Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.028
Filtrar
1.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33808970

RESUMO

Cell-free therapy using extracellular vesicles (EVs) from adipose-derived mesenchymal stromal/stem cells (ASCs) seems to be a safe and effective therapeutic option to support tissue and organ regeneration. The application of EVs requires particles with a maximum regenerative capability and hypoxic culture conditions as an in vitro preconditioning regimen has been shown to alter the molecular composition of released EVs. Nevertheless, the EV cargo after hypoxic preconditioning has not yet been comprehensively examined. The aim of the present study was the characterization of EVs from hypoxic preconditioned ASCs. We investigated the EV proteome and their effects on renal tubular epithelial cells in vitro. While no effect of hypoxia was observed on the number of released EVs and their protein content, the cargo of the proteins was altered. Proteomic analysis showed 41 increased or decreased proteins, 11 in a statistically significant manner. Furthermore, the uptake of EVs in epithelial cells and a positive effect on oxidative stress in vitro were observed. In conclusion, culture of ASCs under hypoxic conditions was demonstrated to be a promising in vitro preconditioning regimen, which alters the protein cargo and increases the anti-oxidative potential of EVs. These properties may provide new potential therapeutic options for regenerative medicine.


Assuntos
Vesículas Extracelulares/genética , Proteoma/genética , Proteômica , Medicina Regenerativa/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Regeneração/genética
2.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802011

RESUMO

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers' interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.


Assuntos
Tragacanto/química , Tragacanto/metabolismo , Tragacanto/farmacologia , Antibacterianos/química , Astragalus gummifer/metabolismo , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos/métodos , Embalagem de Alimentos/métodos , Nanofibras/química , Poliésteres/química , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Tecidos Suporte/química , Cicatrização/efeitos dos fármacos
3.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807361

RESUMO

Transforaminal lumber interbody fusion (TLIF) is the last resort to address the lumber degenerative disorders such as spondylolisthesis, causing lower back pain. The current surgical intervention for these abnormalities includes open TLIF. However, in recent years, minimally invasive TLIF (MIS-TLIF) has gained a high momentum, as it could minimize the risk of infection, blood loss, and post-operative complications pertaining to fusion surgery. Further advancement in visualizing and guiding techniques along with grafting cage and materials are continuously improving the safety and efficacy of MIS-TLIF. These assistive techniques are also playing a crucial role to increase and improve the learning curve of surgeons. However, achieving an appropriate output through TLIF still remains a challenge, which might be synergized through 3D-printing and tissue engineering-based regenerative therapy. Owing to their differentiation potential, biomaterials such as stem/progenitor cells may contribute to restructuring lost or damaged tissues during MIS-TLIF, and this therapeutic efficacy could be further supplemented by platelet-derived biomaterials, leading to improved clinical outcomes. Thus, based on the above-mentioned strategies, we have comprehensively summarized recent developments in MIS-TLIF and its possible combinatorial regenerative therapies for rapid and long-term relief.


Assuntos
Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Fusão Vertebral/tendências , Materiais Biocompatíveis/farmacologia , Transplante Ósseo/tendências , Cerâmica , Humanos , Degeneração do Disco Intervertebral/cirurgia , Região Lombossacral/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/tendências , Medicina Regenerativa/métodos , Espondilolistese/cirurgia , Resultado do Tratamento
4.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807453

RESUMO

Bone marrow-mesenchymal stem/stromal cells (MSCs) may offer promise for skeletal muscle repair/regeneration. Growing evidence suggests that the mechanisms underpinning the beneficial effects of such cells in muscle tissue reside in their ability to secrete bioactive molecules (secretome) with multiple actions. Hence, we examined the effects of MSC secretome as conditioned medium (MSC-CM) on ex vivo murine extensor digitorum longus muscle injured by forced eccentric contraction (EC). By combining morphological (light and confocal laser scanning microscopies) and electrophysiological analyses we demonstrated the capability of MSC-CM to attenuate EC-induced tissue structural damages and sarcolemnic functional properties' modifications. MSC-CM was effective in protecting myofibers from apoptosis, as suggested by a reduced expression of pro-apoptotic markers, cytochrome c and activated caspase-3, along with an increase in the expression of pro-survival AKT factor. Notably, MSC-CM also reduced the EC-induced tissue redistribution and extension of telocytes/CD34+ stromal cells, distinctive cells proposed to play a "nursing" role for the muscle resident myogenic satellite cells (SCs), regarded as the main players of regeneration. Moreover, it affected SC functionality likely contributing to replenishment of the SC reservoir. This study provides the necessary groundwork for further investigation of the effects of MSC secretome in the setting of skeletal muscle injury and regenerative medicine.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Medicina Regenerativa/métodos , Células Satélites de Músculo Esquelético/metabolismo , Vesículas Secretórias/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Cicatrização/efeitos dos fármacos
5.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808520

RESUMO

Endosome-derived small extracellular vesicles (EVs), often referred to as exosomes, are produced by almost all, if not all, cell types, and are critical for intercellular communication. They are composed of a lipid bilayer associated with membrane proteins and contain a payload of lipids, proteins and regulatory RNAs that depends on the parental cell physiological condition. By transferring their "cargo", exosomes can modulate the phenotype of neighboring and distant cells. Stem cells (SC) were widely studied for therapeutic applications regarding their regenerative/reparative potential as well as their immunomodulatory properties. Whether from autologous or allogeneic source, SC beneficial effects in terms of repair and regeneration are largely attributed to their paracrine signaling notably through secreted EVs. Subsequently, SC-derived EVs have been investigated for the treatment of various diseases, including inflammatory skin disorders, and are today fast-track cell-free tools for regenerative/reparative strategies. Yet, their clinical application is still facing considerable challenges, including production and isolation procedures, and optimal cell source. Within the emerging concept of "allogeneic-driven benefit" for SC-based therapies, the use of EVs from allogeneic sources becomes the pragmatic choice although a universal allogeneic cell source is still needed. As a unique temporary organ that ensures the mutual coexistence of two allogeneic organisms, mother and fetus, the human placenta offers a persuasive allogeneic stem cell source for development of therapeutic EVs. Advancing cell-free therapeutics nurtures great hope and provides new perspectives for the development of safe and effective treatment in regenerative/reparative medicine and beyond. We will outline the current state of the art in regard of EVs, summarize their therapeutic potential in the context of skin inflammatory disorders, and discuss their translational advantages and hurdles.


Assuntos
Vesículas Extracelulares/metabolismo , Medicina Regenerativa/métodos , Células-Tronco/metabolismo , Nanomedicina Teranóstica/métodos , Transporte Biológico , Doença Crônica , Dermatite/etiologia , Dermatite/terapia , Exossomos/metabolismo , Vesículas Extracelulares/imunologia , Humanos , Imunomodulação , Cicatrização
6.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669048

RESUMO

Diabetic neuropathy is one of the most common complications of diabetes. This complication is peripheral neuropathy with predominant sensory impairment, and its symptoms begin with hyperesthesia and pain and gradually become hypoesthesia with the loss of nerve fibers. In some cases, lower limb amputation occurs when hypoalgesia makes it impossible to be aware of trauma or mechanical stimuli. On the other hand, up to 50% of these complications are asymptomatic and tend to delay early detection. Therefore, sensitive and reliable biomarkers for diabetic neuropathy are needed for an early diagnosis of this condition. This review focuses on systemic biomarkers that may be useful at this time. It also describes research on the relationship between target gene polymorphisms and pathological conditions. Finally, we also introduce current information on regenerative therapy, which is expected to be a therapeutic approach when the pathological condition has progressed and nerve degeneration has been completed.


Assuntos
Citocinas/uso terapêutico , Neuropatias Diabéticas/terapia , Neurônios/efeitos dos fármacos , Medicina Regenerativa/métodos , Animais , Biomarcadores/sangue , Citocinas/farmacologia , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/fisiopatologia , Exossomos/metabolismo , Glioxal/sangue , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Lactoilglutationa Liase/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/patologia , Neurônios/metabolismo , Polimorfismo Genético , Aldeído Pirúvico/sangue , Receptores Toll-Like/sangue , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
7.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578948

RESUMO

Recently, an increasing number of studies have demonstrated that induced pluripotent stem cells (iPSCs) and iPSC-derived cells display therapeutic effects, mainly via the paracrine mechanism in addition to their transdifferentiation ability. Exosomes have emerged as an important paracrine factor for iPSCs to repair injured cells through the delivery of bioactive components. Animal reports of iPSC-derived exosomes on various disease models are increasing, such as in heart, limb, liver, skin, bone, eye and neurological disease and so forth. This review aims to summarize the therapeutic effects of iPSC-derived exosomes on various disease models and their properties, such as angiogenesis, cell proliferation and anti-apoptosis, with the hopes of improving their potential role in clinical applications and functional restoration.


Assuntos
Exossomos/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Medicina Regenerativa/métodos , Animais , Proliferação de Células , Exossomos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neovascularização Fisiológica , Comunicação Parácrina
8.
Nature ; 592(7852): 99-104, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33627870

RESUMO

The small intestine is the main organ for nutrient absorption, and its extensive resection leads to malabsorption and wasting conditions referred to as short bowel syndrome (SBS). Organoid technology enables an efficient expansion of intestinal epithelium tissue in vitro1, but reconstruction of the whole small intestine, including the complex lymphovascular system, has remained challenging2. Here we generate a functional small intestinalized colon (SIC) by replacing the native colonic epithelium with ileum-derived organoids. We first find that xenotransplanted human ileum organoids maintain their regional identity and form nascent villus structures in the mouse colon. In vitro culture of an organoid monolayer further reveals an essential role for luminal mechanistic flow in the formation of villi. We then develop a rat SIC model by repositioning the SIC at the ileocaecal junction, where the epithelium is exposed to a constant luminal stream of intestinal juice. This anatomical relocation provides the SIC with organ structures of the small intestine, including intact vasculature and innervation, villous structures, and the lacteal (a fat-absorbing lymphatic structure specific to the small intestine). The SIC has absorptive functions and markedly ameliorates intestinal failure in a rat model of SBS, whereas transplantation of colon organoids instead of ileum organoids invariably leads to mortality. These data provide a proof of principle for the use of intestinal organoids for regenerative purposes, and offer a feasible strategy for SBS treatment.


Assuntos
Colo/citologia , Íleo/transplante , Mucosa Intestinal/citologia , Organoides/transplante , Regeneração , Medicina Regenerativa/métodos , Síndrome do Intestino Curto/terapia , Animais , Colo/irrigação sanguínea , Colo/inervação , Colo/cirurgia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Íleo/citologia , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/inervação , Mucosa Intestinal/cirurgia , Masculino , Técnicas de Cultura de Órgãos , Organoides/citologia , Ratos , Ratos Endogâmicos Lew , Síndrome do Intestino Curto/patologia , Síndrome do Intestino Curto/cirurgia
9.
Life Sci ; 272: 119157, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524418

RESUMO

Stem cell-based therapy is known as a regenerative approach for a variety of diseases and tissue injuries. These cells exert their therapeutic effects through paracrine secretions namely extracellular vesicles. To achieve higher therapeutic potential, a variety of delivery routes have been tested in clinical and preclinical studies. Direct cell injection, intra-venous administration, and intra-arterial infusion are widely used methods of stem cells delivery but these methods are associated with several complications. As one of the most popular biological delivery systems, amniotic membrane has been widely utilized to support cell proliferation and differentiation therefore facilitating tissue regeneration without endangering the stem cells' viability. It is composed of several extracellular matrix components and growth factors. Due to these characteristics, amniotic membrane can mimic the stem cell's niche and can be an ideal carrier for stem cell transplantation. Here, we provide an overview of the recent progress, challenges, and future perspectives in the use of amniotic membrane as a delivery platform for stem cells.


Assuntos
Âmnio/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Transplante de Células-Tronco/métodos , Âmnio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/métodos , Células-Tronco/citologia
10.
Methods Mol Biol ; 2273: 111-129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604848

RESUMO

Tissue engineering provides unique opportunities for disease modeling, drug testing, and regenerative medicine applications. The use of cell-seeded scaffolds to promote tissue development is the hallmark of the tissue engineering. Among the different types of scaffolds (derived from either natural or synthetic polymers) used in the field, the use of decellularized tissues/organs is specifically attractive. The decellularization process involves the removal of native cells from the original tissue, allowing for the preservation of the three-dimensional (3D) macroscopic and microscopic structures of the tissue and extracellular matrix (ECM) composition. Following recellularization, the resulting scaffold provides the seeded cells with the appropriate biological signals and mechanical properties of the original tissue. Here, we describe different methods to create viable scaffolds from decellularized heart and liver as useful tools to study and exploit ECM biological key factors for the generation of engineered tissues with enhanced regenerative properties.


Assuntos
Derme Acelular/metabolismo , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Animais , Matriz Extracelular/química , Coração/crescimento & desenvolvimento , Hepatócitos/citologia , Fígado/crescimento & desenvolvimento , Miócitos Cardíacos/citologia , Coelhos
11.
Molecules ; 26(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504080

RESUMO

The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Cicatrização/efeitos dos fármacos
13.
Life Sci ; 268: 118932, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400933

RESUMO

The sophisticated chain of cellular and molecular episodes during wound healing includes cell migration, cell proliferation, deposition of extracellular matrix, and remodelling and are onerous to replicate. Encapsulation of growth factors (GFs) and Stem cell-based (SCs) has been proclaimed to accelerate healing by transforming every phase associated with wound healing to enhance skin regeneration. Therapeutic application of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (PSCs) provides aid in wound fixing, tissue integrity restoration and function of impaired tissue. Several scientific studies have established the essential role GFs in wound healing and their reduced degree in the chronic wound. The overall limitation includes half-life, unfriendly microhabitat abundant with protease, and inadequate delivery approaches results in decreased delivery of effective amounts in a suitable time-based fashion. Advancements in the area of reformative medicine as well as tissue engineering have offered techniques competent of dispensing SCs and GFs in site-oriented manner. The progress in nanotechnology-based approaches attracts researcher to study and evaluate the potential of this SCs and GFs based therapy in chronic wounds. These techniques embrace the polymeric regime viz., nano-formulations, hydrogels, liposomes, scaffolds, nanofibers, metallic nanoparticles, lipid-based nanoparticles and dendrimers that have established better retort through targeting tissues when GFs and SCs are transported via these humans made devices. Assumed the current problems, improvements in delivery approaches and difficulties offered by chronic wounds, we hope to show that encapsulation of SCs and GFs loaded nanoformulations therapies is the rational next step in improving wound care.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Células-Tronco , Engenharia Tecidual/métodos , Cicatrização/fisiologia , Animais , Diferenciação Celular , Colágeno/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Matriz Extracelular/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Neovascularização Fisiológica , Cicatrização/efeitos dos fármacos
14.
Yakugaku Zasshi ; 141(1): 55-60, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33390448

RESUMO

The eye is a complex organ with highly specialized constituent tissues derived from different primordial cell lineages. The retina develops from neuroectoderm via the optic vesicle, the corneal epithelium is descended from surface ectoderm, while the iris and corneal stroma have a neural crest origin. Recent work with pluripotent stem cells (PSCs) in culture has revealed a previously under-appreciated level of intrinsic cellular self-organization, with a focus on the retina and retinal cells. We recently demonstrated the generation from human induced pluripotent stem cells (iPSCs) of a self-formed ectodermal autonomous multi-zone (SEAM) of ocular cells. The concentric SEAM mimics whole-eye development because cell location within different zones is indicative of ocular cell lineage, spanning the ocular surface ectoderm, lens, neuro-retina, and retinal pigment epithelium. Therefore, SEAM represents a promising resource for new research of ocular morphogenesis and development. Moreover, we successfully isolated corneal epithelial progenitor cells and fabricated corneal epithelial tissue from PSCs. This approach has translational potential for treating severe corneal epithelial disease by transplantation of PSC-derived corneal epithelial tissue. To evaluate the efficacy and safety of the corneal epithelial tissue, we have started a first-in-human clinical study for patients with corneal epithelial stem cell deficiency, which began last year.


Assuntos
Diferenciação Celular/fisiologia , Epitélio Anterior , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Medicina Regenerativa/métodos , Linhagem da Célula , Células Cultivadas , Doenças da Córnea/terapia , Epitélio Anterior/citologia , Epitélio Anterior/transplante , Humanos , Organoides , Epitélio Pigmentado da Retina/citologia
15.
Mil Med Res ; 8(1): 2, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33451321

RESUMO

Wound healing, tissue repair and regenerative medicine are in great demand, and great achievements in these fields have been made. The traditional strategy of tissue repair and regeneration has focused on the level of tissues and organs directly; however, the basic process of repair at the cell level is often neglected. Because the cell is the basic unit of organism structure and function; cell damage is caused first by ischemia or ischemia-reperfusion after severe trauma and injury. Then, damage to tissues and organs occurs with massive cell damage, apoptosis and even cell death. Thus, how to achieve the aim of perfect repair and regeneration? The basic process of tissue or organ repair and regeneration should involve repair of cells first, then tissues and organs. In this manuscript, it is my consideration about how to repair the cell first, then regenerate the tissues and organs.


Assuntos
Regeneração/fisiologia , Medicina Regenerativa/tendências , Traumatismo por Reperfusão/prevenção & controle , Cicatrização/fisiologia , Ferimentos e Lesões/complicações , Humanos , Medicina Regenerativa/métodos , Ferimentos e Lesões/fisiopatologia
16.
Am J Physiol Endocrinol Metab ; 320(3): E581-E590, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427048

RESUMO

Current in vitro models have played important roles in improving knowledge and understanding of cellular and molecular biology, but cannot exactly recapitulate the physiology of human tissues such as thyroid. In this article, we conducted a systematic review to present scientific and methodological time-trends of the reconstruction and generation of 3 D functional thyroid follicles and organoids for thyroid research in health and disease. "Web of Science (ISI)", "Scopus", "Embase", "Cochrane Library", and "PubMed" were systematically searched for papers published since 1950 to May 2020 in English language, using the predefined keywords. 212 articles were reviewed and finally 28 papers that met the inclusion and exclusion criteria were selected. Among the evidence for the examination of 3 D cell culture methods in thyroid research, there were only a few studies related to the organoid technology and its potential applications in understanding morphological, histological, and physiological characteristics of the thyroid gland and reconstructing this tissue. Besides, there was no study using organoids to investigate the tumorigenesis process of thyroid. Based on the results of this study, despite all the limitations and controversies, the exciting and promising organoid technology offers researchers a wide range of potential applications for more accurate modeling of thyroid in health and diseases and provides an excellent preclinical in vitro platform. In future, organoid technology can provide a better understanding of the molecular mechanisms of pathogenesis and tumorigenesis of thyroid tissue and more effective treatment for related disorders due to more accurate simulation of the thyroid physiology.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/tendências , Organoides/citologia , Glândula Tireoide/citologia , Técnicas de Cultura de Células/história , História do Século XX , História do Século XXI , Humanos , Modelos Biológicos , Medicina Regenerativa/história , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências
17.
Nat Commun ; 12(1): 692, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514709

RESUMO

Skeletal muscle has remarkable regeneration capabilities, mainly due to its resident muscle stem cells (MuSCs). In this review, we introduce recently developed technologies and the mechanistic insights they provide to the understanding of MuSC biology, including the re-definition of quiescence and Galert states. Additionally, we present recent studies that link MuSC function with cellular heterogeneity, highlighting the complex regulation of self-renewal in regeneration, muscle disorders and aging. Finally, we discuss MuSC metabolism and its role, as well as the multifaceted regulation of MuSCs by their niche. The presented conceptual advances in the MuSC field impact on our general understanding of stem cells and their therapeutic use in regenerative medicine.


Assuntos
Músculo Esquelético/citologia , Doenças Musculares/terapia , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Músculo Esquelético/fisiologia , Doenças Musculares/fisiopatologia , Regeneração/fisiologia
18.
Methods Mol Biol ; 2147: 3-18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840806

RESUMO

The design of optimized scaffolds for tissue engineering and regenerative medicine is a key topic of current research, as the complex macro- and micro-architectures required for scaffold applications depend not only on the mechanical properties but also on the physical and molecular queues of the surrounding tissue within the defect site. Thus, the prediction of optimal features for tissue engineering scaffolds is very important, for both its physical and biological properties.The relationship between high scaffold porosity and high mechanical properties is contradictory, as it becomes even more complex due to the scaffold degradation process. Biomimetic design has been considered as a viable method to design optimum scaffolds for tissue engineering applications. In this research work, the scaffold designs are based on biomimetic boundary-based bone micro-CT data. Based on the biomimetic boundaries and with the aid of topological optimization schemes, the boundary data and given porosity is used to obtain the initial scaffold designs. In summary, the proposed scaffold design scheme uses the principles of both the boundaries and porosity of the micro-CT data with the aid of numerical optimization and simulation tools.


Assuntos
Materiais Biomiméticos/síntese química , Desenho Assistido por Computador , Desenho de Equipamento/métodos , Engenharia Tecidual/instrumentação , Tecidos Suporte , Materiais Biomiméticos/química , Biomimética/métodos , Osso e Ossos/fisiologia , Simulação por Computador , Humanos , Modelos Anatômicos , Porosidade , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Resistência ao Cisalhamento , Resistência à Tração , Engenharia Tecidual/métodos , Tecidos Suporte/química , Microtomografia por Raio-X
19.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322564

RESUMO

Nowadays, regenerative medicine faces a major challenge in providing new, functional materials that will meet the characteristics desired to replenish and grow new tissue. Therefore, this study presents new ceramic-polymer composites in which the matrix consists of tricalcium phosphates covered with blends containing a chemically bounded diclofenac with the biocompatible polymer-poly(3-hydroxyoctanoate), P(3HO). Modification of P(3HO) oligomers was confirmed by NMR, IR and XPS. Moreover, obtained oligomers and their blends were subjected to an in-depth characterisation using GPC, TGA, DSC and AFM. Furthermore, we demonstrate that the hydrophobicity and surface free energy values of blends decreased with the amount of diclofenac modified oligomers. Subsequently, the designed composites were used as a substrate for growth of the pre-osteoblast cell line (MC3T3-E1). An in vitro biocompatibility study showed that the composite with the lowest concentration of the proposed drug is within the range assumed to be non-toxic (viability above 70%). Cell proliferation was visualised using the SEM method, whereas the observation of cell penetration into the scaffold was carried out by confocal microscopy. Thus, it can be an ideal new functional bone tissue substitute, allowing not only the regeneration and restoration of the defect but also inhibiting the development of chronic inflammation.


Assuntos
Fosfatos de Cálcio/química , Cerâmica/química , Diclofenaco/química , Poli-Hidroxialcanoatos/química , Animais , Regeneração Óssea/efeitos dos fármacos , Linhagem Celular , Cerâmica/farmacologia , Camundongos , Microscopia Eletroquímica de Varredura , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
20.
Ann Biol Clin (Paris) ; 78(6): 593-603, 2020 Dec 01.
Artigo em Francês | MEDLINE | ID: mdl-33361014

RESUMO

The use of dental stem cells has raised many hopes in the development of new treatments for neurodegenerative diseases. According to current statistics, about 1 in 6 people in the world would be affected by a neurological disease. This number continues to increase as the world's population ages, making neurodegenerative diseases probably the one of the major challenges of public health in the 21st century. Neurodegenerative diseases are characterized mainly by a progressive loss of cognitive abilities and patient autonomy related to loss and degeneration of neurons in brain structures. Unfortunately, today, the only treatments available for this type of disease do only relieve the symptoms, they do not treat them, and few clinical trials have been truly convincing to date. Hence, hope lies for these diseases in the development of other therapeutic approaches. As such, dental stem cells could be a promising area of research because of their rapid growth, their great capacity for differentiation into different types of cells (among neuronal ones for some of them) and how easy they can be obtained, without raising ethical issues as for example for embryonic stem cells.


Assuntos
Células-Tronco Neurais/fisiologia , Doenças Neurodegenerativas/terapia , Medicina Regenerativa/tendências , Células-Tronco/fisiologia , Dente/citologia , Animais , Diferenciação Celular , Humanos , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências , Células-Tronco/citologia , Bancos de Tecidos/tendências , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...