Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.228
Filtrar
1.
Chem Biol Interact ; 313: 108818, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494106

RESUMO

Diabetic nephropathy (DN) is a common complication of diabetes that remains the major cause of end-stage renal disease (ESRD). Forkhead box P1 (FOXP1) is a member of FOX family involved in the progression of diabetes. However, the pathogenic role of FOXP1 in DN remains unclear. This study was aimed to explore the effects of FOXP1 on glomerular mesangial cells (MCs) in response to high glucose (HG) stimulation. We found that HG stimulation markedly inhibited the FOXP1 expression in MCs in dose-and time-dependent manner. CCK-8 assay proved that FOXP1 overexpression attenuated HG-induced cell proliferation in MCs. FOXP1 exhibited anti-oxidative activity in HG-induced MCs, as proved by the decreased production of ROS and expressions of ROS producing enzymes, NADPH oxidase (NOX) 2 and NOX4. Besides, FOXP1 suppressed the expression and secretion of extracellular matrix (ECM) proteins including collagen IV (Col IV) and fibronectin (FN). Furthermore, FOXP1 overexpression significantly prevented HG-induced activation of Akt/mTOR signaling in MCs, and Akt activator blocked FOXP1-mediated cell proliferation, ROS production and ECM accumulation in MCs. Collectively, FOXP1 prevented HG-induced proliferation, oxidative stress, and ECM accumulation in MCs via inhibiting the activation of Akt/mTOR signaling pathway. The findings suggested that FOXP1 might be a therapeutic target for the treatment of DN.


Assuntos
Matriz Extracelular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Células Mesangiais/metabolismo , Proteínas Repressoras/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo IV/metabolismo , Relação Dose-Resposta a Droga , Matriz Extracelular/efeitos dos fármacos , Fibronectinas/metabolismo , Fatores de Transcrição Forkhead/genética , Glucose/administração & dosagem , Glucose/farmacologia , Humanos , Células Mesangiais/efeitos dos fármacos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Serina-Treonina Quinases TOR/metabolismo
2.
Life Sci ; 234: 116786, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445934

RESUMO

Extensive degeneration of articular cartilage (AC) is a primary event in the pathogenesis of osteoarthritis (OA) and other types of joint and bone inflammation. OA results in the loss of joint function, usually accompanied by severe pain, and are the most common type of arthritis, affecting more than 10% of adults. The characteristic signs of OA are progressive cartilage destruction and, eventually, complete loss of chondrocytes. A key enzyme responsible for these degenerative changes in cartilage is matrix metalloproteinase-13 (MMP-13), which is thought to be a major contributor to the degenerative process occurring during OA pathogenesis. The aim of the present review is to shed light on the general role of MMPs, with special emphasis on MMP-13, in the induction of OA and the general basis of OA treatment. The pathogenic mechanism of this highly prevalent disease is not clear, and no effective disease-modifying treatment is currently available. Any updated information about OA treatment in human patients will also benefit companion animals such as horses and dogs, which also suffer from OA. Selective inhibition of MMP-13 seems to be an attractive therapeutic strategy.


Assuntos
Cartilagem Articular/patologia , Matriz Extracelular/patologia , Metaloproteinases da Matriz/imunologia , Osteoartrite/patologia , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/imunologia , Cartilagem Articular/metabolismo , Descoberta de Drogas , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Humanos , Metaloproteinase 13 da Matriz/análise , Metaloproteinase 13 da Matriz/imunologia , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteinases da Matriz/análise , Metaloproteinases da Matriz/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/imunologia , Osteoartrite/metabolismo
3.
Life Sci ; 233: 116682, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31348945

RESUMO

AIMS: Fibrosis as the hallmark of adipose tissue dysfunction which is associated with insulin resistance and type 2 diabetes, results from deposition of excess extra cellular matrix components like collagen and increased cell death. Here we investigated the effect of antidiabetic drug, Metformin, on the factors that play role in fibrosis such as; integrin/ERK pathway, collagen VI, MMP2, MMP9, apoptosis markers including DAPK1, DAPK3, DAP, SIVA, necrosis markers including RIPK1, RIPK3, and MLKL in insulin resistant and hypertrophied adipocytes. METHODS: 3T3-L1 adipocytes after differentiation to insulin resistant and hypertrophied cells, treated with Metformin, and the gene expression of aforementioned factors assayed by real time PCR. The protein expression of collagen VI and ERK assayed by western blotting. KEY FINDINGS: The expression of integrins changed from 0.5 to 6-fold in hypertrophied adipocyte versus adipocyte. Apoptosis and necrosis markers increased >1.5-fold in insulin resistant and hypertrophied adipocytes. Also ECM components and ERK activation increased >2-fold and 1.5-fold, respectively in insulin resistant and hypertrophied adipocytes. Metformin caused reduction of activity of integrin/ERK pathway in Metformin treated insulin resistant and hypertrophied adipocytes compared to untreated group. Metformin also reduced collagen VI in both gene and protein expression level, MMP2 and MMP9 in gene expression, and also the expression of apoptosis and necrosis gene. SIGNIFICANCE: Metformin with reduction of ECM component as collagen VI, MMP2 and MMP9, integrin/ERK pathway, necrosis markers as RIPK1, RIPK3 and MLKL, and apoptosis markers including DAP, DAPK1, DAPK3 and SIVA effects on fibrosis in insulin resistant and hypertrophied adipocytes in vitro.


Assuntos
Adipócitos/efeitos dos fármacos , Fibrose/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertrofia/prevenção & controle , Hipoglicemiantes/farmacologia , Resistência à Insulina , Metformina/farmacologia , Células 3T3-L1 , Animais , Apoptose , Diferenciação Celular , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Matriz Extracelular/efeitos dos fármacos , Integrinas/genética , Integrinas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Necrose
4.
Life Sci ; 231: 116545, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176782

RESUMO

AIMS: The extracellular matrix (ECM) within the tumor nest plays a key role in cancer cell proliferation and invasion. It has been proven that the increased density of ECM, especially collagen network, correlates with the poor distribution of gold-nanoparticles (GNPs) to the tumor mass. Here, for the first time, we examined the combined effect of collagenase (COL) with metformin (MET)-conjugated GNPs on mammosphere generated from JIMT-1 breast cell line in vitro. MAIN METHODS: Mammospheres (on days 7 and 14) and monolayer culture were treated with MET, MET-GNPs, and a mixture of COL-GNPs and MET-GNPs for 5 days. To assess the impacts of the engineered nanoparticles (NPs) on the survival/apoptosis of cancer cells and cancer stem cells (CSCs), the amount/activity of collagen and the expression of pyruvate kinase M2, different methods were applied, including MTT, flow cytometry, immunofluorescence, ELISA and real-time PCR analyses. Our results confirmed the enhanced cytotoxic effects of MET-GNPs combined with COL-GNPs on mammospheres compared to the cells treated with MET alone or MET-GNPs. KEY FINDINGS: Upon treatment with the mixture of MET-GNPs and COL-GNPs, the population of the apoptotic cells was significantly increased. A marked reduction was found in the number of CD24-/CD44+ CSCs and the amount of collagen in the group received a mixture of MET-GNPs and COL-GNPs. SIGNIFICANCE: Based on our findings, the use of COL can improve the cellular interaction/penetration of MET-GNPs in mammospheres and its antitumor impacts on the CSCs.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Colagenases/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Metformina/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colagenases/farmacocinética , Colagenases/farmacologia , Matriz Extracelular/efeitos dos fármacos , Feminino , Humanos , Metformina/farmacocinética , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
5.
Carbohydr Polym ; 219: 414-422, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151542

RESUMO

The bioconversion of rice straw into ethanol can alleviate the energy crisis and solve problems related to waste treatment. In this study, the effect of soluble polysaccharides (SPs) produced during rice straw saccharification on the formation of extracellular matrices (EMs) by the yeast Saccharomyces cerevisiae was investigated. SPs were characterized by high-performance liquid chromatography (HPLC) and fourier transform infrared spectroscopy (FT-IR). SPs reduced the inhibition of alcohol dehydrogenase activity by phenolic acids (PAs) and regulated the intracellular redox state, resulting in higher ethanol production. The results of flow cytometry, confocal laser scanning microscopy, and atomic force microscopy indicated that PAs changed microbial morphology and caused damage in microbial cell membranes. The protective effect of SPs against cell membrane damage could be attributed to the synthesis of polysaccharide-dependent extracellular matrix, which maintained cellular integrity even under phenolic acid stress. These findings provide new strategies to improve pretreatment and saccharification processes.


Assuntos
Membrana Celular , Matriz Extracelular , Oryza/química , Extratos Vegetais , Polissacarídeos/farmacologia , Saccharomyces cerevisiae , Álcool Desidrogenase/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , China , Etanol/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fermentação , Hidrólise , Hidroxibenzoatos/toxicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polissacarídeos/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
6.
Curr Pharm Biotechnol ; 20(6): 517-524, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057106

RESUMO

BACKGROUND: The study aimed to investigate the effects of the active ingredient, nimodipine, on chondrocyte proliferation and extracellular matrix (ECM) structures in cartilage tissue cells. METHODS: Chondrocyte cultures were prepared from tissues resected via surgical operations. Nimodipine was then applied to these cultures and molecular analysis was performed. The data obtained were statistically calculated. RESULTS: Both, the results of the (3-(4,5 dimethylthiazol2-yl)-2,5-diphenyltetrazolium (MTT) assay and the fluorescence microscope analysis [a membrane permeability test carried out with acridine orange/ propidium iodide staining (AO/PI)] confirmed that the active ingredient, nimodipine, negatively affects the cell cultures. CONCLUSION: Nimodipine was reported to suppress cellular proliferation; chondroadherin (CHAD) and hypoxia-inducible factor-1 alpha (HIF-1α) expression thus decreased by 2.4 and 1.7 times, respectively, at 24 hrs when compared to the control group (p < 0.05). Furthermore, type II collagen (COL2A1) expression was not detected (p < 0.05). The risk that a drug prescribed by a clinician in an innocuous manner to treat a patient by relieving the symptoms of a disease may affect the proliferation, differentiation, and viability of other cells and/or tissues at the molecular level, beyond its known side effects or adverse events, should not be forgotten.


Assuntos
Bloqueadores dos Canais de Cálcio/toxicidade , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Nimodipina/toxicidade , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Colágeno Tipo II/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pessoa de Meia-Idade , Cultura Primária de Células
7.
Biomed Res Int ; 2019: 3638469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058187

RESUMO

Eosinophil asthma is characterized by the infiltration of eosinophils to the bronchial epithelium. The toxic cationic protein released by eosinophils, mainly major basic protein (MBP), is one of the most important causative factors of epithelium damage. Poly-L-Arginine (PLA) is a kind of synthetic cationic polypeptides, which is widely used to mimic the effects of MBP on epithelial cells in vitro. However, little is known about the changes of differentially expressed genes (DEGs) and transcriptome profiles in cationic protein stimulated epithelial cells. In this study, we compared the expression of DEGs and transcriptome profiles between PLA-treated airway epithelial cells NCI-H292 and control. The results showed that there were a total of 230 DEGs, of which 86 were upregulated and 144 were downregulated. These DEGs were further analyzed using gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results showed that the upregulated DEGs were involved in cholesterol synthesis, protein binding, and composition of cellular membranes, mainly enriched in metabolic and biosynthesis pathways. While downregulated DEGs were implicated in cell adhesion, extracellular matrix (ECM) composition and cytoskeleton and were enriched in ECM pathway. In conclusion, our research provided the mechanism of the cationic polypeptides acting on the airway epithelial cells on the basis of transcriptomic profile, and this could be regarded as important indications in unveiling the pathologic role of natural cationic proteins in the damage to epithelial cells of asthmatics.


Assuntos
Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/metabolismo , Transcriptoma/genética , Cátions/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Colesterol/genética , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Redes Reguladoras de Genes/genética , Humanos , Pulmão/efeitos dos fármacos , Peptídeos/farmacologia , Sequenciamento Completo do Exoma
8.
Biomed Pharmacother ; 114: 108801, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30928803

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is one of the most serious and dangerous chronic complications of diabetes mellitus.Panax notoginseng has been widely used with great efficacy in the long-term treatment of kidney disease. However, the mechanism by which it exerts its effects has not been fully elucidated. AIM: We sought to identify the major components ofPanax notoginseng that are effective in reducing the symptoms of DN in vitro and in vivo. METHODS: Inhibition of cell proliferation and collagen secretion were used to screen the ten most highly concentrated components ofPanax notoginseng. The STZ-induced DN rat model on a high-fat-high-glucose diet was used to investigate the renal protective effect of Panax notoginseng and dencichine and their underlying molecular mechanisms. RESULTS: Among the ten components analysed, dencichine (ß-N-oxalyl-L-α,ß-diaminopropionic acid) was the most protective against DN. Dencichine andPanax notoginseng attenuated glucose and lipid metabolic disorders in STZ-induced DN rats on a high-fat-high-glucose diet. In the untreated DN rats, we observed albuminuria, renal failure, and pathological changes. However, treatment with dencichine and Panax notoginseng alleviated these symptoms. We also observed that dencichine suppressed the expression of TGF-ß1 and Smad2/3, which mediates mesangial cell proliferation and extracellular matrix (ECM) accumulation in the glomerulus, and enhanced the expression of Smad7, the endogenous inhibitor of the TGF-ß1/Smad signalling pathway. CONCLUSION: From these results, we concluded that dencichine is the main compound inPanax notoginseng that is responsible for alleviating renal injury in the experimental DN model. Its mechanism may be related to the reduction of the deposition of ECM in glomeruli and inhibition of the epithelial mesenchymal transformation (EMT) by inhibition of the TGF-ß1/Smad signalling pathway.


Assuntos
Diamino Aminoácidos/farmacologia , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Cinuramina/farmacologia , Panax notoginseng/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Matriz Extracelular/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , beta-Alanina/análogos & derivados , beta-Alanina/farmacologia
9.
Eur J Pharmacol ; 853: 256-263, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30930249

RESUMO

Numerous links exist between inflammation and tumor development. Toll-like receptor 4 (TLR4) expression by tumor cells can be a contributing factor that promotes tumor cell proliferation, survival, migration, and metastasis. In this study, we explored the impact of TLR4 inhibition using TAK-242, a specific inhibitor of TLR4, on the invasion properties of ovarian (A2780CP, 2008C13, SKOV3, and A2780S) and breast (MCF7, SKBR3, MDA-MB-231, and BT-474) cancer cell lines. Six out of eight cell lines expressed TLR4 and its downstream mediators (MyD88, NF-ĸB1, and RELB), indicating that these cell lines could be proper candidates for the TLR4 inhibition. TAK-242 induced a cytotoxic effect on all tested cell lines; however, a different cell sensitivity pattern was noticeable. Interestingly, in the TLR4-expressing cell lines, there was a significant correlation between the TLR4/MyD88 expressions and the cancer cell response to TAK-242: the higher the expression, the higher the IC50. To the best of our knowledge, no study has addressed the effects of TAK-242 on invasive abilities of cancer cells and our study suggests for the first time that TAK-242 could considerably decrease invasion properties of ovarian and breast cancer cell lines. We found that not only did TAK-242 reduce the enzymatic activity of MMP2 and MMP9, but also down-regulated gene expressions of epithelial-mesenchymal transition (EMT)-related genes. In sum, it seems that targeting TLR4 using TAK-242 possesses novel promising potential in cancer treatment strategies and may prevent invasion in patients suffering from ovarian and breast cancers, especially in those with over-expression of TLR4.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Receptor 4 Toll-Like/metabolismo
10.
Artif Cells Nanomed Biotechnol ; 47(1): 1256-1264, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30942623

RESUMO

Osteoarthritis (OA) poses a growing threat to the health of the global population. Accumulation of advanced glycation end-products (AGEs) has been shown to upregulate expression of degradative enzymes such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) in chondrocytes, which leads to excessive degradation of type II collagen and aggrecan in the articular extracellular matrix (ECM). In the present study we investigated the effects of the GLP-1 agonist lixisenatide, a widely used type II diabetes medication, on AGEs-induced decreased mitochondrial membrane potential (MMP), degradation of ECM, oxidative stress, expression of cytokines including interleukin (IL)-1ß and IL-6, and activation of nuclear factor kappa B (NF-κB). Our findings indicate that lixisenatide significantly ameliorated the deleterious effects of AGEs in a dose-dependent manner. Thus, lixisenatide has potential as a safe and effective treatment for OA and other AGEs-induced inflammatory diseases.


Assuntos
Condrócitos/citologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Peptídeos/farmacologia , Proteína ADAMTS4/metabolismo , Proteína ADAMTS5/metabolismo , Condrócitos/efeitos dos fármacos , Colágeno Tipo II/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
11.
Nat Commun ; 10(1): 1914, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015473

RESUMO

Degradation of extracellular matrix (ECM) underlies loss of cartilage tissue in osteoarthritis, a common disease for which no effective disease-modifying therapy currently exists. Here we describe BNTA, a small molecule with ECM modulatory properties. BNTA promotes generation of ECM components in cultured chondrocytes isolated from individuals with osteoarthritis. In human osteoarthritic cartilage explants, BNTA treatment stimulates expression of ECM components while suppressing inflammatory mediators. Intra-articular injection of BNTA delays the disease progression in a trauma-induced rat model of osteoarthritis. Furthermore, we identify superoxide dismutase 3 (SOD3) as a mediator of BNTA activity. BNTA induces SOD3 expression and superoxide anion elimination in osteoarthritic chondrocyte culture, and ectopic SOD3 expression recapitulates the effect of BNTA on ECM biosynthesis. These observations identify SOD3 as a relevant drug target, and BNTA as a potential therapeutic agent in osteoarthritis.


Assuntos
Anti-Inflamatórios/farmacologia , Benzamidas/farmacologia , Cartilagem Articular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Depuradores de Radicais Livres/farmacologia , Fatores Imunológicos/farmacologia , Osteoartrite/tratamento farmacológico , Sulfonamidas/farmacologia , Animais , Cartilagem Articular/imunologia , Cartilagem Articular/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/imunologia , Condrócitos/patologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/imunologia , Matriz Extracelular/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Injeções Intra-Articulares , Masculino , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/patologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/genética , Superóxido Dismutase/imunologia , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo , Transcriptoma/imunologia
12.
Cancer Sci ; 110(6): 1959-1973, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31004547

RESUMO

Activation of transforming growth factor ß (TGF-ß) combined with persistent hypoxia often affects the tumor microenvironment. Disruption of cadherin/catenin complexes induced by these stimulations yields aberrant extracellular matrix (ECM) production, characteristics of epithelial-mesenchymal transition (EMT). Hypoxia-inducible factors (HIF), the hallmark of the response to hypoxia, play differential roles during development of diseases. Recent studies show that localization of cadherin/catenin complexes at the cell membrane might be tightly regulated by protein phosphatase activity. We aimed to investigate the role of stabilized HIF-1α expression by protein phosphatase activity on dissociation of the E-cadherin/ß-catenin complex and aberrant ECM expression in lung cancer cells under stimulation by TGF-ß. By using lung cancer cells treated with HIF-1α stabilizers or carrying doxycycline-dependent HIF-1α deletion or point mutants, we investigated the role of stabilized HIF-1α expression on TGF-ß-induced EMT in lung cancer cells. Furthermore, the underlying mechanisms were determined by inhibition of protein phosphatase activity. Persistent stimulation by TGF-ß and hypoxia induced EMT phenotypes in H358 cells in which stabilized HIF-1α expression was inhibited. Stabilized HIF-1α protein expression inhibited the TGF-ß-stimulated appearance of EMT phenotypes across cell types and species, independent of de novo vascular endothelial growth factor A (VEGFA) expression. Inhibition of protein phosphatase 2A activity abrogated the HIF-1α-induced repression of the TGF-ß-stimulated appearance of EMT phenotypes. This is the first study to show a direct role of stabilized HIF-1α expression on inhibition of TGF-ß-induced EMT phenotypes in lung cancer cells, in part, through protein phosphatase activity.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fator de Crescimento Transformador beta1/farmacologia , Animais , Hipóxia Celular , Linhagem Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Estabilidade Proteica , Interferência de RNA , Ratos
13.
Biol Res ; 52(1): 23, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992080

RESUMO

BACKGROUND: Conjunctival filtering bleb scar formation is the main reason for the failure of glaucoma filtration surgery. Cytoglobin (Cygb) has been reported to play an important role in extracellular matrix (ECM) remodeling, fibrosis and tissue damage repairing. This study aimed to investigate the role of Cygb in anti-scarring during excessive conjunctival wound healing after glaucoma filtration surgery. METHODS: Cygb was overexpressed in human tenon fibroblasts (hTFs) by transfecting hTFs with lentiviral particles encoding pLenti6.2-FLAG-Cygb. Changes in the mRNA and protein levels of fibronectin, collagen I, collagen III, TGF-ß1, and HIF1α were determined by RT-PCR and western blotting respectively. RESULTS: After Cygb overexpression, hTFs displayed no significant changes in visual appearance and cell counts compared to controls. Whereas, Cygb overexpression significantly decreased the mRNA and protein expression levels of collagen I, collagen III and fibronectin compared with control (p < 0.01). There was also a statistically significant decrease in the mRNA and protein levels of TGF-ß1 and HIF-1α in hTFs with overexpressed Cygb compared with control group (p < 0.05). CONCLUSION: Our study provided evidence that overexpression of Cygb decreased the expression levels of fibronectin, collagen I, collagen III, TGF-ß1 and HIF-1α in hTFs. Therefore, therapies targeting Cygb expression in hTFs may pave a new way for clinicians to solve the problem of post-glaucoma surgery scarring.


Assuntos
Citoglobina/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Cápsula de Tenon/metabolismo , Colágeno/análise , Citoglobina/farmacologia , Matriz Extracelular/efeitos dos fármacos , Fibronectinas/análise , Humanos , RNA Mensageiro/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Int J Mol Sci ; 20(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836660

RESUMO

Salidroside (Sal) is an active ingredient that is isolated from Rhodiola rosea, which has been reported to have anti-inflammatory activities and a renal protective effect. However, the role of Sal on renal fibrosis has not yet been elucidated. Here, the purpose of the current study is to test the protective effects of Sal against renal interstitial fibrosis (RIF), and to explore the underlying mechanisms using both in vivo and in vitro models. In this study, we establish the unilateral ureteric obstruction (UUO) or folic acid (FA)-induced mice renal interstitial fibrosis in vivo and the transforming growth factor (TGF)-ß1-stimulated human proximal tubular epithelial cell (HK-2) model in vitro. The levels of kidney functional parameters and inflammatory cytokines in serum are examined. The degree of renal damage and fibrosis is determined by histological assessment. Immunohistochemistry and western blotting are used to determine the mechanisms of Sal against RIF. Our results show that treatment with Sal can ameliorate tubular injury and deposition of the extracellular matrix (ECM) components (including collagen Ш and collagen I). Furthermore, Sal administration significantly suppresses epithelial-mesenchymal transition (EMT), as evidenced by a decreased expression of α-SMA, vimentin, TGF-ß1, snail, slug, and a largely restored expression of E-cadherin. Additionally, Sal also reduces the levels of serum biochemical markers (serum creatinine, Scr; blood urea nitrogen, BUN; and uric acid, UA) and decreases the release of inflammatory cytokines (IL-1ß, IL-6, TNF-α). Further study revealed that the effect of Sal on renal interstitial fibrosis is associated with the lower expression of TLR4, p-IκBα, p-NF-κB and mitogen-activated protein kinases (MAPK), both in vivo and in vitro. In conclusion, Sal treatment improves kidney function, ameliorates the deposition of the ECM components and relieves the protein levels of EMT markers in mouse kidneys and HK-2 cells. Furthermore, Sal treatment significantly decreases the release of inflammatory cytokines and inhibits the TLR4/NF-κB and MAPK signaling pathways. Collectively, these results suggest that the administration of Sal could be a novel therapeutic strategy in treating renal fibrosis.


Assuntos
Fibrose/tratamento farmacológico , Glucosídeos/administração & dosagem , Nefropatias/tratamento farmacológico , Fenóis/administração & dosagem , Receptor 4 Toll-Like/genética , Caderinas/genética , Linhagem Celular , Citocinas/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Fibrose/genética , Fibrose/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/patologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , NF-kappa B/genética , Rhodiola/química
15.
Int J Mol Med ; 43(4): 1679-1686, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30816449

RESUMO

Intervertebral disc degeneration (IDD) is widely considered to be one of the main causes of lower back pain, which is a chronic progressive disease closely related to inflammation, nucleus pulposus (NP) cell apoptosis and extracellular matrix (ECM) degradation. Berberine (BBR) is an alkaloid compound with an anti­inflammatory effect and has been reported to exert therapeutic action in several inflammatory diseases, including osteoarthritis. Therefore, it was hypothesized that BBR may have a therapeutic effect on IDD through inhibition of the inflammatory response. The aim of the present study was to evaluate the influence of BBR on IDD in interleukin (IL)­1ß­treated human NP cells in vitro. The results showed that BBR attenuated the upregulation of ECM­catabolic factors [matrix metalloproteinase (MMP)­3, MMP­13, a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)­4 and ADAMTS­5], and the downregulation of ECM­anabolic factors (type II collagen and aggrecan) following stimulation of the human NP cells with IL­1ß. Treatment with BBR also protected human NP cells from IL­1ß­induced apoptosis, as determined by western blotting and flow cytometry. Mechanistically, the IL­1ß­stimulated degradation of IκBα, and the phosphorylation and translocation of nuclear factor (NF)­κB p65 were found to be attenuated by BBR, indicating that NF­κB pathway activation was suppressed by BBR in the IL­1ß­treated human NP cells. The results of the experiments revealed a therapeutic potential of BBR for the prevention or treatment of IDD.


Assuntos
Apoptose/efeitos dos fármacos , Berberina/farmacologia , Matriz Extracelular/metabolismo , Interleucina-1beta/efeitos adversos , NF-kappa B/metabolismo , Núcleo Pulposo/citologia , Transdução de Sinais/efeitos dos fármacos , Adolescente , Adulto , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Humanos , Modelos Biológicos , Adulto Jovem
16.
Methods Mol Biol ; 1952: 261-275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30825181

RESUMO

Extracellular matrix (ECM) macromolecules, apart from structural role for the surrounding tissue, have also been defined as crucial mediators in several cell mechanisms. The proteolytic and cross-linking cascades of ECM have fundamental importance in health and disease, which is increasingly becoming acknowledged. However, formidable challenges remain to identify the diverse and novel role of ECM molecules, especially with regard to their distinct biophysical, biochemical, and structural properties. Considering the heterogeneous, dynamic, and hierarchical nature of ECM, the characterization of 3D functional molecular view of ECM in atomic detail will be very useful for further ECM-related studies. Nowadays, the creation of a pioneer ECM multidisciplinary integrated platform in order to decipher ECM homeostasis is more possible than ever. The access to cutting-edge technologies, such as optical imaging and electron and atomic force microscopies, along with diffraction and X-ray-based spectroscopic methods can integrate spanning wide ranges of spatial and time resolutions. Subsequently, ECM image-guided site-directed proteomics can reveal molecular compositions in defined native and reconstituted ECM microenvironments. In addition, the use of highly selective ECM enzyme inhibitors enables the comparative molecular analyses within pre-classified remodeled ECM microenvironments. Mechanistic information which will be derived can be used to develop novel protein-based inhibitors for effective diagnostic and/or therapeutic modalities targeting ECM reactions within tissue microenvironment.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Proteômica/métodos , Aminoácido Oxirredutases/análise , Aminoácido Oxirredutases/metabolismo , Animais , Descoberta de Drogas/métodos , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Proteínas da Matriz Extracelular/análise , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Proteína-Lisina 6-Oxidase/análise , Proteína-Lisina 6-Oxidase/metabolismo , Proteólise
17.
Nature ; 568(7750): 117-121, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30814728

RESUMO

The extracellular matrix is a major component of the local environment-that is, the niche-that determines cell behaviour1. During metastatic growth, cancer cells shape the extracellular matrix of the metastatic niche by hydroxylating collagen to promote their own metastatic growth2,3. However, only particular nutrients might support the ability of cancer cells to hydroxylate collagen, because nutrients dictate which enzymatic reactions are active in cancer cells4,5. Here we show that breast cancer cells rely on the nutrient pyruvate to drive collagen-based remodelling of the extracellular matrix in the lung metastatic niche. Specifically, we discovered that pyruvate uptake induces the production of α-ketoglutarate. This metabolite in turn activates collagen hydroxylation by increasing the activity of the enzyme collagen prolyl-4-hydroxylase (P4HA). Inhibition of pyruvate metabolism was sufficient to impair collagen hydroxylation and consequently the growth of breast-cancer-derived lung metastases in different mouse models. In summary, we provide a mechanistic understanding of the link between collagen remodelling and the nutrient environment in the metastatic niche.


Assuntos
Neoplasias da Mama/patologia , Metástase Neoplásica/patologia , Ácido Pirúvico/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Colágeno/química , Colágeno/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Humanos , Hidroxilação/efeitos dos fármacos , Ácidos Cetoglutáricos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Ácido Pirúvico/farmacologia , Microambiente Tumoral/efeitos dos fármacos
18.
J Biosci Bioeng ; 128(2): 218-225, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30904455

RESUMO

Decellularization of a whole organ is an attractive process that has been used to create 3D scaffolds structurally and micro-architecturally similar to the native one. Currently used decellularization protocols exhibit disrupted extracellular matrix (ECM) structure and denatured ECM proteins. Therefore, maintaining a balance between ECM preservation and cellular removal is a major challenge. The aim of this study was to optimize a multistep Triton X-100 based protocol (either using Triton X-100/ammonium hydroxide mixture alone or after its modification with DNase, sodium dodecyl sulfate or trypsin) that could achieve maximum decellularization with minimal liver ECM destruction suitable for subsequent organ implantation without immune rejection. Based on our findings, Triton X-100 multistep protocol was insufficient for whole liver decellularization and needed to be modified with other detergents. Among all Triton X-100 modified protocols, a Triton X-100/DNase-based one was considered the most suitable. It maintains a gradual but sufficient removal of cells to generate decellularized biocompatible liver scaffolds without any significant alteration to ECM micro- and ultra-structure.


Assuntos
Materiais Biocompatíveis , Fígado/citologia , Engenharia Tecidual/métodos , Animais , Detergentes/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Octoxinol/farmacologia , Dodecilsulfato de Sódio/farmacologia , Tripsina/metabolismo
19.
Drugs Aging ; 36(6): 485-492, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30864023

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and debilitating, scarring lung disease with a worse prognosis than some cancers. The incidence of IPF is increasing and while current antifibrotic therapies slow disease progression, they do not offer a cure. The pathobiology of IPF is complex and is driven by aging-associated cellular dysfunction, epithelial injury, and an aberrant wound-healing response characterised by fibroblast activation and extracellular matrix accumulation (ECM) in the interstitium. As understanding of the underlying mechanisms has evolved, new targets for pharmacotherapy have emerged. Novel drugs currently in development for pulmonary fibrosis have diverse molecular properties and mechanisms of action, as well as different routes of administration. A shared primary goal of these agents is reduction of the profibrotic activity of fibroblasts and limitation of ECM deposition, which hinders gas exchange and ultimately leads to respiratory failure. This article provides an overview of some promising new therapeutic options for IPF and considers the challenges for future drug development.


Assuntos
Envelhecimento/patologia , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis/uso terapêutico , Piridonas/uso terapêutico , Envelhecimento/metabolismo , Desenvolvimento de Medicamentos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Eur Cell Mater ; 37: 214-232, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30900738

RESUMO

Nasal chondrocytes (NCs) have gained increased recognition for cartilage tissue regeneration. To assess NCs as a source for cell therapy treatment of intervertebral disc (IVD) degeneration, tissue-forming properties of NCs under physiological conditions mimicking the degenerated IVD were compared to those of mesenchymal stromal cells (MSCs) and articular chondrocytes (ACs), two cell sources presently used in clinical trials. Cells were cultured in a combination of low glucose, hypoxia, acidity and inflammation for 28 d. Depending on the conditions, cells were either cultured in the absence of instructive growth factors or underwent chondrogenic instructional priming by addition of transforming growth factor ß1 (TGFß1) for the first 7 d. Histology, immunohistochemistry, biochemistry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses demonstrated limited cell maintenance and accumulation of cartilaginous extracellular matrix for MSCs in IVD conditions. ACs maintained a steady accumulation of glycosaminoglycans (GAGs) throughout all non-acidic conditions, with and without priming, but could not synthesise type II collagen (Col2). NCs accumulated both GAGs and Col2 in all non-acidic conditions, independent of priming, whereas MSCs strongly diminished their GAG and Col2 accumulation in an inflamed environment. Supplementation with inflammatory cytokines or an acidic environment affected NCs to a lower extent than ACs or MSCs. The data, overall indicating that in an inflamed IVD environment NCs were superior to ACs and MSCs, encourage further assessment of NCs for treatment of degenerative disc disease.


Assuntos
Condrócitos/patologia , Degeneração do Disco Intervertebral/patologia , Nariz/patologia , Adolescente , Adulto , Biomarcadores/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , DNA/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Glucose/farmacologia , Glicosaminoglicanos/metabolismo , Humanos , Inflamação/patologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Núcleo Pulposo/patologia , Oxigênio/farmacologia , Receptores de Citocinas/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA