Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.371
Filtrar
1.
Bioelectrochemistry ; 131: 107373, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31525638

RESUMO

Smart electrochemical biosensors have emerged as a promising alternative analytical diagnostic tool in recent clinical practice. However, improvement in the biocompatibility and electrical conductivity of the biosensor matrix and the immobilization of various bioactive molecules such as enzymes still remain challenging. The present research reports the synthesis of a biocompatible hydrogel network and its integration with gold nanocubes (AuNCs) for developing a novel biosensor with improved functionality. The interpenetrating hydrogel network consist of biopolymers developed using graft co-polymerization of ß-cyclodextrin (ß-CD) and chitosan (CS). The novelty of this work is in integrating the CS-g-ß-CD hydrogel network with conductive AuNCs for improving hydrogel conductivity, biosensor sensitivity and use of the material for a biocompatible sensor. The present protocol advances the state of the art for the utilization of biopolymeric hydrogels system in synergy with an enzymatic biosensing protocol for exclusively detecting hydrogen peroxide (H2O2). Immobilization of the mitochondrial protein, cytochrome c (cyt c) into the hydrogel nanocomposite matrix was performed via thiol cross-linking. This organic-inorganic hybrid nanocomposite hydrogel matrix exhibited high biocompatibility (RAW 264.7 and N2a cell lines), improved electrical conductivity to attain high sensitivity (1.2 mA mM-1 cm-2) and a low detection limit (15 × 10-9 M) for H2O2.


Assuntos
Materiais Biocompatíveis/química , Técnicas Eletroquímicas/métodos , Ouro/química , Hidrogéis/química , Peróxido de Hidrogênio/análise , Nanoestruturas/química , Limite de Detecção
2.
J Colloid Interface Sci ; 559: 51-64, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610305

RESUMO

Aiming at the inefficiency and toxicity in traditional antitumor therapy, a novel multifunctional nanoplatform was constructed based on hollow mesoporous carbon (HMC) to achieve triple stimuli response and dual model antitumor therapy via chemo-photothermal synergistic effect. HMC was used as an ideal nanovehicle with a high drug loading efficiency as well as a near-infrared (NIR) photothermal conversion agent for photothermal therapy. Acid-dissoluble, luminescent ZnO quantum dots (QDs) were used as the proper sealing agents for the mesopores of HMC, conjugated to HMC via disulfide linkage to prevent drug (doxorubicin, abbreviated as Dox) premature release from Dox/HMC-SS-ZnO. After cellular endocytosis, the Dox was released in a pH, GSH and NIR laser triple stimuli-responsive manner to realize accurate drug delivery. Moreover, the local hyperthermia effect induced by NIR irradiation could promote the drug release, enhance cell sensitivity to chemotherapeutic agents, and also directly kill cancer cells. As expected, Dox/HMC-SS-ZnO exhibited a high drug loading capacity of 43%, well response to triple stimuli and excellent photothermal conversion efficiency η of 29.7%. The therapeutic efficacy in 4T1 cells and multicellular tumor spheroids (MCTSs) demonstrated that Dox/HMC-SS-ZnO + NIR had satisfactory chemo-photothermal synergistic effect with a combination index (CI) of 0.532. The cell apoptosis rate of the combined treatment group was more than 95%. The biodistribution and pharmacodynamics studies showed its biosecurity to normal tissues and synergistic inhibition effect to tumor cells. These distinguished results indicated that the Dox/HMC-SS-ZnO nanoplatform is potential to realize efficient triple stimuli-responsive drug delivery and dual model chemo-photothermal synergistic antitumor therapy.


Assuntos
Antineoplásicos/química , Carbono/química , Terapia Combinada/métodos , Portadores de Fármacos/química , Nanopartículas/química , Pontos Quânticos/química , Óxido de Zinco/química , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Humanos , Raios Infravermelhos , Camundongos Endogâmicos BALB C , Fototerapia/métodos , Porosidade , Propriedades de Superfície , Distribuição Tecidual , Óxido de Zinco/farmacocinética
3.
J Colloid Interface Sci ; 559: 65-75, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610306

RESUMO

Electroactive nanofibrous scaffold is a vital tool for the study of the various biological research fields from bioelectronics to regenerative medicine, which can provide cell preferable 3D nanofiber architecture and programmed electrical signal. However, intrinsic non-biodegradability is a major problem that hinders its widespread application in the clinic. Herein, we designed, synthesized, and characterized shell/core poly (3,4-ethylenedioxythiophene) (PEDOT)/chitosan (CS) nanofibers by combining the electrospinning and recrystallization processes. Upon incorporating a trace amount of PEDOT (1.0 wt%), the resultant PEDOT/CS nanofibers exhibited low interfacial charge transfer impedance, high electrochemical stability, high electrical conductivity (up to 0.1945 S/cm), and ultrasensitive piezoelectric property (output voltage of 22.5 mV by a human hair prodding). With such unique electrical and conductive properties, PEDOT/CS nanofibers were further applied to brain neuroglioma cells (BNCs) to stimulate their adhesion, proliferation, growth, and development under an optimal external electrical stimulation (ES) and a pulse voltage of 400 mV/cm. ES-responsive PEDOT/CS nanofibers indeed promoted BNCs growth and development as indicated by a large number and density of axons. The synergetic interplay between external ES and piezoelectric voltage demonstrates new PEDOT-based nanofibers as implantable electroactive scaffolds for numerous applications in nerve tissue engineering, human health monitoring, brain mantle information extraction, and degradable microelectronic devices.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Quitosana/química , Condutividade Elétrica , Nanofibras/química , Polímeros/química , Testes de Impedância Acústica/métodos , Axônios/metabolismo , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Estimulação Elétrica/métodos , Glioma/metabolismo , Humanos
4.
J Colloid Interface Sci ; 559: 313-323, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675662

RESUMO

Antibiotic resistance is a common phenomenon observed during treatment with antibacterials. Use of nanozymes, especially those with synergistic enzyme-like activities, as antibacterials could overcome this problem, but their synthesis is limited by their high cost and/or complex production process. Herein, vanadium oxide nanodots (VOxNDs) were prepared via a one-step bottom-up ethanol-thermal method using vanadium trichloride as the precursor. VOxNDs alone possess bienzyme mimics of peroxidase and oxidase. Accordingly, highly efficient antibacterials against drug-resistant bacteria can be obtained through synergistic catalysis; the oxidase-like activity decomposes O2 to generate superoxide anion radical (O2-) and hydroxyl radicals (OH), and the intrinsic peroxidase-like activity can further induce the production of OH from external H2O2. Consequently, H2O2 concentration could decrease up to four magnitude orders with VOxNDs to achieve an antibacterial efficacy similar to that of H2O2 alone. Wound healing in vivo further confirms the high antibacterial efficiency, good biocompatibility, and application potential of the synergistic antibacterial system due to the "nano" structure of VOxNDs. The method of synthesis of nanodot antibacterials described in this paper is inexpensive, and the results of this study reveal the multi-enzymatic synergism of nanozymes.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Óxidos/química , Compostos de Vanádio/química , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Catálise , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Peroxidases/metabolismo , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos
5.
J Colloid Interface Sci ; 558: 47-54, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31580954

RESUMO

The unique antibacterial characteristics of Ag nanomaterials offer a wide potential range of applications, but achieving rapid and durable antibacterial efficacy is challenging. This is because the speed and durability of the antibacterial function make conflicting demands on the structural design: the former requires the direct exposure of Ag to the surrounding environment, whereas the durability requires Ag to be protected from the environment. To overcome this incompatibility, we synthesize sandwich-structured polydopamine shells decorated both internally and externally with Ag nanoparticles, which exhibit prompt and lasting bioactivity in applications. These shells are biocompatible and can be used in vivo to counter bacterial infection caused by methicillin-resistant Staphylococcus aureus superbugs and to inhibit biofilm formation. This work represents a new paradigm for the design of composite materials with enhanced antibacterial properties.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Indóis/química , Nanopartículas Metálicas/química , Polímeros/química , Prata/química , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ratos , Ratos Sprague-Dawley
6.
J Colloid Interface Sci ; 558: 137-144, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586733

RESUMO

Platinum oxide (PtOx) nanoparticles (NPs) have been shown to possess anticancer activity by releasing ionic Pt species under biological conditions. However, the dissolution kinetics and the changes in the chemical state of Pt during PtOx dissolution have not yet been studied. To fill this gap, we prepared a composite (designated as PtOx@MMT-2) containing PtOx NPs on hollow mesoporous silica nanospheres and studied the dissolution of the material in different biorelevant media. We found that the release of Pt was retarded due to the adsorption of biomolecules on PtOx NPs during the degradation of host silica. The biomolecules adsorption also lowered the accessibility of PtOx NPs, resulting in the reduced catalase-like activity of the NPs. In line with the results, the cytotoxicity of PtOx@MMT-2, which was positively correlated to the amount of Pt uptake, was reduced by biomolecules adsorption. Our findings should be applicable to other metal (oxide) NPs under biological conditions and may provide implications for the design of nanomaterials for practical therapeutic applications.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas/química , Óxidos/química , Platina/química , Dióxido de Silício/química , Adsorção , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Nanopartículas/uso terapêutico , Solubilidade
7.
Adv Exp Med Biol ; 1174: 113-159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31713198

RESUMO

Functional amyloid (FuBA) is produced by a large fraction of all bacterial species and represents a constructive use of the stable amyloid fold, in contrast to the pathological amyloid seen in neurodegenerative diseases. When assembled into amyloid, FuBA is unusually robust and withstands most chemicals including denaturants and SDS. Uses include strengthening of bacterial biofilms, cell-to-cell communication, cell wall construction and even bacterial warfare. Biogenesis is under tight spatio-temporal control, thanks to a simple but efficient secretion system which in E. coli, Pseudomonas and other well-studied bacteria includes a major amyloid component that is kept unfolded in the periplasm thanks to chaperones, threaded through the outer membrane via a pore protein and anchored to the cell surface through a nucleator and possibly other helper proteins. In these systems, amyloid formation is promoted through imperfect repeats, but other evolutionarily unrelated proteins either have no or only partially conserved repeats or simply consist of small peptides with multiple structural roles. This makes bioinformatics analysis challenging, though the sophisticated amyloid prediction tools developed from research in pathological amyloid together with the steady increase in identification of further examples of amyloid will strengthen genomic data mining. Functional amyloid represents an intriguing source of robust yet biodegradable materials with new properties, when combining the optimized self-assembly properties of the amyloid component with e.g. peptides with different binding properties or surface-reactive protein binders. Sophisticated patterns can also be obtained by co-incubating bacteria producing different types of amyloid, while amyloid inclusion bodies may lead to slow-release nanopills.


Assuntos
Amiloide , Proteínas de Bactérias , Materiais Biocompatíveis , Amiloide/biossíntese , Amiloide/química , Amiloide/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Materiais Biocompatíveis/química
8.
Adv Exp Med Biol ; 1174: 371-399, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31713206

RESUMO

Biomaterials play a critical role in regenerative strategies such as stem cell-based therapies and tissue engineering, aiming to replace, remodel, regenerate, or support damaged tissues and organs. The design of appropriate three-dimensional (3D) scaffolds is crucial for generating bio-inspired replacement tissues. These scaffolds are primarily composed of degradable or non-degradable biomaterials and can be employed as cells, growth factors, or drug carriers. Naturally derived and synthetic biomaterials have been widely used for these purposes, but the ideal biomaterial remains to be found. Researchers from diversified fields have attempted to design and fabricate novel biomaterials, aiming to find novel theranostic approaches for tissue engineering and regenerative medicine. Since no single biomaterial has been found to possess all the necessary characteristics for an ideal performance, over the years scientists have tried to develop composite biomaterials that complement and combine the beneficial properties of multiple materials into a superior matrix. Herein, we highlight the structural features and performance of various biomaterials and their application in regenerative medicine and for enhanced tissue engineering approaches.


Assuntos
Biomimética , Matriz Extracelular , Engenharia Tecidual , Materiais Biocompatíveis/química , Matriz Extracelular/química , Medicina Regenerativa , Tecidos Suporte/química , Tecidos Suporte/normas
9.
Chem Soc Rev ; 48(23): 5564-5595, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31670726

RESUMO

The design and applications of some inorganic two-dimensional (2D) nanomaterials such as graphene, graphyne, and borophene have been widely studied in recent years. Meanwhile, it has been noticed that self-assembling two-dimensional organic biomaterials (2DOBMs) including films, membranes, nanosheets, nanoribbons, grids, arrays, and lattices based on various biomolecules also exhibited promising structures, functions, and applications. The in-depth studies on the self-assembly formation, structural and functional tailoring of 2DOBMs open new avenues for the next generation of novel nanomaterials with adjustable structure and functions, which would further promote the applications of 2DOBMs in materials science, nanodevices, energy and environmental science, biomedicine, tissue engineering, and analytical science. In this review, we summarize important information on the basic principles to fabricate self-assembling 2DOBMs based on peptides, proteins, DNA, RNA, viruses, and other biopolymers. The potential strategies and techniques for tailoring and controlling the structures and functions of 2DOBMs are presented and discussed further. The function-specific biomedical applications of 2DOBMs in biosensors, biomimetic mineralization, cell growth, drug/gene delivery, and bioimaging are also highlighted.


Assuntos
Materiais Biocompatíveis/química , Animais , Técnicas Biossensoriais/métodos , DNA/química , Portadores de Fármacos/química , Nanoestruturas/química , Imagem Óptica , Polímeros/química , Proteínas/química , Engenharia Tecidual
10.
Chem Soc Rev ; 48(22): 5506-5526, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31589233

RESUMO

Cancer immunotherapy by educating or stimulating patients' own immune systems to attack cancer cells has demonstrated promising therapeutic responses in the clinic. However, although the number of approved immunotherapeutics is rapidly increasing, key challenges such as limited clinical response rate and significant autoimmunity-related adverse effects remain to be resolved. Recently, it has been discovered that a diverse range of biomaterials-assisted local treatment methods including localized radiotherapy, chemotherapy or phototherapy are able to stimulate the immune systems, often by inducing immunogenic cell death (ICD). The triggered tumor-specific immunological responses after such local treatments, especially in combination with immune checkpoint blockade (ICB) therapy, can achieve a significant abscopal effect to attack whole-body spreading metastatic cancer cells, and later on result in immune memory to inhibit tumor recurrence. Moreover, local delivery of immunomodulatory therapeutics with biomaterials has also been demonstrated to be an alternative strategy to improve the therapeutic responses and reduce side effects of cancer immunotherapy. In this review, we would like to summarize the latest advances, challenges and opportunities in utilizing biomaterials-assisted local treatment strategies for enhancing anticancer immunity, and discuss further prospects in this field together with how this strategy may possibly be translated into clinical use.


Assuntos
Antineoplásicos/uso terapêutico , Materiais Biocompatíveis/química , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Humanos , Neoplasias/patologia
11.
Chem Commun (Camb) ; 55(87): 13112-13115, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31612874

RESUMO

Biocompatible chemical cross-linked hybrid polyethylene glycol-based hydrogels were obtained from a sol-gel process using bis-silylated molecular precursors in biocompatible conditions. This soft procedure (pH = 7.4, at 25 °C), allows the production of microgels by microfluidics and easy encapsulation of a model protein (Bovin Serum Albumine, BSA).


Assuntos
Materiais Biocompatíveis/síntese química , Hidrogéis/síntese química , Microfluídica , Polietilenoglicóis/síntese química , Soroalbumina Bovina/química , Animais , Materiais Biocompatíveis/química , Bovinos , Géis/química , Hidrogéis/química , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/química , Propriedades de Superfície
12.
Chem Commun (Camb) ; 55(92): 13808-13811, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31613284

RESUMO

Precise spatiotemporal control of singlet oxygen generation is of immense importance considering its involvement in photodynamic therapy. In this work, we present a rational design for an endoperoxide which is highly stable at ambient temperatures yet, can rapidly be converted into a highly labile endoperoxide, thus releasing the "stored" singlet oxygen on demand. The "off-on" chemical switching from the stable to the labile form is accomplished by the reaction with fluoride ions. The potential utility of controlled singlet oxygen release was demonstrated in cell cultures.


Assuntos
Materiais Biocompatíveis/química , Oxigênio Singlete/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fluoretos/química , Humanos , Células MCF-7 , Microscopia Confocal , Naftalenos/química , Compostos de Amônio Quaternário/química , Oxigênio Singlete/toxicidade , Temperatura Ambiente
13.
Int J Nanomedicine ; 14: 7079-7093, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564866

RESUMO

Background: Currently, effective detection and treatment of cutaneous malignant melanoma (CMM) still face severe challenges. Ultrasound molecular imaging as a noninvasive and easy-to-operate method is expected to bring improvements for tumor detection. Purpose: The aim of this research is to prepare novel phase-change ultrasound contrast agents, Nds-IR780, which can perform not only dual-mode molecule-targeted imaging but also targeted photothermal therapy for CMM. Methods: A double emulsion process was used to prepare the Nds-IR780. Then, the entrapment rate and drug loading of IR-780 iodide in Nds-IR780 were detected by high-performance liquid chromatography. The biocompatibility of Nds-IR780 was evaluated by a CCK-8 assay and the characteristics and stability of that were verified through the particle size analyzer, laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM). The abilities of dual-mode molecule-targeted imaging and targeted photothermal therapy for Nds-IR780 were confirmed via the in vitro and in vivo experiments. Results: Nds-IR780 had good size distribution, polydispersity index, stability and biosafety. The in vitro and in vivo experiments confirmed that Nds-IR780 were capable of targeting CMM cells with high affinity (22.4±3.2%) and facilitating dual-mode imaging to detect the primary lesion and sentinel lymph nodes (SLNs) of CMM. Furthermore, the photothermal ablation of CMM mediated by Nds-IR780 was very effective in vivo. Conclusion: The newly prepared Nds-IR780 were observed to be effective targeted theranostic probe for the precise detection and targeted treatment of CMM.


Assuntos
Meios de Contraste/química , Gotículas Lipídicas/química , Melanoma/diagnóstico , Melanoma/terapia , Nanopartículas/química , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/terapia , Nanomedicina Teranóstica , Animais , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Humanos , Hipertermia Induzida , Indóis/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Fototerapia , Temperatura Ambiente , Distribuição Tecidual , Carga Tumoral , Ultrassom
14.
Int J Nanomedicine ; 14: 7249-7262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564877

RESUMO

Background: Curcumin is a natural polyphenol with anti-inflammatory, chemopreventive and anticancer activity. However, its high hydrophobicity and poor bioavailability limit its medical application. The development of nanocarriers for curcumin delivery is an attractive approach to overcome its low bioavailability and fast metabolism in the liver. We synthesized a blood compatible alginate-curcumin conjugate, AA-Cur, which formed colloidally stable micelles of approximately 200 nm and, as previously shown, exerted strong cytotoxicity against mouse cancer cell lines. Here we analyze in vivo toxicity and antitumor activity of AA-Cur in two different mouse tumor models. Method: Potential toxicity of intravenously injected AA-Cur was evaluated by: i) analyses of blood parameters (morphology and biochemistry), ii) histology, iii) DNA integrity (comet assay), and iv) cytokine profiling (flow cytometry). Antitumor activity of AA-Cur was evaluated by measuring the growth of subcutaneously inoculated colon MC38-CEA- or orthotopically injected breast 4T1 tumor cells in control mice vs mice treated with AA-Cur. Results: Injections of four doses of AA-Cur did not reveal any toxicity of the conjugate, thus indicating the safety of its use. AA-Cur elicited moderate anti-tumor activity toward colon MC38-CEA or breast 4T1 carcinomas. Conclusion: The tested conjugate of alginate and curcumin, AA-Cur, is non-toxic and safe, but exhibits limited anticancer activity.


Assuntos
Alginatos/farmacologia , Alginatos/toxicidade , Curcumina/farmacologia , Curcumina/toxicidade , Micelas , Testes de Toxicidade , Alginatos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Materiais Biocompatíveis/química , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Citocinas/sangue , Feminino , Humanos , Hidrodinâmica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade de Órgãos
15.
Inorg Chem ; 58(21): 14617-14625, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31626549

RESUMO

Titanium-oxo clusters (TOCs) are attractive as a rapidly growing class of molecular materials due to their use as molecular models and precursors of nano-titanium-oxide. However, most TOCs can only be dissolved in nonaqueous solvents, which largely limits their potential applications in biological or environmental situations. Very few water-soluble TOCs were reported, which can be used directly in aqueous biomedical systems. However, until now, no research studies of such TOCs involved in biomedical fields have been documented. We report here a series of lanthanide-titanium-oxo clusters (LnTOCs) formulated as {H2@[Ln2Ti8(µ3-O)8(µ2-O)4(Ac)16]}3·24CH3CN·23H2O (Ln = Eu(III) 1, Tb(III) 2, and Yb(III) 3). The compounds are easily soluble in water and form a stable solution of the cluster aggregates (LnTOC-a). Therefore, nano-biocompatible TiO materals can be prepared from these LnTOCs just by dissolving them in water. The nanoscale aggregates in water solutions were characterized by SEI-MS, 1H NMR, XPS, IR, and EDS mapping. Using the EuTOC-a solution, excellent fluorescence sensor properties for biomolecule ascorbic acid were found. Furthermore, biocompatibility and fluorescent labeling properties of the EuTOC-a for HeLa cells were evaluated. The results indicated that water-soluble LnTOCs can be used to prepare biocompatible fluorescent Ln-Ti-O nanomaterials.


Assuntos
Materiais Biocompatíveis/química , Elementos da Série dos Lantanídeos/química , Nanoestruturas/química , Oxigênio/química , Titânio/química , Água/química , Células HeLa , Humanos , Tamanho da Partícula , Solubilidade
16.
Chem Commun (Camb) ; 55(92): 13820-13823, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31664274

RESUMO

A supramolecular nanocapsule was constructed by the ternary host-guest complexation of azobenzene (Azo) and methylviologen (MV) to cucurbit[8]uril (CB[8]) and the subsequent self-assembly. The supramolecular nanocapsule with both glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities can mimic the intracellular enzymatic reactive oxygen species (ROS) defense system.


Assuntos
Antioxidantes/química , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Nanocápsulas/química , Células 3T3 , Animais , Compostos Azo/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glutationa Peroxidase/química , Glutationa Peroxidase/metabolismo , Camundongos , Microscopia Confocal , Nanocápsulas/toxicidade , Paraquat/química , Espécies Reativas de Oxigênio/química , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo
18.
J Food Sci ; 84(9): 2482-2489, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31476025

RESUMO

Powderization of oils has been used as a method to enhance the stability of polyunsaturated fatty acids. Previously, we successfully powderized soybean oil via nozzleless electrostatic atomization. The process of nozzleless electrostatic atomization process was applied to the one-step process of encapsulating oil in wall materials. The encapsulation of oils in powder is dependent on the wall materials. The present study aimed to resolve the behavior of oil encapsulated in particles using a novel method of electrostatic atomization, and to investigate the effect of wall materials on the oil content in the encapsulated formulations. The size of particles surrounding oil was dependent on the type of wall materials used for encapsulation, and the oil content within the encapsulation decreased with increase in particle size. Furthermore, wall materials with higher hydrophobicity increased the oil content within the encapsulation, as more hydrophobic particles could absorb the oil more effectively. PRACTICAL APPLICATION: Nozzleless electrostatic atomization is a new method for preparing encapsulation of oil using various wall materials.


Assuntos
Materiais Biocompatíveis/química , Pós/química , Óleo de Soja/química , Composição de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Eletricidade Estática
19.
Chem Commun (Camb) ; 55(82): 12360-12363, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31559989

RESUMO

Photoactive nano TiO2 particles with fluorescent properties have attracted great attention because of their potential applications in photodynamic therapy. Herein we report first a simple method to prepare water soluble fluorescent nano titanium oxide particles from titanium-oxo-clusters (TOCs). The nano material was characterized as an aggregate of titanium-oxo-clusters, which can be used directly in aqueous systems for investigations in biomedical fields.


Assuntos
Materiais Biocompatíveis/síntese química , Corantes Fluorescentes/síntese química , Nanoestruturas/química , Titânio/química , Materiais Biocompatíveis/química , Pesquisa Biomédica , Corantes Fluorescentes/química , Tamanho da Partícula , Fotoquimioterapia , Solubilidade , Propriedades de Superfície
20.
AAPS PharmSciTech ; 20(7): 298, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31456109

RESUMO

We aimed to investigate the absorption-enhancing effect (AEE) of caproyl-modified G2 PAMAM dendrimer (G2-AC) on peptide and protein drugs via the pulmonary route. In this study, G2 PAMAM dendrimer conjugates modified with caproic acid was synthesized, the pulmonary absorption of insulin as models with or without G2-AC were evaluated. The results indicated that G2-AC6 exhibited a greatest AEE for insulin in various caproylation levels of G2-AC. G2-AC6 could significantly enhance the absorption of insulin, and the AEE of G2-AC6 was concentration-dependent. In toxicity tests, G2-AC6 displayed no measurable cytotoxicity to the pulmonary membranes over a concentration range from 0.1% (w/v) to 1.0% (w/v). Measurements of the TEER and permeability showed that G2-AC6 significantly reduced the TEER value of CF and increased its Papp value. The results suggested that G2-AC6 could cross epithelial cells by means of a combination of paracellular and transcellular pathways. These findings suggested G2-AC6 at lower concentrations (below 1.0%, w/v) might be promising absorption enhancers for increasing the pulmonary absorption of peptide and protein drugs.


Assuntos
Materiais Biocompatíveis/metabolismo , Dendrímeros/metabolismo , Insulina/metabolismo , Nanopartículas/metabolismo , Absorção pelo Trato Respiratório/fisiologia , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Dendrímeros/administração & dosagem , Dendrímeros/química , Insulina/administração & dosagem , Insulina/química , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/química , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Wistar , Absorção pelo Trato Respiratório/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA