. Overall, compared with control group for nonalcoholic fatty liver disease, soy diet is associated with significantly reduced HOMA-IR (standard mean difference [SMD] = -0.42; 95% confidence interval [CI] = -0.76 to -0.08; P = .01), increased insulin (SMD = -0.64; 95% CI = -0.98 to -0.30; P = .0002) and decreased malondialdehyde (SMD = -0.43; 95% CI = -0.74 to -0.13; P = .005), but demonstrated no substantial impact on body mass index (SMD = 0.17; 95% CI = -0.20 to 0.53; P = .37), alanine aminotransferase (SMD = -0.01; 95% CI = -0.61 to 0.60; P = .98), aspartate-aminotransferase (SMD = 0.01; 95% CI = -0.47 to 0.49; P = .97), total cholesterol (SMD = 0.05; 95% CI = -0.25 to 0.35; P = .73) or low density lipoprotein (SMD = 0; 95% CI = -0.30 to 0.30; P = .99). CONCLUSIONS: Soy diet may benefit to alleviate insulin resistance for nonalcoholic fatty liver disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica/dietoterapia , Proteínas de Soja/uso terapêutico , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Humanos , Insulina/metabolismo , Lipídeos/sangue , Malondialdeído/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Proteínas de Soja/administração & dosagem
14.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070241

RESUMO

Lipoic acid (LA) and melatonin (MT) are pleiotropic molecules participating in plant stress resistance by modulating cellular biochemical changes, ion homeostasis, and antioxidant enzyme activities. However, the combined role of these two molecules in counteracting the detrimental impacts of salinity stress is still unknown. In the present study, we determined the effects of exogenous LA (0.5 µM), MT (1 µM) and their combination (LA + MT) on growth performance and biomass accumulation, photosynthetic pigments, enzymatic and non-enzymatic antioxidant activities, and ions homeostatic in canola (Brassica napus L.) seedlings under salinity stress (0, 100 mM) for 40 days. The results indicate that exogenous application of LA + MT improved the phenotypic growth (by 25 to 45%), root thickness (by 68%), number of later lateral roots (by 52%), root viability (by 44%), and root length (by 50%) under salinity stress. Moreover, total soluble protein, chlorophyll pigments, the concentration of superoxide dismutase (SOD), catalase peroxidase (CAT), and ascorbic peroxidase (ASA) increased with the presence of salt concentration into the growth media and then decreased with the addition of LA + MT to saline solution. Leaf protein contents and the degradation of photosynthetic pigments were lower when LA + MT treatments were added into NaCl media. The proline and phenol contents decreased in the exogenous application of LA + MT treatments more than individual LA or MT treatments under the salinity stress. The incorporation of LA or MT or a combination of LA + MT to saline solution decreased salinity-induced malondialdehyde and electrolyte leakage. In conclusion, the alteration of metabolic pathways, redox modulation, and ions homeostasis in plant tissues by the combined LA and MT application are helpful towards the adaptation of Brassica napus L. seedlings in a saline environment. The results of this study provide, for the first time, conclusive evidence about the protective role of exogenous LA + MT in canola seedlings under salinity stress.


Assuntos
Brassica napus/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Estresse Salino , Ácido Tióctico/farmacologia , Antioxidantes/metabolismo , Biomassa , Brassica napus/metabolismo , Produtos Agrícolas/metabolismo , Homeostase , Malondialdeído/metabolismo , Minerais/metabolismo , Fenóis/metabolismo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
15.
Molecules ; 26(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064423

RESUMO

In the present study, we evaluated for the first time the photoprotective effect of fish bone bioactive peptides (FBBP) preparation isolated from silver carp (Hypophthalmichthys molitrix) discarded tissue using in vitro experimental models of skin cells exposed to ultraviolet B (UVB) irradiation and stressing agents. FBBP preparation was obtained by papain treatment of minced bones and centrifugal ultrafiltration, and the molecular weight (MW) distribution was characterized by size exclusion and reversed-phase high performance liquid chromatography (RP-HPLC). In vitro assessment of the effect of FBBP pretreatment in UVB-irradiated L929 fibroblasts and HaCaT keratinocytes revealed their cytoprotective activity. Their capacity to efficiently reduce reactive oxygen species (ROS) production and lipid peroxidation varied in a dose-dependent manner, and it was greater in fibroblasts. A decrease of proinflammatory cytokines secretion, in particular of tumor necrosis factor alpha (TNF-α), was found after FBBP pretreatment of THP-1-derived inflamed macrophages. Melanin production and tyrosinase activity investigated in UVB-irradiated Mel-Juso cells were lowered in direct relation to FBBP concentrations. FBBP fractions with high radical scavenging activity were separated by ion exchange chromatography, and two collagenic sequences were identified. All these results offer new scientific data on aquaculture fish bone-derived peptides confirming their ability to control the antioxidant, anti-inflammatory and pigmentation processes developed during UV irradiation of skin cells and recommend their use as valuable natural ingredients of photoprotective cosmeceutical products.


Assuntos
Osso e Ossos/efeitos dos fármacos , Inflamação/patologia , Peptídeos/farmacologia , Pigmentação , Pele/efeitos da radiação , Raios Ultravioleta , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Citoproteção/efeitos dos fármacos , Citoproteção/efeitos da radiação , Peixes , Células HaCaT/efeitos dos fármacos , Células HaCaT/efeitos da radiação , Humanos , Mediadores da Inflamação/metabolismo , Espaço Intracelular/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Malondialdeído/metabolismo , Melaninas/biossíntese , Camundongos , Peso Molecular , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Peptídeos/isolamento & purificação , Pigmentação/efeitos dos fármacos , Pigmentação/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Ultravioleta , Células THP-1
16.
Andrologia ; 53(8): e14117, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34081348

RESUMO

This study aimed to investigate the protective effect of sinapic acid (SA) on biochemical and histopathological changes in an experimental testicular torsion-detorsion rat model. Twenty-four rats were randomised into four groups: sham group, ischemia/reperfusion (IR) group subjected to testicular torsion for 2 hr and then detorsion for 4 hr, and two groups treated with SA1 and SA2 (10 mg/kg and 20 mg/kg, by single intraperitoneal injection, 30 min before reperfusion). Serum testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were measured by an autoanalyzer, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), protein carbonyl (PC), and nitric oxide (NO) oxidative stress parameters by spectrophotometric methods, and tumour necrosis factor (TNF-α), interleukin-1 beta (IL-1ß), and interleukin 6 (IL-6) parameters by the Elisa method. In addition, immunohistochemical and histopathological examinations were performed on testicular tissues. There was no significant difference between the groups in terms of serum testosterone, FSH and LH levels (p > .05). SA significantly reduced increased testicular damage, oxidative stress, inflammation, cell death and also restored decreased antioxidant enzyme activities (p < .05). Pre-treatment of rats with SA reduced testicular dysfunction and morphological changes IRI. SA's antioxidant, anti-inflammatory, and antiapoptotic properties were found to be protective against testicular IR.


Assuntos
Traumatismo por Reperfusão , Torção do Cordão Espermático , Animais , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/uso terapêutico , Humanos , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Torção do Cordão Espermático/complicações , Torção do Cordão Espermático/tratamento farmacológico , Torção do Cordão Espermático/metabolismo , Testículo/metabolismo
17.
Andrologia ; 53(8): e14143, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34115392

RESUMO

This study was designed to investigate the effects of separate and combined administration of hypothermia and pentoxifylline to preserve the effects on the testicles in an experimental model of testicular torsion/ detorsion injuries in rats. Forty male adult Wistar rats were randomly divided into five groups, control, torsion/detorsion (TD), torsion/detorsion/hypothermia (TD+ICE), torsion/detorsion received of pentoxifylline (40mg/kg, ip) (TD+PTX) and torsion/detorsion/hypothermia/PTX (TD+ICE+PTX). Left testicular torsion (TT) was performed for 4 and half hours, and ice fragments have been used at the beginning of torsion. After the reperfusion period (a week), oxidative maker's serum levels, testosterone hormone, sperm parameters, and histopathological and gene expression evaluations have been performed. Significant adverse changes were observed in the TD group for histological variables, sperm count, oxidative marker, testosterone hormone, Bax, BCL2 and caspase-3 expression. The parameters studied in the group receiving PTX improved in comparison with the TD group, while macroscopical parameters of both the hypothermia and PTX+ICE groups were not different compared with the TD group. The results revealed that PTX, as an antioxidant component, was protective against testicular torsion, while hypothermia and hypothermia plus PTX did not exhibit this property, which may have been due to the duration of hypothermia (4 hr) or reperfusion period.


Assuntos
Hipotermia , Pentoxifilina , Traumatismo por Reperfusão , Torção do Cordão Espermático , Animais , Feminino , Humanos , Hipotermia/metabolismo , Masculino , Malondialdeído/metabolismo , Torção Ovariana , Estresse Oxidativo , Pentoxifilina/uso terapêutico , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Torção do Cordão Espermático/metabolismo , Torção do Cordão Espermático/terapia , Testículo/metabolismo
18.
Plant Cell Rep ; 40(9): 1773-1787, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34181045

RESUMO

KEY MESSAGE: The present study showed that the heat stress (40 °C) caused changes in morphophysiological, biochemical, and ultrastructural parameters to the seeds Melanoxylon brauna, ultimately leading to loss of germination capacity. Temperature is an abiotic factor that influences seed germination. In the present study, we investigated morphophysiological, biochemical, and ultrastructural changes during the germination of Melanoxylon brauna seeds under heat stress. Seed germination was evaluated at constant temperatures of 25 and 40 °C. The samples consisted of seeds soaked in distilled and ionized water for 48 and 96 h at both temperatures. For the evaluation of internal morphology, the seeds were radiographed. Ultrastructural parameters were assessed using transmission electron microscopy (TEM). The production of reactive oxygen species (ROS), content of malondialdehyde (MDA) and glucose, carbonylated proteins, and activity of the enzymes (superoxide dismutase-SOD, ascorbate peroxidase-APX, catalase-CAT, peroxidase-POX, glucose-6-phosphate dehydrogenase-G6PDH, lipase, α- and ß-amylase, and protease) were measured by spectrophotometric analysis. An 82% reduction in the germination of M. brauna seeds was observed at 25 °C, and 0% at 40 °C. TEM showed that seeds submitted to heat stress (40 °C) had poorly developed mitochondria and significantly reduced respiration rates. The content of ROS and protein carbonylation in seeds subjected to 40 °C increased compared to that at 25 °C. The activity of antioxidant enzymes, namely SOD, APX, CAT, and POX, was significantly reduced in seeds subjected to heat stress. Glucose content, G6PDH, and lipase activity also decreased when the seeds were exposed to heat stress. Conversely, α- and ß-amylase enzymes and the protease increased due to the increase in temperature. Our data showed that the increase in temperature caused an accumulation of ROS, increasing the oxidative damage to the seeds, which led to mitochondrial dysfunction, ultimately leading to loss of germination.


Assuntos
Fabaceae/fisiologia , Resposta ao Choque Térmico/fisiologia , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Sementes/ultraestrutura , Antioxidantes/metabolismo , Carotenoides/metabolismo , Enzimas/metabolismo , Fabaceae/ultraestrutura , Ácidos Graxos/metabolismo , Germinação , Glucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Estresse Oxidativo , Superóxidos/metabolismo
19.
Molecules ; 26(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069658

RESUMO

Atherosclerotic cardiovascular disease is the leading cause of death in developed countries. Therefore, there is an increasing interest in developing new potent and safe antiplatelet agents. Coumarins are a family of polyphenolic compounds with several pharmacological activities, including platelet aggregation inhibition. However, their antiplatelet mechanism of action needs to be further elucidated. The aim of this study is to provide insight into the biochemical mechanisms involved in this activity, as well as to establish a structure-activity relationship for these compounds. With this purpose, the antiplatelet aggregation activities of coumarin, esculetin and esculin were determined in vitro in human whole blood and platelet-rich plasma, to set the potential interference with the arachidonic acid cascade. Here, the platelet COX activity was evaluated from 0.75 mM to 6.5 mM concentration by measuring the levels of metabolites derived from its activity (MDA and TXB2), together with colorimetric assays performed with the pure recombinant enzyme. Our results evidenced that the coumarin aglycones present the greatest antiplatelet activity at 5 mM and 6.5 mM on aggregometry experiments and inhibiting MDA levels.


Assuntos
Plaquetas/efeitos dos fármacos , Cumarínicos/farmacologia , Ciclo-Oxigenase 1/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Plaquetas/enzimologia , Plaquetas/metabolismo , Humanos , Técnicas In Vitro , Malondialdeído/metabolismo
20.
Int J Biol Macromol ; 185: 306-316, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34166692

RESUMO

The study was aimed to investigate the simulated digestion behavior of the bioactive polysaccharides from Chimonanthus nitens Oliv (COP1), antioxidant activity in vitro, and prevention against cyclophosphamide (CP) induced oxidative damage in mice. The results showed that COP1 were 18.843 kDa, and consisted of arabinose (56.6 mol%), galactose (24.9 mol%), xylose (11.1 mol%), and glucose (7.4 mol%). Gastrointestinal digestion significantly improved the radical (DPPH, OH, and ABTS+) scavenging activities of COP1. Meanwhile, administration of COP1 (150, 300, and 600 mg/kg, continuous 16 days) prevented hepatotoxicity in CP-induced mice (reducing liver index and transaminase levels, alleviating liver damage). COP1 also attenuated oxidative stress as evident from as shown by reduced levels of MDA and enhanced activity of antioxidant enzymes (CAT, SOD, and GSH-Px). In addition, COP1 regulated the Nrf2/Keap1 signaling pathway in CP-treated mice, decreasing the upstream factor Keap1 and increasing the upstream factor Nrf2, which in turn enhanced the expression of downstream factors (NQO1, HO-1, GSH-Px, SOD1, and CAT). COP1 also protected the body from CP-induced oxidative damage by down-regulating Bax and caspase3 in the apoptosis pathway and up-regulating Bcl-2 mRNA levels. Overall, COP1 might be harnessed as an effective natural antioxidant for medical and food industries.


Assuntos
Antioxidantes/administração & dosagem , Calycanthaceae/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ciclofosfamida/efeitos adversos , Polissacarídeos/administração & dosagem , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hospedeiro Imunocomprometido , Malondialdeído/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...