Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.761
Filtrar
1.
J Ethnopharmacol ; 318(Pt B): 116992, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541403

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Smilax china L., an extensively used traditional Chinese medicine, is known as Baqia in China. It has been used to treat various inflammatory disorders, particularly pelvic inflammation. AIM OF THE REVIEW: The present paper aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and actual and potential applications of S. china. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. MATERIALS AND METHODS: This article uses "Smilax china L." "S. china" as the keyword and collects relevant information on Smilax china L. plants through electronic searches (Elsevier, PubMed, ACS, CNKI, Google Scholar, Baidu Scholar, Web of Science), relevant books, and classic literature about Chinese herb. RESULTS: 134 chemical constituents, among which steroid saponins and flavonoids are the predominant groups, have been isolated and identified from S. china. S. china with its active compounds is possessed of wide-reaching biological activities, including anti-inflammatory, anti-cancer, anti-oxidant, detoxify nicotine, anti-diabetes, anti-obesity, anti-hyperuricaemia, anti-hypertension, promoting skin wound and barrier repair and anti-bacterial activity. Besides, S. china is also applied to other fields, such as food industry and detection technology. CONCLUSIONS: Based on the review of the existing phytochemical studies on Smilax china L., the structural characterization of Smilax china L. extract can continue to be the focus of future research. Pharmacological studies in vitro and in vivo have demonstrated some of the traditional uses of Smilax china L. extract, while other traditional uses still need to be confirmed by research.


Assuntos
Botânica , Medicamentos de Ervas Chinesas , Smilax , Etnofarmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
2.
J Ethnopharmacol ; 318(Pt B): 117008, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37549861

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Based on ancient classics, Danzhi Tiaozhi Decoction has been successfully used to treat nonalcoholic fatty liver disease for decades. However, its therapeutic mechanisms remain unclear. AIM OF THE STUDY: This study aimed to investigate the effects of Danzhi Tiaozhi Decoction (DZTZD) on metabolic-associated fatty liver disease (MAFLD). MATERIALS AND METHODS: First, we identified the active ingredients of DZTZD and their potential targets in the Traditional Chinese Medicine System Pharmacology database. Using the overlapped genes, we selected the key MAFLD-associated genes, then conducted GO and KEGG pathway enrichment analyses. Furthermore, DZTZD was administered orally to rats, and their serum and liver tissues were examined for absorbed compounds using pharmacochemistry. UPLC-Q-Exactive Orbitrap/MS was used to determine the main compounds. Then, we validated the binding association of the key targets with their active compounds with AutoDock Tools and other software. Finally, the predicted hub targets were experimentally validated. RESULTS: We found 254 active compounds in DZTZD corresponding to 208 targets. Sixteen key genes were identified, and the enrichment analysis revealed multiple signaling pathways, including the AGE-RAGE pathway in diabetic complications and the lipid and atherosclerosis signaling pathway. Next, 160 absorbed components and metabolites were characterized in vivo, and 53 absorbed components and metabolites were characterized in liver tissue. Thirteen parent compounds were identified, including coptisine, quercetin, luteolin, and aloe-emodin. The molecular docking data demonstrated the strongest binding between the active compounds and the core proteins. Moreover, the animal experiments showed that DZTZD decreased body weight, liver weight, lipid accumulation, and ALT, AST, CRP, FFA, IL-6, PEPCK, G6P, TG, TC, and LDL-c serum levels, and increased serum HDL-c levels compared to high-fat induced rats. Besides, the RT-PCR and Western blot showed that DZTZD inhibited the SREBP1c and FAS and increased hyperlipidemia-induced CPT-1A levels. In the high-fat group, JNK phosphorylation increased, and AKT protein phosphorylation decreased, while DZTZD reversed these effects. CONCLUSION: Based on the pharmacological network analysis, pharmacochemistry, and experimental validation, DZTZD can potentially improve MAFLD via the JNK/AKT pathway.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Animais , Ratos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Lipídeos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
J Ethnopharmacol ; 318(Pt B): 117023, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567422

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diminished ovarian reserve (DOR) was considered a refractory reproductive endocrine condition that negatively affected female reproductivity. Yangjing Zhongyu Decoction (YJZYD) had effects on treating infertility. However, there were few studies on the mechanisms of YJZYD preserving ovarian reserve. AIM OF THE STUDY: To explore the possible mechanisms of YJZYD against DOR by UPLC-ESI-MS/MS, network pharmacology, and experimental validation. METHODS: The chemicals of YJZYD were measured by UPLC-ESI-MS/MS. The correlating targets of YJZYD and DOR were identified by the ETCM database, GeneCards database, and PubMed database. The common targets were employed with the DAVID database and visualized with the PPI network. GO and KEGG enrichment analyses were carried out to explore biological progression and pathways. In vivo experiments, energy production was assessed by ATP, and apoptosis rate was analyzed by TUNEL. The serum FSH, AMH, and E2 levels were evaluated by ELISA. Western blotting and immunohistochemistry were used to measure the expression of SIRT1, PGC1α, NRF1, COX IV, FSHR, CYP19A1, PI3K, p-Akt, Akt, Bcl-2, and Bax. RESULTS: 132 components in YJZYD were identified by UPLC-ESI-MS/MS. 149 overlapped targets were extracted from YJZYD and DOR, and the top 20 common targets included AKT1 and CYP19A1. ATP binding was involved in GO analysis. In the KEGG enrichment analysis, the metabolic pathway was the top, and the PI3K-Akt signaling pathway was included. In vivo experiments, YJZYD improved ovarian index and histomorphology. After YJZYD treatment, serum FSH, E2, and AMH were well-modulated, and the content of ATP was up-regulated. Besides, the expression of Bax was suppressed in ovarian tissue, while the expressions of SIRT1, PGC1α, NRF1, COX IV, FSHR, CYP19A1, PI3K, Bcl-2, and p-Akt/Akt were enhanced. CONCLUSION: YJZYD could attenuate reproductive endocrine disturbance and ovarian lesions in vivo by mediating steroidogenesis, energy metabolism, and cell apoptosis. This study uncovered the mechanisms of YJZYD against DOR, providing a theoretical basis for further study.


Assuntos
Medicamentos de Ervas Chinesas , Cistos Ovarianos , Neoplasias Ovarianas , Reserva Ovariana , Feminino , Humanos , Farmacologia em Rede , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 1 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espectrometria de Massas em Tandem , Proteína X Associada a bcl-2 , Citocromo P-450 CYP1A1 , Trifosfato de Adenosina , Hormônio Foliculoestimulante , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
4.
J Ethnopharmacol ; 318(Pt B): 117012, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567426

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhimu-Huangbo (ZB) herb pair is a common prescription drug used by physicians of all dynasties, and has significant neuroprotective effect, such as the ZB can significantly promote neuronal cell regeneration, repair neuronal damage, and improve cognitive disorders. However, its ingredients are urgently needed to be identified and mechanisms is remained unclear. AIM OF THE STUDY: Using ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS), the study of neuroprotective mechanism of Zhimu-Huangbo extract (ZBE) is investigated, and the network pharmacology technology and experimental validation is also performed. MATERIAL AND METHODS: Firstly, UPLC-Q-TOF-MS technology was used to characterize the chemical components contained in the ZBE. After that, the TCMSP database and the Swiss Target Prediction method were used to search for potential target genes for ZBE compounds. At the same time, the OMIM and GeneCards disease databases were used to search for Alzheimer's disease (AD) targets and expanded with the GEO database. Then, GO and KEGG enrichment analysis was performed using OECloud tools. Subsequently, the potential mechanism of ZBE therapeutic AD predicted by network pharmacological analysis was experimentally studied and verified in vitro. RESULTS: In the UPLC-Q-TOF-MS analysis of the ZBE, a total of 39 compounds were characterized including Neomangiferin, Oxyberberine, Timosaponin D, Berberine, Timosaponin A-III, Anemarsaponin E, Timosaponin A-I, Smilagenin and so on. A total of 831 potential targets and 13995 AD-related target genes were screened. A further analysis revealed the number of common targets between ZBE and AD is 698. Through GO and KEGG enrichment analysis, we found that ZBE's anti-AD targets were significantly enriched in autophagy and mitochondrial autophagy related pathways. The results of cell experiments also confirmed that ZBE can promote mitochondrial autophagy induced by D-galactose (D-gal) HT22 cells through the PTEN-induced kinase 1/Parkin (PINK1/Parkin) pathway. CONCLUSION: ZBE can promote autophagy of mitochondria and play a protective role on damaged neurons.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Galactose , Neuroproteção , Autofagia , Mitocôndrias , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular
5.
J Ethnopharmacol ; 318(Pt B): 117025, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567425

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polycystic ovary syndrome (PCOS) is a common gynecological endocrine and metabolic disorder. Chinese herbal medicine has some advantages in the treatment of PCOS with its unique theoretical system and rich clinical practice experiences. AIM OF THE STUDY: The present study was to investigate the potential mechanisms of Bu-Shen-Jian-Pi Formula (BSJPF) on the treatment of PCOS. MATERIAL AND METHODS: The combination of ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS) rapid analysis, network pharmacology, molecular docking analysis and bio-experiments were firstly conducted to identify the main effective components of BSJPF, and to predict the potential mechanisms. The ovarian granulosa cell line (KGN) was treated with testosterone to construct the PCOS model in vitro, and the cells were further treated with the lyophilized powder of BSJPF. The levels of proliferation, autophagy and apoptosis were detected to explore the mechanisms of BSJPF on treating PCOS. RESULTS: Firstly, thirty-six active compounds were identified in BSJPF and thirty-one potential targets on PCOS were found. Then, PI3K and PDK1 were verified to have good binding activity with the active compounds through molecular docking analysis. In bio-experiments, BSJPF significantly alleviated the arrested proliferation of KGN cells in G0/G1 phase and reduced the active levels of autophagy and apoptosis of KGN cells induced by testosterone. Additionally, the inhibition of autophagy diminished apoptosis, while the repression apoptosis enhanced autophagy. Finally, BSJPF significantly decreased the FOXO1 expression levels induced by testosterone, especially for nuclear FOXO1, and significantly activated the PI3K/AKT pathway. CONCLUSIONS: BSJPF significantly alleviated the activated autophagy and apoptosis in KGN induced by testosterone through PI3K/AKT1/FOXO1pathway, which is an effective treatment for PCOS.


Assuntos
Medicamentos de Ervas Chinesas , Síndrome do Ovário Policístico , Feminino , Humanos , Testosterona , Medicamentos de Ervas Chinesas/farmacologia , Fosfatidilinositol 3-Quinases , Simulação de Acoplamento Molecular , Síndrome do Ovário Policístico/tratamento farmacológico , Espectrometria de Massas em Tandem , Células da Granulosa , Apoptose , Autofagia , Bussulfano , Proteína Forkhead Box O1 , Proteínas Proto-Oncogênicas c-akt
6.
J Ethnopharmacol ; 318(Pt B): 117011, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567423

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Antiviral Granules (AG) are derived from the classical famous prescription, which is composed of 9 traditional Chinese medicines, namely Radix Isatidis (called Banlangen, BLG in Chinese), Forsythiae Fructus (called Lianqiao, LQ in Chinese), Gypsum fibrosum, Anemarrhenae Rhizoma (called Zhimu, ZM in Chinese), Phragmitis Rhizoma (called Lugen, LG in Chinese), Rehmanniae Radix (called Dihuang, DH in Chinese), Pogostemonis Herba (called Guanghuoxiang, GHX in Chinese), Acori Tatarinowii Rhizoma (called Shichangpu, SCP in Chinese), and Curcumae Radix (called Yujin, YJ in Chinese), and has shown an excellent therapeutic effect in clinical treatment of influenza. However, there are few studies on the anti-influenza mechanism of AG, and the mechanism of action is still unclear. AIM OF THE STUDY: The purpose is to provide the latest information about the clinical efficacy, pharmacodynamic composition and mechanism of AG based on scientific literature, so as to enhance the utilization of AG in the treatment of influenza and related diseases, and promote the development and innovation of novel anti-influenza drugs targeting the influenza virus. MATERIALS AND METHODS: Enter the data retrieval room, search for Antiviral Granules, as well as the scientific names, common names, and Chinese names of each Chinese medicine. Additionally, search for the relevant clinical applications, pharmacodynamic composition, pharmacological action, and molecular mechanism of both Antiviral Granules and single-ingredient medicines. Keywords includes terms such as "antiviral granules", "influenza", "Isatis indigotica Fort.", "Radix Isatidis", "Banlangeng", "pharmacology", "clinical application", "pharmacologic action", etc. and their combinations. Obtain results from the Web of Science, PubMed, Google Scholar, Sci Finder Scholar, CNKI and other resources. RESULTS: AG is effective in the treatment of influenza and is often used in combination with other drugs to treat viral diseases. Its chemical composition is complex, including alkaloids, polysaccharides, volatile oils, steroid saponins, phenylpropanoids, terpenoids and other compounds. These compounds have a variety of pharmacological activities, which can interfere with the replication cycle of the influenza virus, regulate RIG-I-MAVS, JAK/STAT, TLRs/MyD88, NF-κB signaling pathways and related cytokines, regulate intestinal microorganisms, and protect both the lungs and extrapulmonary organs. CONCLUSIONS: AG can overcome the limitations of traditional antiviral drug therapy, play a synergistic role in fighting influenza virus with the characteristics of multi-component, multi-pathway and multi-target therapy, and reverse the bodily function damage caused by influenza virus. AG may be a potential drug in the prevention and treatment of influenza and related diseases.


Assuntos
Antivirais , Medicamentos de Ervas Chinesas , Antivirais/farmacologia , Antivirais/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/farmacologia , Medicina Tradicional Chinesa , Resultado do Tratamento
7.
J Ethnopharmacol ; 318(Pt B): 117022, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572929

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chemotherapy is a common cancer treatment strategy. However, its effectiveness is constrained by toxicity and adverse effects. The Lamiaceae herb Salvia miltiorrhiza Bunge has a long history of therapeutic use in the treatment of blood stasis illnesses, which are believed by traditional Chinese medicine to be connected to cancer. AIM OF THE STUDY: This review summarized the common toxicity of chemotherapy and the potential chemo-adjuvant effect and mechanisms of active ingredients from S. miltiorrhiza, hoping to provide valuable information for the development and application of S. miltiorrhiza resources. MATERIALS AND METHODS: The literatures were retrieved from PubMed, Web of Science, Baidu Scholar and Google Scholar databases from 2002 to 2022. The inclusion criteria were studies reporting that S. miltiorrhiza or its constituents enhanced the efficiency of chemotherapy drugs or reduced the side effects. RESULTS: Salvianolic acid A, salvianolic acid B, salvianolic acid C, rosmarinic acid, tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone I and miltirone are the primary adjuvant chemotherapy components of S. miltiorrhiza. The mechanisms mainly involve inhibiting proliferation, metastasis, and angiogenesis, inducing apoptosis, regulating autophagy and tumor microenvironment. In addition, they also improve chemotherapy drug-induced side effects. CONCLUSIONS: The bioactive compounds of S. miltiorrhiza are shown to inhibit proliferation, metastasis, and angiogenesis, induce apoptosis and autophagy, regulate immunity and tumor microenvironment when combined with chemotherapy drugs. However, further clinical studies are required to validate the current studies.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias , Salvia miltiorrhiza , Humanos , Neoplasias/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Abietanos/farmacologia , Adjuvantes Imunológicos , Microambiente Tumoral
8.
J Ethnopharmacol ; 318(Pt A): 116856, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37406747

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qinlian Hongqu decoction (QLHQD) is a traditional Chinese medicine (TCM) formula. It has previously been found to mitigate hyperlipidemia, although its mechanism requires further clarification. AIM OF THE STUDY: This study explored QLHQD's mechanism in treating hyperlipidemia based on network pharmacology and experimental validation. MATERIALS AND METHODS: The components of QLHQD were analyzed by means of ultrahigh performanceliquid chromatography-quadrupole/orbitrapmass spectrometry (UHPLC-Q-Orbitrap-HRMS) and the targets of hyperlipidemia were predicted using the Swiss ADME, GeneCards, OMIM, DrugBank, TTD, and PharmGKB databases. A drug-component-target-disease network was constructed using Cytoscape v3.7.1. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed using the Bioinformatics platform. Based on the KEGG results, the non-alcoholic fatty liver disease signaling pathways were selected for experimental validation in an animal model. RESULTS: We identified 34 components of QLHQD, 94 targets of hyperlipidemia, and 18 lipid metabolism-related pathways from the KEGG analysis. The results of the animal experiment revealed that QLHQD alleviated lipid metabolism disorders, obesity, insulin resistance, and inflammation in rats with hyperlipidemia induced by high-fat diets. Additionally, it reduced the expression of IRE1-α, TRAF2, IKKB-ß, and NF-κB proteins in the liver of hyperlipidemic rats. CONCLUSION: QLHQD is able to significantly mitigate hyperlipidemia induced via high-fat diets in rats. The mechanism of action in this regard might involve regulating the IRE1-α/IKKB-ß/NF-κB signaling pathway in the liver, thereby attenuating inflammatory responses and insulin resistance.


Assuntos
Medicamentos de Ervas Chinesas , Hiperlipidemias , Resistência à Insulina , Animais , Ratos , NF-kappa B , Hiperlipidemias/tratamento farmacológico , Farmacologia em Rede , Transdução de Sinais , Proteínas Serina-Treonina Quinases , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
9.
J Ethnopharmacol ; 318(Pt A): 116873, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419225

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Several children with pneumonia (especially severe cases) have symptoms of cough and expectoration during the recovery stage after standard symptomatic treatment, which eventually results in chronic lung injury. Danggui yifei Decoction (DGYFD), a traditional Chinese formula, has shown clinical promise for the treatment of chronic lung injury during the recovery stage of pneumonia, however, its mechanism of action is yet to be deciphered. AIM OF THIS STUDY: To investigate the therapeutic mechanism of DGYFD for the treatment of chronic lung injury by integrating network pharmacology and transcriptomics. MATERIALS AND METHODS: BALB/c mice were used to establish the chronic lung injury mouse model by intratracheal instillation of lipopolysaccharide (LPS). Pathological analysis of lung tissue, lung injury histological score, lung index, protein levels in bronchoalveolar lavage fluid (BALF), immunohistochemical staining, blood rheology, inflammatory cytokines, and oxidative stress levels were used to evaluate the pharmacological effects of DGYFD. Chemical components of DGYFD were identified using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Integrated network pharmacology together with transcriptomics was used to predict potential biological targets. Western blot analysis was used to verify the results. RESULTS: In this study, we demonstrated that DGYFD could improve lung injury pathological changes, decreases lung index, down-regulate NO and IL-6 levels, and regulate blood rheology. In addition, DGYFD was able to reduce the protein levels in BALF, up-regulate the expression levels of occludin and ZO-1, improve the ultrastructure of lung tissues, and reverse the imbalance of AT I and AT II cells to repair the alveolar-capillary permeability barrier. Twenty-nine active ingredients of DGYFD and 389 potential targets were identified by UPLC-MS/MS and network pharmacology, and 64 differentially expressed genes (DEGs) were identified using transcriptomics. GO and KEGG analysis revealed that the MAPK pathway may be the molecular target. Further, we found that DGYFD inhibits phosphorylation levels of p38 MAPK and JNK in chronic lung injury mouse models. CONCLUSIONS: DGYFD could regulate the imbalance between the excessive release of inflammatory cytokines and oxidative stress, repair the alveolar-capillary permeability barrier and improve the pathological changes during chronic lung injury by regulating the MAPK signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Lesão Pulmonar , Animais , Camundongos , Cromatografia Líquida , Farmacologia em Rede , Transcriptoma , Espectrometria de Massas em Tandem , Citocinas/genética , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
10.
J Ethnopharmacol ; 318(Pt A): 116885, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422099

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Metastasis is the leading cause of death in lung cancer worldwide, and immune escape plays a vital role in the process of metastasis. Clinical studies have proven that Jinfukang (JFK) can effectively treat lung cancer metastasis by regulating T lymphocytes. However, it is still unknown whether JFK plays a role in treating lung cancer metastasis by regulating T-cell receptors (TCRs). AIM OF THE STUDY: To explore the effect of JFK in inhibiting lung cancer metastasis by regulating TCR. MATERIALS AND METHODS: A lung metastasis model was established in C57BL/6J and BALB/c-nude mice by tail vein injection of Lewis lung cancer cells. JFK was given by continuous intragastric administration. Anatomical observation combined with hematoxylin-eosin staining was used to evaluate lung metastasis. T cells, MDSCs, and macrophages in the peripheral blood were detected by flow cytometry, and the proliferation and immune cell infiltration of lung metastases were observed by immunohistochemistry and immunofluorescence. The diversity and gene expression of TCR in peripheral blood and lung tissues were detected by immune repertoire sequencing, and bioinformatics analysis was carried out. RESULTS: Compared with the control group, the number of pulmonary metastatic nodules in JFK-treated mice showed a decreasing trend, and it significantly reduced the burden of lung tumor metastasis in mice. We found that the expression level of Ki-67 protein in lung metastatic tumor tissues of mice treated with JFK was significantly reduced, while the infiltration level of CD8+ T lymphocytes and NK cells was significantly increased. In addition, we also found that JFK could significantly increase the proportion of CD4+ T, CD8+ T and NKT cells in the peripheral blood of mice. Moreover, JFK reduced the ratio of M-MDSCs and increased the ratio of PMN-MDSCs in the peripheral blood of mice. JFK increased the ratio of M1 macrophages in the peripheral blood of Lewis tumor-bearing mice. The sequencing of TCR in the peripheral blood and lung tissue of mice indicated that there was no notable difference in TCR diversity as the tumor progressed and JFK treatment was administered. However, the downregulation of TRBV16, TRBV17, TRBV1 and the upregulation of the TRBV12-2 gene in the TCR caused by tumor progression can be reversed by JFK. CONCLUSION: These results suggest that JFK may upregulate the proportion of CD4+ T, CD8+ T and NKT cells in peripheral blood, reverse the TCR changes caused by tumor metastasis, and promote the infiltration of CD8+ T and NK cells in tumor tissues, thereby inhibiting the growth of tumors and ultimately reducing the burden of lung cancer metastasis. This will provide new strategies for developing Chinese herbal medicine to treat metastasis by regulating TCR.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Animais , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos Nus , Camundongos Endogâmicos C57BL , Neoplasias Pulmonares/patologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Linfócitos T CD8-Positivos
11.
J Ethnopharmacol ; 318(Pt A): 116845, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437791

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the clinical practice of traditional Chinese medicine, HuangQi-DanShen (HD) is an important drug pair for the treatment of cerebral ischemia (CI). AIM OF THE STUDY: Elucidate the mechanism of HD against CI based on symptom-oriented network pharmacology coupled with comprehensive chemical characterization. MATERIALS AND METHODS: UHPLC-Q-Exactive Orbitrap-MS technology was firstly used to obtain the chemical profile of HD constituents. A comprehensive strategy combining in-house library, diagnostic ions, Compound Discover software and network databases was then established to identify its chemical constitutes. Symptomatic treatment is a treatment aimed at relieving or eliminating symptoms which is often characterized as a stop-gap measure due to its inability to cure the disease fundamentally. Nevertheless, symptomatic treatment is an indispensable part of clinical practice and has an important place in medical therapeutics. Therefore, network pharmacology technique were used to elucidate molecular mechanisms from the symptoms of CI. Finally, some literatures were further mined to support our conclusions. RESULTS: A total of 190 ingredients were identified in HD. Symptom-oriented network pharmacology analysis indicated that compounds of HD relieved "blood" through the regulation of ADORA2A, ADORA1, PTPN11, MMP9 and EGFR, relieved "qi" via the regulation of ADORA2A, EGFR, MMP9 and CA2. The therapeutic effect of HD on "faint" was linked to PTPN11 and MMP9, while the regulation of "dyskinesia" was related to ADORA2A and EGFR, and ADORA1, PTPN11 and MMP9 were associated withe its effect on "speech disorder". ADORA1, ADORA2A and MMP9 were key to the HD component in treating "visual disturbance". CONCLUSION: The approach of symptom-oriented network pharmacology coupled with comprehensive chemical characterization proposed a further orientation for exploring the mechanisms of HD against CI.


Assuntos
Medicamentos de Ervas Chinesas , Salvia miltiorrhiza , Metaloproteinase 9 da Matriz , Farmacologia em Rede , Infarto Cerebral , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Receptores ErbB , Simulação de Acoplamento Molecular
12.
J Ethnopharmacol ; 318(Pt A): 116874, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437794

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Huangqi-Jixuecao herb pair (HQJXCHP) is a traditional herbal formula composed of two widely applied TCM prescriptions, Huangqi (Astragalus membranaceus (Fisch.) Bunge) and Jixuecao (Centella asiatica (L.) Urb.), used for hundreds of years to replenish qi and clear away heat. However, the therapeutic effects of HQJXCHP against peritoneal fibrosis (PF) and potential targets are currently unclear. AIMS OF THE STUDY: The main objective of this study was preliminary prediction and validation of the effects and molecular mechanisms of action of HQJXCHP against PF based on network pharmacology analysis and experimental verification. MATERIALS AND METHODS: The ingredients of HQJXCHP were analyzed via HPLC-Q-TOF/MS. Bioactive compounds of HQJXCHP used for network pharmacology analysis were obtained from the TCMSP database. HQJXCHP-related therapeutic targets in PF were obtained from the GeneCards, OMIM, Therapeutic Targets and PharmGkb databases. Therapeutic target-related signaling pathways were predicted via GO and KEGG pathway enrichment analyses. The targets of HQJXCHO were further validated in a PDS-induced PF mouse model in vivo and PMCs MMT model in vitro. RESULTS: A total of 23 bioactive compounds of HQJXCHP related 188 target genes were retrieved. The HQJXCHP compound-target and PF-related target networks identified 131 common target genes. Subsequent protein-protein interaction (PPI) network analysis results disclosed Akt1, TP53, TNF, VEGFA and CASP3 as the top five key targets of HQJXCHP. Further molecular docking data revealed strong affinity of the two key compounds of HQJXCHP, quercetin and kaempferol, for these key targets. GO and KEGG pathway enrichment analyses further showed that PI3K/Akt, IL-17, TNF and TLR pathways contribute to the therapeutic effects of HQJXCHP on PF. An in vivo PDS-induced PF mouse model and in vitro PMCs mesothelial-to-mesenchymal transition (MMT) model with or without HQJXCHP intervention were used to confirm the effects and mechanisms of action of HQJXCHP. Western blot and qRT-PCR results showed that HQ, JXC and HQJXCHP reduced PDS-induced inflammatory cell aggregation and peritoneal thickening through suppressing the MMT process, among which HQJXCHP exerted the greatest therapeutic effect. Moreover, HQJXCHP inhibited activation of the PI3K/Akt, IL-17, TNF and TLR signaling pathways induced by PDS. CONCLUSIONS: This is the first study to employ network pharmacology and molecular docking analyses to predict the targets of HQJXCHP with therapeutic effects on PDS-related PF. Data from in vivo and in vitro validation experiments collectively showed that HQJXCHP delays the PF process through inhibiting PI3K/Akt, IL-17, TNF and TLR signaling pathways. Overall, our findings highlight the successful application of network pharmacology theory to provide a scientific basis for clinical utility of HQJXCHP against PF.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Peritoneal , Animais , Camundongos , Simulação de Acoplamento Molecular , Interleucina-17 , Proteínas Proto-Oncogênicas c-akt , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
13.
J Ethnopharmacol ; 318(Pt A): 116905, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442491

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huzhangqingmaiyin (HZQMY) is a Chinese medicine formula used to treat small vessel disease, but the mechanism is unclear. AIM OF THE STUDY: This study aimed to reveal the protective effects of HZQMY on human brain microvascular endothelial cells (HBMECs) and explore the potential targets and mechanistic pathways using network pharmacology on treating cerebral small vessel disease (CSVD). MATERIALS AND METHODS: HBMECs were cultured in vitro and an endothelial cell injury model was constructed by hypoxia for 12 h followed by reoxygenation for 8 h (H/R). Cell viability was measured by CCK-8 assay, migration ability of cells was detected by scratch assay, angiogenesis ability of endothelial cells was detected by tubulogenesis assay. Meanwhile, JC-1 staining was employed to determine the alteration of mitochondrial membrane potential, and finally, cell apoptosis was assessed by flow cytometry. To further explore the mechanism of action of HZQMY, the target proteins of a candidate active compound was first collected from the traditional Chinese medicine systems pharmacology database with analytical platform and Swiss target prediction database (www.swisstargetprediction.ch) by HPLC/MS determination of its main active components. CSVD associated targets were retrieved from four disease associated targets databases, OMIM, DisGenNET, GeneCards and GeneCLip, respectively. Using the website String, the genes overlapped between HZQMY and CSVD were imported into the database, PPI network plots were drawn using Cytoscape software. GO and KEGG analyses were performed to explore the possible pathways and targets of HZQMY. Its most probable targets were further explored with molecular docking and verified. RESULTS: HZQMY at 0.5-2 µg/mL concentration range could promote cell proliferation, cell migration, angiogenesis, reduce mitochondrial membrane potential damage as well as inhibit apoptosis. Besides that, 29 active compounds were detected from HZQMY, including key components such as quercetin, polydatin, kaempferol, isorhamnetin and resveratrol. Core targets that might include IL-1ß、ICAM-1、VCAM-1 and VEGF and so on. CONCLUSIONS: HZQMY could regulate the levels of key targets such as IL-1ß、ICAM-1、VCAM-1 and VEGF, so as to achieve the purpose of treating CSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Medicamentos de Ervas Chinesas , Humanos , Células Endoteliais , Molécula 1 de Adesão Intercelular , Simulação de Acoplamento Molecular , Molécula 1 de Adesão de Célula Vascular , Fator A de Crescimento do Endotélio Vascular , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa
14.
J Ethnopharmacol ; 318(Pt A): 116915, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451487

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Complementary treatment with valuable efficacy and less toxic or side effect is in urgent need for colorectal cancer (CRC) therapy. Yiqi Huayu Jiedu Decoction (YHJD) is a polyherbal formulation which has been applied in clinic to treat CRC for a long period of time. Nevertheless, the potential active ingredients and molecular mechanism remains to be further explored. AIM OF THE STUDY: To probe the effective compounds of YHJD and its underlying pharmacological effects. Moreover, the influence on liver metastasis of CRC as well as function of natural killer (NK) cells results from YHJD was investigated. MATERIALS AND METHODS: The active ingredients and target genes of YHJD was examined through TCMSP databases. Compound-compound target network was performed by applying Cytoscape3.9.1 software. The CRC-related disease targets were explored via DisGeNET database. Venn database was used to find the common genes between CRC and YHJD. Protein-protein interaction network was established by STRING database. Biological process and signaling pathways potentially regulated by YHJD were evaluated by DAVID database. Western blot assay was then conducted to further investigate the effect of YHJD on PI3K-AKT signaling. The association between NK cells content and TNM or pathological stages of CRC was studied through TCGA database. The killing efficiency of NK cells was researched by CCK8 experiment. In vivo assay and HE staining were performed to assess the anti-liver metastasis effect of YHJD. The variation of NK cells content was authenticated by applying flow cytometry analysis. RESULTS: We firstly found 176 active ingredients and 268 target genes of YHJD. Compound-compound target network was then established consisted of 455 nodes and 3989 edges. Then 707 disease targets associated with CRC were discovered and 42 common genes between CRC and YHJD were identified. Protein-protein interaction network was further constructed, among which 5 vital genes including TP53, AKT1, TNF, MYC and CCND1 were recognized. GO and KEGG analysis was performed to explore probable biological process and signaling pathways regulated by YHJD. Particularly, the ratio of p-PI3K/PI3K and p-AKT/AKT at protein level representing the activation of PI3K-AKT signaling could be suppressed by YHJD. In addition, bioinformatic analysis detected reduced NK cells content in CRC tissues, which gave rise to more advanced node, metastasis and pathological stages. We next presented that YHJD can improve the killing effect of NK cells on CRC. At meantime, YHJD was capable of suppressing liver metastasis of CRC in vivo as well as promoting the content of NK cells, while the improving effect was partially neutralized by anti-ASGM1. CONCLUSIONS: Our research indicates that YHJD can prohibit liver metastasis of CRC in vivo. The therapeutic effectiveness is linked to regulation of multiple targets and effector process, especially PI3K-AKT signaling as well as immune response dominated by NK cells.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Bioensaio , Células Matadoras Naturais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
15.
J Ethnopharmacol ; 318(Pt A): 116910, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453623

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aspirin, as a first-line drug for the treatment of cardiovascular diseases, currently has high clinical usage. However, reports of aspirin-induced gastric mucosal injury are increasing. Xiaojianzhong decoction (XJZD), a classic traditional Chinese medicine formula, has been shown to alleviate gastric mucosal injury, although its potential mechanism of action requires further study. AIM OF THE STUDY: This study aimed to explore the effect and mechanism of XJZD in preventing aspirin-induced gastric mucosal injury. MATERIALS AND METHODS: Aspirin was used to induce damage in the morning, while XJZD was applied as an intervention in the afternoon. The compounds in the XJZD were analyzed by means of both high-performance liquid chromatography and ultra-performance liquid chromatography-tandem mass spectrometry. The overall condition of the aspirin-related gastric mucosal injury was evaluated. The expressions of inflammatory factors and tight-junction-related proteins and apoptosis were observed via immunohistochemistry and immunofluorescence. The expression levels of the apoptosis-related proteins were detected using Western blot. Transcriptomics was used to perform the integrative analysis of gastric tissues, which was then validated. Molecular dynamics was used to explore the interaction of key compounds within the XJZD with relevant targets. Finally, non-targeted metabolomics was used to observe any metabolic changes and construct a network between the differentially expressed genes and the differential metabolites to elucidate their potential relationship. RESULTS: XJZD can alleviate inflammation response, maintain the gastric mucosal barrier's integrity, reduce apoptosis and necroptosis levels, and promote the proliferation and repair of gastric mucosal tissues. Its mechanism of action may be related to the regulation of TNF-α signaling. Furthermore, molecular docking showed that the cinnamaldehyde within XJZD played an important role in its effects. In addition, XJZD can correct metabolic disorders, mainly regulating amino acid metabolism pathways. Moreover, six differential genes (Cyp1a2, Cyp1a1, Pla2g4c, etc.) were determined to alleviate both gastric mucosal injury and inflammation by regulating arachidonic acid metabolism, Tryptophan metabolism, etc. CONCLUSIONS: This study is the first to report that XJZD can inhibit necroptosis and gastric mucosal injury induced by aspirin, thereby revealing the complex mechanism of XJZD in relation to alleviating gastric mucosal injury from multiple levels and perspectives.


Assuntos
Medicamentos de Ervas Chinesas , Gastropatias , Humanos , Aspirina/toxicidade , Simulação de Acoplamento Molecular , Transcriptoma , Mucosa Gástrica , Inflamação/metabolismo , Gastropatias/metabolismo , Metabolômica , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/metabolismo
16.
J Ethnopharmacol ; 318(Pt A): 116899, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454750

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the second leading cause of hospital-acquired pneumonia. Jingfang granule (JFG) is an herbal formula of Traditional Chinese medicine (TCM) widely used in treatment of acute respiratory tract infections in China. However, the molecular mechanisms of JFG in treatment of P. aeruginosa-induced acute pneumonia are not clear. AIM OF STUDY: This study aimed to investigate the mechanisms underlying the effects of JFG on P. aeruginosa-induced acute inflammation using a mouse model of bacterial acute pneumonia. MATERIALS AND METHODS: The chemical components and targets of JFG were retrieved from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the P. aeruginosa pneumonia-related targets were obtained from the disease databases, including Online Mendelian Inheritance in Man (OMIM), GeneCards and DisGeNet. The protein-protein interaction (PPI) network was constructed using STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Molecular docking was performed using AutoDockTools 1.5.6. Further in vivo experiments employed a mouse model of P. aeruginosa acute pneumonia to verify the target proteins and signaling pathways affected by JFG, which were predicted by the network pharmacology analysis. RESULTS: A total of 218 active components and 257 targets of JFG were retrieved from TCMSP database. Moreover, 99 intersectant targets were obtained between the 257 JFG targets and 694 disease targets. Among the intersectant targets, STAT3, IL-6, AKT1, TNF, MAPK1, MAPK3 and EGFR were identified to be the key therapeutic targets through PPI network analysis, and STAT3 was in the center of the network, which is a key regulator of IL-17 expression. KEGG pathway enrichment analysis suggested that IL-17 signaling pathway was one of the crucial inflammatory pathways affected by JFG in treatment of P. aeruginosa pneumonia. Furthermore, the in vivo experiments demonstrated that the JFG-treated mice displayed reduced proinflammatory cytokine production (IL-17, IL-1ß, IL-6 and TNF), diminished neutrophil infiltration and decreased mortality, compared with the non-drug-treated mice during P. aeruginosa lung infection. Moreover, the expression or phosphorylation levels of the key regulators in STAT3/IL-17/NF-κB axis including STAT3, ERK1/2 (MAPK3/1), AKT, NF-κB p65 and RORγt were significantly reduced in the lung tissues of the JFG-treated mice. CONCLUSION: JFG was effective in treatment of P. aeruginosa acute lung infection, which reduced inflammatory responses through suppressing STAT3/IL-17/NF-κB pathway.


Assuntos
Medicamentos de Ervas Chinesas , Pneumonia , Humanos , NF-kappa B , Pseudomonas aeruginosa , Farmacologia em Rede , Interleucina-17 , Interleucina-6 , Simulação de Acoplamento Molecular , Pneumonia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fator de Transcrição STAT3
17.
J Ethnopharmacol ; 318(Pt A): 116806, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460028

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diarrhea is a frequently encountered gastrointestinal complication in clinical practice, and E. coli is one of the main causative agents. Although Qingjie decoction (QJD) has been shown to be highly effective in treating diarrhea by eliminating heat-toxin, the underlying molecular mechanisms and pathways of QJD remain unclear. AIM OF REVIEW: The aim of this research was to explore the effects and fundamental mechanism of QJD on diarrhea induced by E.coli in rats. MATERIALS AND METHODS: Initially, we used UHPLC-MS/MS analysis to identify the chemical composition of QJD. Then, we constructed a visualization network using network pharmacology. Next, we utilized metabolomics to identify differentially expressed metabolites of QJD that are effective in treating diarrhea. RESULTS: The chemical composition of QJD was analyzed using UHPLC-MS/MS, which identified a total of 292 components. Using a network pharmacology approach, 127 bioactive compounds of QJD were screened, targeting 171 potential diarrhea treatment targets. TNF-α, IL-6, IL-1ß, and CAT were identified as important targets through visualizing the PPI network. Enrichment analysis demonstrated significant enrichment in the TNF signaling pathway, IL-17 signaling pathway, and PI3K-Akt signaling pathway. QJD showed beneficial effects, such as increased body weight, decreased fecal water content, and reduced inflammatory cell infiltration in the duodenum and colon, as well as maintaining the structure of the duodenum and colon. Metabolomic analysis revealed 32 differentially expressed metabolites in the control, model and QJD-H groups, including glucose, valine, and cysteine. Functional analysis indicated that differential metabolites were related to energy metabolism, including glucose metabolism, TCA cycle, and amino acid metabolism. CONCLUSION: QJD significantly increased body weight, decreased water content in feces, relieved inflammatory cell infiltration, maintained the structure of duodenum and colon. Combining network analysis and metabolomics, QJD exerted therapeutic effects by inhibiting inflammation and oxidative stress, regulating glucose metabolism, tricarboxylic acid metabolism, and amino acid metabolism.


Assuntos
Besouros , Medicamentos de Ervas Chinesas , Animais , Ratos , Escherichia coli , Fosfatidilinositol 3-Quinases , Espectrometria de Massas em Tandem , Metabolômica , Metabolismo Energético , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Cisteína , Glucose , Inflamação , Peso Corporal , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
18.
J Ethnopharmacol ; 318(Pt A): 116926, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37479066

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kidney-Yang deficiency syndrome (KYDS) is one of the common diseases of the elderly and closely related to the ageing of the body, it has a major impact on the quality of life of the patient. Eucommiae Cortex (EC) is the dried bark of Eucommia ulmoides Oliv. Which has the effect of tonifying the liver and kidneys, strengthening the muscles and bones. In Traditional Chinese Medicine clinics, EC is commonly used in the treatment of KYDS, but the material basis for the improvement of its efficacy in treating KYDS after salt processing remains unclear. AIM OF THE STUDY: This study aimed to find the main active ingredients that could improve the treatment of KYDS efficacy of EC after salt processing. MATERIALS AND METHODS: Firstly, the fingerprints of raw and salt-processed EC were established to determine the common components by using HPLC, and then an experimental study on the treatment of KYDS efficacy was carried out to compare the difference in the efficacy between raw and salt-processed EC. Thirdly, the spectrum-effect relationship of chemical components and pharmacodynamic indexes was established by using Grey Relational Analysis and Entropy Method. Finally, the network pharmacology and molecular docking technique was used to verify the kidney tonifying effect of the active ingredients of EC. RESULTS: According to the results of the analysis of hormonal index levels on the hypothalamic-pituitary-target gland axis and the extent of renal lesions, the therapeutic effect of EC on KYDS was mainly reflected in the regulation of the Adrenocorticotropic hormone, Corticosterone in the hypothalamic-pituitary-adrenal axis and Tri-iodothyronine, Tetra-iodothyronine in the hypothalamic-pituitary-thyroid axis, moreover the therapeutic effect of salt-processed EC was stronger than that of raw EC. The pharmacologically active ingredients that improved its treatment of KYDS efficacy after salt processing were peak 1 (geniposidic acid), peak 2 (chlorogenic acid), peak 5 (geniposide), peak 6 (genipin), peak 7 (pinoresinol diglucoside) and peak 11 (hyperoside). Meanwhile, the results of network pharmacology and molecular docking showed that the 6 active ingredients could exert kidney tonic effects through multiple signaling pathways by acting on core targets such as AKT1 and PTGS2. CONCLUSION: As far as we known, this was the first time to establish and compare the spectrum-effect relationship between raw and salt-processed EC, which laid the foundation for the pharmacokinetics studies of EC and provided a reference for future EC studies.


Assuntos
Medicamentos de Ervas Chinesas , Deficiência da Energia Yang , Humanos , Idoso , Deficiência da Energia Yang/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Simulação de Acoplamento Molecular , Sistema Hipotálamo-Hipofisário , Qualidade de Vida , Sistema Hipófise-Suprarrenal , Rim
19.
J Ethnopharmacol ; 318(Pt A): 116935, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37479070

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoriasis is an inflammatory skin disease, there is no radical cure. Traditional Chinese medicine has accumulated a lot of clinical experience in the treatment of psoriasis and developed a variety of treatment methods, among which Yinxieling optimization formula (PSORI-CM01) have a definite clinical effect in the treatment of psoriasis, but their mechanism of action is still unclear. AIM OF THE STUDY: To investigate the molecular mechanism of the PSORI-CM01 in the treatment of psoriasis. MATERIALS AND METHODS: Firstly, potential active compounds and key signaling pathways of PSORI-CM01 were explored by the systems pharmacology method. Then MTT assay was used to screen the potentially active compounds of PSORI-CM01, and explore the combined effects of potentially active compounds. The regulation of potentially active compounds on inflammatory factors were evaluated by a Human Th17 Magnetic Bead Panel. The regulation of PSORI-CM01 on key targets in the key signaling pathways were explored by qRT-PCR method. Finally, the molecular mechanism of PSORI-CM01 in the treatment of psoriasis was explained by the systems pharmacology method. RESULTS: The potentially active compounds of PSORI-CM01 included gallic acid, liquiritigenin, rosmarinic acid, syringic acid, isoliquiritin apioside, caffeic acid, naringenin, cryptochlorogenic acid, (+)-taxifolin, p-coumaric acid, chlorogenic acid, fraxin, 5-hydroxymethylfurfural, lithospermic acid, isoliquiritigenin, salviandic acid B, octahydrocurcumin, catechin, syringaldehyde, methyl rosmarinate, paeonol, protocatechuic acid, astilbin, isoastilbin, isofraxidin and zederone. Both antagonistic and synergistic effects were determined in the combinations of active compounds. Most of the active compounds up-regulated IL-2, IL-6, IL-9 and TNF-α, and down-regulated IFN-γ, IL-1ß, IL-2, IL-9, IL-10, IL-13, IL-15, IL-17F, IL-21, IL-22 and IL-27. The PI3K-Akt signaling pathway would be the key signaling pathway of PSORI-CM01. The qRT-PCR results showed that its compounds can effectively regulate the expression of key targets in this pathway. CONCLUSIONS: The molecular mechanism of PSORI-CM01 for treating psoriasis would be mediated by regulating the network of inflammatory factors through the PI3K-Akt signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Psoríase , Humanos , Citocinas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Interleucina-2/uso terapêutico , Interleucina-9/uso terapêutico , Fosfatidilinositol 3-Quinases , Psoríase/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
20.
J Ethnopharmacol ; 318(Pt A): 116937, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37480968

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Moluodan concentrated pill (MLD) is a traditional herbal formula used in China for the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism of action remains unclear. AIM OF THE STUDY: The aim of this study was to investigate the therapeutic effect and mechanism of action of MLD in the treatment of CAG using network pharmacology and in vivo experiments. MATERIALS AND METHODS: The active compounds of MLD were determined using network pharmacology, utilizing various Chinese medicine databases such as the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Traditional Chinese Medicine Integrated Database, Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine, and a comprehensive database of Traditional Chinese Medicine on Immuno-Oncology. The compounds found in the root of Anemone altaica Fisch. were extracted from the China National Knowledge Infrastructure literature database. Additionally, the Swiss Target Prediction database and Similarity Ensemble Approach were employed to identify the potential targets of these components. CAG-related targets were gathered from the GeneCards and DisGeNET databases. Protein-protein interactions (PPIs) of the genes associated with the drug-disease crossover were examined, and a core PPI network was constructed using the STRING database (version 11.5) and Cytoscape (version 3.7.2). A gene-pathway network was established to identify significant target genes and pathways through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, based on these findings and existing data, the tumor necrosis factor (TNF) signaling pathway was selected for further validation through in vivo experiments. RESULTS: A total of 724 active molecules in MLD yielded 961 identified target genes, of which 179 were found to be potentially associated with CAG. From the common targets, a PPI network revealed ten core targets. Enrichment analysis suggested that MLD may primarily target TNF and AKT in the treatment of CAG. Essential signaling pathways, such as the PI3K-AKT and TNF pathways, were found to be crucial for the therapeutic effects of MLD on CAG. Furthermore, potential interactions and crosstalk between these pathways were identified. Moreover, we confirmed that MLD effectively improved gastric mucosa atrophy and cellular ultrastructural damage, while increasing pepsinogen secretion and decreasing gastrin, somatostatin, and motilin levels. Subsequent molecular biology studies in rat models of CAG demonstrated that MLD treatment significantly reduced the expression levels of TNF-α, phosphatidylinositol 3'-kinase (PI3K), and phosphorylated Akt (P < 0.05). Notably, the expression of nuclear factor kappa-B (NF-κB) exhibited a contrasting trend (P < 0.05), potentially associated with the crucial tumor suppressor role of NF-κB p105. CONCLUSION: This study provides evidence that MLD effectively alleviates stomach mucosal atrophy through modulation of the TNF/PI3K/AKT signaling pathway. These findings establish a solid theoretical foundation for the practical management of CAG.


Assuntos
Medicamentos de Ervas Chinesas , Gastrite Atrófica , Animais , Ratos , Gastrite Atrófica/tratamento farmacológico , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Medicina Tradicional Chinesa , Atrofia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...