Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56.975
Filtrar
1.
Proc Biol Sci ; 287(1935): 20201791, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32933443

RESUMO

Biological invasions have increased in the last few decades mostly due to anthropogenic causes such as globalization of trade. Because invaders sometimes cause large economic losses and ecological disturbances, estimating their origin and potential geographical ranges is useful. Drosophila subobscura is native to the Old World but was introduced in the New World in the late 1970s and spread widely. We incorporate information on adaptive genetic markers into ecological niche modelling and then estimate the most probable geographical source of colonizers; evaluate whether the genetic bottleneck experienced by founders affects their potential distribution; and finally test whether this species has spread to all its potential suitable habitats worldwide. We find the environmental space occupied by this species in its native and introduced distributions are notably the same, although the introduced niche has shifted slightly towards higher temperature and lower precipitation. The genetic bottleneck of founding individuals was a key factor limiting the spread of this introduced species. We also find that regions in the Mediterranean and north-central Portugal show the highest probability of being the origin of the colonizers. Using genetically informed environmental niche modelling can enhance our understanding of the initial colonization and spread of invasive species, and also elucidate potential areas of future expansions worldwide.


Assuntos
Espécies Introduzidas , Distribuição Animal , Ecossistema , Marcadores Genéticos , Portugal
2.
Am J Mens Health ; 14(5): 1557988320954021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936693

RESUMO

Coronaviruses are single-stranded ribonucleic acid viruses that can cause illnesses in humans ranging from the common cold to severe respiratory disease and even death.In March 2020, the World Health Organization declared the 2019 novel coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the first pandemic. Compared to women, most countries with available data report that men with COVID-19 have greater disease severity and higher mortality. Lab and animal data indicate that men respond differently to the SARS-CoV-2 infection, offering possible explanations for the epidemiologic observations. The plausible theories underlying these observations include sex-related differences in angiotensin-converting enzyme 2 receptors, immune function, hormones, habits, and coinfection rates.In this review we examine these factors and explore the rationale as to how each may impact COVID-19. Understanding why men are more likely to experience severe disease can help in developing effective treatments, public health policies, and targeted strategies such as early recognition and aggressive testing in subgroups.


Assuntos
Infecções por Coronavirus/epidemiologia , Pandemias/estatística & dados numéricos , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/epidemiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Biomarcadores/metabolismo , Feminino , Marcadores Genéticos/fisiologia , Saúde Global , Humanos , Masculino , Prevalência , Medição de Risco , Fatores Sexuais , Análise de Sobrevida , Organização Mundial da Saúde
3.
PLoS One ; 15(8): e0237808, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866209

RESUMO

In this study, we performed an analysis of the impact of performance enhancing polymorphisms (PEPs) on gymnastic aptitude while considering epistatic effects. Seven PEPs (rs1815739, rs8192678, rs4253778, rs6265, rs5443, rs1076560, rs362584) were considered in a case (gymnasts)-control (sedentary individuals) setting. The study sample comprised of two athletes' sets: 27 elite (aged 24.8 ± 2.1 years) and 46 sub-elite (aged 19.7 ± 2.4 years) sportsmen as well as a control group of 245 sedentary individuals (aged 22.5 ± 2.1 years). The DNA was derived from saliva and PEP alleles were determined by PCR, RT-PCR. Following Multifactor Dimensionality Reduction, logistic regression models were built. The synergistic effect for rs1815739 x rs362584 reached 5.43%. The rs1815739 x rs362584 epistatic regression model exhibited a good fit to the data (Chi-squared = 33.758, p ≈ 0) achieving a significant improvement in sportsmen identification over naïve guessing. The area under the receiver operating characteristic curve was 0.715 (Z-score = 38.917, p ≈ 0). In contrast, the additive ACTN3 -SNAP-25 logistic regression model has been verified as non-significant. We demonstrate that a gene involved in the differentiation of muscle architecture-ACTN3 and a gene, which plays an important role in the nervous system-SNAP-25 interact. From the perspective originally established by the Berlin Academy of Science in 1751, the matter of communication between the brain and muscles via nerves adopts molecular manifestations. Further in-vitro investigations are required to explain the molecular details of the rs1815739 -rs362584 interaction.


Assuntos
Actinina/genética , Aptidão , Epistasia Genética , Ginástica/fisiologia , Proteína 25 Associada a Sinaptossoma/genética , Adulto , Alelos , Área Sob a Curva , Bases de Dados Genéticas , Entropia , Feminino , Marcadores Genéticos , Humanos , Modelos Logísticos , Masculino , Modelos Genéticos , Redução Dimensional com Múltiplos Fatores , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
4.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3659-3665, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893555

RESUMO

As a traditional Chinese medicinal material, Chrysosplenium is urgently needed for genetic resource investigation and protection research due to the decrease of its wild resources in recent years. After investigating the wild resources, we conducted genetic polymorphism and clustering studies of 24 species(a total of 36 samples) of Chrysosplenium using SRAP technique. The results showed that a total of 374 polymorphic bands were obtained using 18 pairs of SRAP primers to amplify these samples, on average of 20.7 bands for each primer pair. We used the biological software to analyze the population's genetic parameter and got the N_a value as 2.000 0, N_(e )value as 1.408 4, the average Nei's index as 0.263 5, and the average Shannon information index as 0.419 1. UPGMA cluster analysis showed that all the samples can be divided into three major groups at the genetic similarity coefficient of 0.70: there are 18 species(24 samples) gathered for the Ⅰ groups, 3 species or variation(7 samples) for Ⅱ groups, and 3 species(5 samples) for Ⅲ groups. The differences of these Chrysosplenium species at the molecular level are consistent with that of their geographical and ecological distribution. At the same time, we used SRAP technology to construct 36 DNA digital fingerprints of Chrysosplenium and obtained the unique molecular identification band type of each material. These results will provide effective methods and reliable basis for the identification, protection and genetic diversity analysis of the germplasm resources of Chrysosplenium, and lay a foundation for the further development and utilization of them.


Assuntos
Impressões Digitais de DNA , Variação Genética , Análise por Conglomerados , Marcadores Genéticos , Filogenia , Polimorfismo Genético
5.
Ann Agric Environ Med ; 27(3): 394-400, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32955221

RESUMO

INTRODUCTION: Overweight and obesity, as well as a gonadal function, are pivotal factors influencing bone tissue metabolism. MATERIAL AND METHODS: The aim of the study was to determine the effect of dietary induced obesity (DIO) on bone tissue metabolism in sham-operated (SHO) or ovariectomized (OVX) adult female Wistar rats. Additionally, the influence of DIO in SHO or OVX on the concentration of sclerostin in the blood serum was analyzed. After SHO or OVX, the rats were placed in groups (n=8) and either received a standard diet (11.5 MJ/kg) (SHO-CON; OVX-CON) or a high-energy diet (17.6 MJ/kg) (SHO-FAT; OVX-FAT). The experiment lasted for 90 days and allowed for the establishment of osteopenia in OVX females and obesity in the rats that had received the high-energy diet. RESULTS: The results of the study demonstrate that obesity or/and ovariectomy increases the resorption of femora and tibiae, hence decreasing the densitometric and mechanical parameters affecting the bone structure in adult females rats. The strongest osteodegenerative effect was seen in the OVX-FAT females. Interestingly, the degree of bone tissue degradation caused exclusively by ovariectomy was similar to that found in the obese sham-operated rats. CONCLUSIONS: Bone losses invoked by DIO seem to be independent from the Wnt/ß-catenin pathway inhibition induced by sclerostin. While further study is necessary, the obtained results suggest that the usage of sclerostin anti-body in the treatment of osteoporosis can be ineffective, and in obese patients the undertaking of such therapy should be reassessed.


Assuntos
Proteínas Morfogenéticas Ósseas/sangue , Osso e Ossos/metabolismo , Dieta/efeitos adversos , Obesidade/complicações , Ovariectomia/efeitos adversos , Via de Sinalização Wnt , Animais , Reabsorção Óssea , Feminino , Marcadores Genéticos , Humanos , Obesidade/etiologia , Ratos , Ratos Wistar
6.
Nat Commun ; 11(1): 4803, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968068

RESUMO

Meningiomas are the most common primary intracranial tumors, but the molecular drivers of meningioma tumorigenesis are poorly understood. We hypothesized that investigating intratumor heterogeneity in meningiomas would elucidate biologic drivers and reveal new targets for molecular therapy. To test this hypothesis, here we perform multiplatform molecular profiling of 86 spatially-distinct samples from 13 human meningiomas. Our data reveal that regional alterations in chromosome structure underlie clonal transcriptomic, epigenomic, and histopathologic signatures in meningioma. Stereotactic co-registration of sample coordinates to preoperative magnetic resonance images further suggest that high apparent diffusion coefficient (ADC) distinguishes meningioma regions with proliferating cells enriched for developmental gene expression programs. To understand the function of these genes in meningioma, we develop a human cerebral organoid model of meningioma and validate the high ADC marker genes CDH2 and PTPRZ1 as potential targets for meningioma therapy using live imaging, single cell RNA sequencing, CRISPR interference, and pharmacology.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Imagem por Ressonância Magnética/métodos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Idoso , Antígenos CD/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Caderinas/genética , Imagem de Difusão por Ressonância Magnética/métodos , Epigenômica , Feminino , Marcadores Genéticos , Genômica , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Transcriptoma
7.
PLoS One ; 15(9): e0238304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915819

RESUMO

Epistasis analysis elucidates the effects of gene-gene interactions (G×G) between multiple loci for complex traits. However, the large computational demands and the high multiple testing burden impede their discoveries. Here, we illustrate the utilization of two methods, main effect filtering based on individual GWAS results and biological knowledge-based modeling through Biofilter software, to reduce the number of interactions tested among single nucleotide polymorphisms (SNPs) for 15 cardiac-related traits and 14 fatty acids. We performed interaction analyses using the two filtering methods, adjusting for age, sex, body mass index (BMI), waist-hip ratio, and the first three principal components from genetic data, among 2,824 samples from the Ludwigshafen Risk and Cardiovascular (LURIC) Health Study. Using Biofilter, one interaction nearly met Bonferroni significance: an interaction between rs7735781 in XRCC4 and rs10804247 in XRCC5 was identified for venous thrombosis with a Bonferroni-adjusted likelihood ratio test (LRT) p: 0.0627. A total of 57 interactions were identified from main effect filtering for the cardiac traits G×G (10) and fatty acids G×G (47) at Bonferroni-adjusted LRT p < 0.05. For cardiac traits, the top interaction involved SNPs rs1383819 in SNTG1 and rs1493939 (138kb from 5' of SAMD12) with Bonferroni-adjusted LRT p: 0.0228 which was significantly associated with history of arterial hypertension. For fatty acids, the top interaction between rs4839193 in KCND3 and rs10829717 in LOC107984002 with Bonferroni-adjusted LRT p: 2.28×10-5 was associated with 9-trans 12-trans octadecanoic acid, an omega-6 trans fatty acid. The model inflation factor for the interactions under different filtering methods was evaluated from the standard median and the linear regression approach. Here, we applied filtering approaches to identify numerous genetic interactions related to cardiac-related outcomes as potential targets for therapy. The approaches described offer ways to detect epistasis in the complex traits and to improve precision medicine capability.


Assuntos
Doenças Cardiovasculares/epidemiologia , Biologia Computacional/métodos , Epistasia Genética , Ácidos Graxos/sangue , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Estudos de Casos e Controles , Feminino , Seguimentos , Estudo de Associação Genômica Ampla , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Estudos Prospectivos , Adulto Jovem
8.
PLoS Comput Biol ; 16(9): e1008269, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941419

RESUMO

We propose an efficient framework for genetic subtyping of SARS-CoV-2, the novel coronavirus that causes the COVID-19 pandemic. Efficient viral subtyping enables visualization and modeling of the geographic distribution and temporal dynamics of disease spread. Subtyping thereby advances the development of effective containment strategies and, potentially, therapeutic and vaccine strategies. However, identifying viral subtypes in real-time is challenging: SARS-CoV-2 is a novel virus, and the pandemic is rapidly expanding. Viral subtypes may be difficult to detect due to rapid evolution; founder effects are more significant than selection pressure; and the clustering threshold for subtyping is not standardized. We propose to identify mutational signatures of available SARS-CoV-2 sequences using a population-based approach: an entropy measure followed by frequency analysis. These signatures, Informative Subtype Markers (ISMs), define a compact set of nucleotide sites that characterize the most variable (and thus most informative) positions in the viral genomes sequenced from different individuals. Through ISM compression, we find that certain distant nucleotide variants covary, including non-coding and ORF1ab sites covarying with the D614G spike protein mutation which has become increasingly prevalent as the pandemic has spread. ISMs are also useful for downstream analyses, such as spatiotemporal visualization of viral dynamics. By analyzing sequence data available in the GISAID database, we validate the utility of ISM-based subtyping by comparing spatiotemporal analyses using ISMs to epidemiological studies of viral transmission in Asia, Europe, and the United States. In addition, we show the relationship of ISMs to phylogenetic reconstructions of SARS-CoV-2 evolution, and therefore, ISMs can play an important complementary role to phylogenetic tree-based analysis, such as is done in the Nextstrain project. The developed pipeline dynamically generates ISMs for newly added SARS-CoV-2 sequences and updates the visualization of pandemic spatiotemporal dynamics, and is available on Github at https://github.com/EESI/ISM (Jupyter notebook), https://github.com/EESI/ncov_ism (command line tool) and via an interactive website at https://covid19-ism.coe.drexel.edu/.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/genética , Infecções por Coronavirus , Genômica/métodos , Pandemias , Pneumonia Viral , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Evolução Molecular , Marcadores Genéticos/genética , Genoma Viral/genética , Humanos , Mutação/genética , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Análise Espaço-Temporal
9.
PLoS One ; 15(8): e0236759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745105

RESUMO

The fall armyworm (Spodoptera frugiperda) is a moth pest native to the Western Hemisphere that has recently become a global problem, invading Africa, Asia, and Australia. The species has a broad host range, long-distance migration capability, and a propensity for the generation of pesticide resistance traits that make it a formidable invasive threat and a difficult pest to control. While fall armyworm migration has been extensively studied in North America, where annual migrations of thousands of kilometers are the norm, migration patterns in South America are less understood. As a first step to address this issue we have been genetically characterizing fall armyworm populations in Ecuador, a country in the northern portion of South America that has not been extensively surveyed for this pest. These studies confirm and extend past findings indicating similarities in the fall armyworm populations from Ecuador, Trinidad-Tobago, Peru, and Bolivia that suggest substantial migratory interactions. Specifically, we found that populations throughout Ecuador are genetically homogeneous, indicating that the Andes mountain range is not a long-term barrier to fall armyworm migration. Quantification of genetic variation in an intron sequence describe patterns of similarity between fall armyworm from different locations in South America with implications for how migration might be occurring. In addition, we unexpectedly found these observations only apply to one subset of fall armyworm (the C-strain), as the other group (R-strain) was not present in Ecuador. The results suggest differences in migration behavior between fall armyworm groups in South America that appear to be related to differences in host plant preferences.


Assuntos
Haplótipos/genética , Spodoptera/genética , Migração Animal , Animais , Equador , Complexo IV da Cadeia de Transporte de Elétrons/genética , Marcadores Genéticos , Íntrons/genética , Controle de Pragas , Filogenia , Filogeografia , América do Sul
10.
PLoS One ; 15(8): e0236285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841250

RESUMO

Characterizing meiotic recombination rates across the genomes of nonhuman primates is important for understanding the genetics of primate populations, performing genetic analyses of phenotypic variation and reconstructing the evolution of human recombination. Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primates in biomedical research. We constructed a high-resolution genetic map of the rhesus genome based on whole genome sequence data from Indian-origin rhesus macaques. The genetic markers used were approximately 18 million SNPs, with marker density 6.93 per kb across the autosomes. We report that the genome-wide recombination rate in rhesus macaques is significantly lower than rates observed in apes or humans, while the distribution of recombination across the macaque genome is more uniform. These observations provide new comparative information regarding the evolution of recombination in primates.


Assuntos
Evolução Molecular , Macaca mulatta/genética , Meiose/genética , Recombinação Genética , Animais , Mapeamento Cromossômico , Marcadores Genéticos , Variação Genética , Genoma , Humanos , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Sequenciamento Completo do Genoma
11.
Medicine (Baltimore) ; 99(31): e21326, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32756117

RESUMO

Northern corn leaf blight (NCLB), a corn disease infected by Exserohilum turcicum, can cause loss of harvest and economy. Identification or evaluation of NCLB-resistant quantitative trait loci (QTL) and genes could improve maize breeds. This study aimed to identify novel QTLs for NCLB-resistance.Two maize strains (BB and BC) were utilized to generate B73 × B97 and B73 × CML322 and constructed the genetic linkage using high-throughput single nucleotide polymorphism (SNP) linkage map analysis of 170 (BB) and 163(BC) recombinant inbred line (RIL) genomic DNA samples. NCLB-resistant QTL was associated with phenotypic data from the field trial of 170 BB and 163 BC strains over two years using these 1100 SNPs to identify high-density NCLB-resistant QTLs.In BB, QTL of the NCLB resistance was on chromosome 1 and 3 (LOD scores between 2.74 and 5.44); in BC, QTL of NCLB resistance was on chromosome 1, 2, 4, 8, and 9 (LOD scores between 2.52 and 8.53). A number of genes or genetic information related to NCLB resistance in both BB and BC were identified with the maximum number of genes/NCLB resistance-related QTL on chromosome 3 for BB and on chromosome 1 for BC.This study successfully mapped and identified NCLB-resistant QTL and genes for these 2 different maize strains, which provides insightful information for future study of NCLB-resistance and selection of NCLB-resistant maize variants.


Assuntos
Doenças das Plantas/genética , Zea mays/genética , Marcadores Genéticos , Imunidade Inata , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas
12.
Zh Nevrol Psikhiatr Im S S Korsakova ; 120(7. Vyp. 2): 54-60, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32844631

RESUMO

OBJECTIVE: Our aim was to analyse the association with multiple sclerosis of the genetic markers of autoimmune disorders identified in genome-wide association studies in ethnically homogenous groups of Russians and Tatars residing in the Republic of Bashkortostan. MATERIAL AND METHODS: We performed genotyping of the genetic variants rs2069762 in IL2 gene, rs759648 in PVT1 gene, rs1800682 in FAS gene and rs12708716 in CLEC16A gene in the study group consisting of 1724 people (547 patients with multiple sclerosis, 1177 representatives of the control group). We analysed the association of the studied genetic markers with multiple sclerosis using logistic regression under additive genetic model implemented in PLINK program with sex a covariate. RESULTS: In the group of Tatars, we detected an association of PVT1 rs759648*Callele with multiple sclerosis (OR=1.42, p=0,023). Meta-analysis of the study results in the two ethnic groups we confirmed the association of the PVT1 rs759648*C allele with the disease (random effects model and fixed effect model: OR=1.29, p=0,018). CONCLUSION: Our results provide an evidence of an association between multiple sclerosis and the PVT1 rs759648 allele in the populations of Russian and Tatars from the Republic of Bashkortostan. No association with any other studied polymorphic variant was found in the two ethnic groups.


Assuntos
Estudo de Associação Genômica Ampla , Esclerose Múltipla , Bashkiria , Frequência do Gene , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Lectinas Tipo C , Proteínas de Transporte de Monossacarídeos , Polimorfismo de Nucleotídeo Único , Federação Russa
13.
Plant Mol Biol ; 104(1-2): 173-185, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32734417

RESUMO

KEY MESSAGE: A novel and major QTL for the effective tiller number was identified on chromosomal arm 1BL and validated in two genetic backgrounds The effective tiller number (ETN) substantially influences plant architecture and the wheat yield improvement. In this study, we constructed a genetic map of the 2SY (20828/SY95-71) recombinant inbred line population based on the Wheat 55K array as well as the simple sequence repeat (SSR) and Kompetitive Allele Specific PCR (KASP) markers. A comparison between the genetic and physical maps indicated the marker positions were consistent in the two maps. Additionally, we identified seven tillering-related quantitative trait locus (QTLs), including Qetn-sau-1B.1, which is a major QTL localized to a 6.17-cM interval flanked by markers AX-89635557 and AX-111544678 on chromosome 1BL. The Qetn-sau-1B.1 QTL was detected in eight environments and explained 12.12-55.71% of the phenotypic variance. Three genes associated with the ETN were detected in the physical interval of Qetn-sau-1B.1. We used a tightly linked KASP marker, KASP-AX-110129912, to further validate this QTL in two other populations with different genetic backgrounds. The results indicated that Qetn-sau-1B.1 significantly increased the ETN by up to 23.5%. The results of this study will be useful for the precise mapping and cloning of Qetn-sau-1B.1.


Assuntos
Cromossomos de Plantas , Locos de Características Quantitativas/genética , Triticum/genética , Bangladesh , Mapeamento Cromossômico , Marcadores Genéticos/genética , Genótipo , Repetições de Microssatélites , Anotação de Sequência Molecular , Fenótipo
14.
Gene ; 763: 145048, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32805312

RESUMO

Cross-contamination of cell lines is a highly relevant and pervasive problem. The analysis of short tandem repeats (STR) is a simple and commercially available technique to authenticate cell lines for more than two decades. At present, STR multiple amplification kits have been developed up to 21 loci while the current STR databases only provide 9-loci STR profiles. Here, we compared the advantages of 21-loci STR methodology using the same algorithm as 9-loci method. The 21-loci method reduced the uncertainty ratio for authentications by 97.5% relative to the 9-loci method and exclude effectively false positive. We show that the additional 12 loci helped to greatly reduce sample-site marker specificity arising from genetic isolation and the occurrence of null alleles, suggesting that inclusion of additional loci in these databases will ultimately improve the efficiency and accuracy of authentication of cell lines. Taken together, we demonstrate the utility of a 21-loci method in human cells, providing a novel marker panel for use as a valuable alternative to 9-loci analyses to minimize cell line authentication errors and reduce costs due to erroneous experiments.


Assuntos
Autenticação de Linhagem Celular/métodos , Repetições de Microssatélites , Linhagem Celular , Autenticação de Linhagem Celular/normas , Linhagem Celular Tumoral , Loci Gênicos , Marcadores Genéticos , Humanos , Tipagem Molecular/métodos , Tipagem Molecular/normas
15.
PLoS One ; 15(8): e0236960, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32813736

RESUMO

BACKGROUND: Circulating microRNAs may reflect or influence pathological cardiac remodeling and contribute to atrial fibrillation (AF). OBJECTIVE: The purpose of this study was to identify candidate plasma microRNAs that are associated with echocardiographic phenotypes of atrial remodeling, and incident and prevalent AF in a community-based cohort. METHODS: We analyzed left atrial function index (LAFI) of 1788 Framingham Offspring 8 participants. We quantified expression of 339 plasma microRNAs. We examined associations between microRNA levels with LAFI and prevalent and incident AF. We constructed pathway analysis of microRNAs' predicted gene targets to identify molecular processes involved in adverse atrial remodeling in AF. RESULTS: The mean age of the participants was 66 ± 9 years, and 54% were women. Five percent of participants had prevalent AF at the initial examination and 9% (n = 157) developed AF over a median 8.6 years of follow-up (IQR 8.1-9.2 years). Plasma microRNAs were associated with LAFI (N = 73, p<0.0001). Six of these plasma microRNAs were significantly associated with incident AF, including 4 also associated with prevalent AF (microRNAs 106b, 26a-5p, 484, 20a-5p). These microRNAs are predicted to regulate genes involved in cardiac hypertrophy, inflammation, and myocardial fibrosis. CONCLUSIONS: Circulating microRNAs 106b, 26a-5p, 484, 20a-5p are associated with atrial remodeling and AF.


Assuntos
Fibrilação Atrial/sangue , Fibrilação Atrial/genética , Remodelamento Atrial/genética , MicroRNAs/sangue , MicroRNAs/genética , Idoso , Fibrilação Atrial/diagnóstico por imagem , Função do Átrio Esquerdo/genética , Função do Átrio Esquerdo/fisiologia , Remodelamento Atrial/fisiologia , Biomarcadores/sangue , Estudos de Coortes , Ecocardiografia , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
16.
PLoS One ; 15(8): e0237405, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817702

RESUMO

Expression of proteins in the chloroplast or mitochondria of the model green alga Chlamydomonas reinhardtii can be achieved by directly inserting transgenes into organellar genomes, or through nuclear expression and post-translational import. A number of tools have been developed in the literature for achieving high expression levels from the nuclear genome despite messy genomic integration and widespread silencing of transgenes. Here, recent advances in the field are combined and two systems of bicistronic expression, based on ribosome reinitiation or ribosomal skip induced by a viral 2A sequence, are compared side-by-side. Further, the small subunit of Rubisco (RBCS) was developed as a functional nuclear reporter for successful chloroplast import and restoration of photosynthesis: To be able to combine RBCS with a Venus fluorescent reporter without compromising photosynthetic activity, a leaky stop codon is introduced as a novel molecular tool that allows the simultaneous expression of functional and fluorescently tagged versions of the protein from a single construct.


Assuntos
Chlamydomonas reinhardtii/genética , Códon de Terminação/genética , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos/genética
17.
PLoS One ; 15(8): e0237599, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785287

RESUMO

The microbial oxidation of metal sulfides plays a major role in the formation of acid rock drainage (ARD). We aimed to broadly characterize the ARD at Ely Brook, which drains the Ely Copper Mine Superfund site in Vermont, USA, using metagenomics and metatranscriptomics to assess the metabolic potential and seasonal ecological roles of microorganisms in water and sediment. Using Centrifuge against the NCBI "nt" database, ~25% of reads in sediment and water samples were classified as acid-tolerant Proteobacteria (61 ± 4%) belonging to the genera Pseudomonas (2.6-3.3%), Bradyrhizobium (1.7-4.1%), and Streptomyces (2.9-5.0%). Numerous genes (12%) were differentially expressed between seasons and played significant roles in iron, sulfur, carbon, and nitrogen cycling. The most abundant RNA transcript encoded the multidrug resistance protein Stp, and most expressed KEGG-annotated transcripts were involved in amino acid metabolism. Biosynthetic gene clusters involved in secondary metabolism (BGCs, 449) as well as metal- (133) and antibiotic-resistance (8501) genes were identified across the entire dataset. Several antibiotic and metal resistance genes were colocalized and coexpressed with putative BGCs, providing insight into the protective roles of the molecules BGCs produce. Our study shows that ecological stimuli, such as metal concentrations and seasonal variations, can drive ARD taxa to produce novel bioactive metabolites.


Assuntos
Ácidos/química , Metagenoma , Microbiota , Mineração , Proteobactérias/genética , Proteobactérias/metabolismo , Transcriptoma , Cobre/química , Marcadores Genéticos , Minerais/química , Proteobactérias/crescimento & desenvolvimento
18.
Mutat Res ; 785: 108322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32800273

RESUMO

Treatment with interferon beta (IFNß) is one of the first-line treatments for multiple sclerosis. In clinical practice, however, many patients present suboptimal response to IFNß, with the proportion of non-responders ranging from 20 to 50%. This variable response can be affected by genetic factors, such as polymorphisms in the genes involved in the disease state, pharmacodynamics, metabolism or in the action mechanism of IFNß, which can affect the efficacy of this drug. This review assesses the impact of pharmacogenetics studies on response to IFNß treatment among patients diagnosed with relapsing-remitting multiple sclerosis (RRMS). The results suggest that the detection of polymorphisms in several genes (CD46, CD58, FHIT, IRF5, GAPVD1, GPC5, GRBRB3, MxA, PELI3 and ZNF697) could be used in the future as predictive markers of response to IFNß treatment in patients diagnosed with RRMS. However, few studies have been carried out and they have been performed on small sample sizes, which makes it difficult to generalize the role of these genes in IFNß treatment. Studies on large sample sizes with longer term follow-up are therefore required to confirm these results.


Assuntos
Marcadores Genéticos/genética , Interferon beta/farmacocinética , Esclerose Múltipla Recidivante-Remitente/genética , Polimorfismo Genético/genética , Humanos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico
19.
PLoS One ; 15(8): e0238383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32845934

RESUMO

A robust Genotyping-By-Sequencing (GBS) pipeline platform was examined to provide accurate discovery of Single Nucleotide Polymorphisms (SNPs) in a cape gooseberry (Physalis peruviana L.) and related taxa germplasm collection. A total of 176 accessions representing, wild, weedy, and commercial cultivars as well as related taxa from the Colombian germplasm bank and other world repositories were screened using GBS. The pipeline parameters mnLCov of 0.5 and a mnScov of 0.7, tomato and potato genomes, and cape gooseberry transcriptome for read alignments, were selected to better assess diversity and population structure in cape gooseberry and related taxa. A total of 7,425 SNPs, derived from P. peruviana common tags (unique 64 bp sequences shared between selected species), were used. Within P. peruviana, five subpopulations with a high genetic diversity and allele fixation (HE: 0.35 to 0.36 and FIS: -0.11 to -0.01, respectively) were detected. Conversely, low genetic differentiation (FST: 0.01 to 0.05) was also observed, indicating a high gene flow among subpopulations. These results contribute to the establishment of adequate conservation and breeding strategies for Cape gooseberry and closely related Physalis species.


Assuntos
Genoma de Planta/genética , Lycopersicon esculentum/genética , Physalis/classificação , Physalis/genética , Solanum tuberosum/genética , Marcadores Genéticos/genética , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
20.
Plant Dis ; 104(9): 2369-2376, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32689920

RESUMO

Fusarium head blight (FHB) and stem rust are among the most devastating diseases of wheat worldwide. Fhb1 is the most widely utilized and the only isolated gene for FHB resistance, while Sr2 is a durable stem rust resistance gene used in rust-prone areas. The two loci are closely linked on the short arm of chromosome 3B and the two genes are in repulsion phase among cultivars. With climate change and the shift in Fusarium populations, it is imperative to develop wheat cultivars resistant to both diseases. The present study was dedicated to developing wheat germplasm combining Fhb1 and Sr2 resistance alleles in the International Maize and Wheat Improvement Center (CIMMYT)'s elite cultivars' backgrounds. Four recombinant inbred lines (RILs) in Hartog background that have the resistant Fhb1 and Sr2 alleles in coupled phase linkage were crossed with seven CIMMYT bread wheat lines, resulting in 208 lines. Molecular markers for both genes were employed in addition to the use of pseudo-black chaff (PBC) as a phenotypic marker for the selection of Sr2. At various stages of the selection process, progeny lines were assessed for FHB index, Fusarium damaged kernels (FDK), stem rust, and PBC expression as well as other diseases of interest (stripe rust and leaf spotting diseases). The 25 best lines were selected for CIMMYT's wheat breeding program. In addition to expressing resistance to FHB, most of these 25 lines have an acceptable level of resistance to other tested diseases. These lines will be useful for wheat breeding programs worldwide and potentially speed up the resistance breeding efforts against FHB and stem rust.


Assuntos
Resistência à Doença , Triticum/genética , Cromossomos de Plantas , Marcadores Genéticos , Humanos , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA