Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.075
Filtrar
1.
Ann Clin Lab Sci ; 51(4): 529-534, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34452891

RESUMO

OBJECTIVE: Multiple sclerosis (MS) is a progressive autoimmune-mediated inflammation of the central nervous system (CNS), and experimental autoimmune encephalomyelitis (EAE) is a suitable model to study the pathogenesis of MS. IL-2 has been considered as both a T cell growth factor and an anti-inflammatory cytokine. In the present study, we investigated the effects of a low dose IL-2 treatment on mouse EAE therapy. METHOD: The expression of IL-2 and IL-2 receptor were predicted using public microarray data and verified by real-time PCR and ELISA in mouse EAE model. Mice were injected with Myelin Oligodendrocyte Glycoprotein (35-55)(MOG35-55) subcutaneously to induce EAE model. IL-2 treatment was initiated during 5 consecutive days from day 15 post MOG35-55 immunization. Flow cytometry was applied to investigate the proportions of Th17 and Treg cells. ELISA was used to detect the concentrations of IL-17a, IFNr, IL-10 and TGFb. RESULTS: In this study, we showed that the IL-2 treatment ameliorates the clinical severity of EAE. Flow cytometry results indicated that the therapeutic effect was related to a reduction of Th17 cells and an expansion of Treg cells in the EAE spinal cord. In vitro experiments also confirmed the anti-inflammatory effect of IL-2 in EAE-reactivated T cells. CONCLUSION: Low-dose IL-2 is a potential therapeutic strategy for EAE and MS.


Assuntos
Anti-Inflamatórios/administração & dosagem , Encefalomielite Autoimune Experimental/tratamento farmacológico , Interleucina-2/administração & dosagem , Medula Espinal/efeitos dos fármacos , Células Th17/imunologia , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia
2.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206850

RESUMO

Treating postoperative (PO) pain is a clinical challenge. Inadequate PO pain management can lead to worse outcomes, for example chronic post-surgical pain. Therefore, acquiring new information on the PO pain mechanism would increase the therapeutic options available. In this paper, we evaluated the role of a natural substance, epigallocatechin-3-gallate (EGCG), on pain and neuroinflammation induced by a surgical procedure in an animal model of PO pain. We performed an incision of the hind paw and EGCG was administered for five days. Mechanical allodynia, thermal hyperalgesia, and motor dysfunction were assessed 24 h, and three and five days after surgery. At the same time points, animals were sacrificed, and sera and lumbar spinal cord tissues were harvested for molecular analysis. EGCG administration significantly alleviated hyperalgesia and allodynia, and reduced motor disfunction. From the molecular point of view, EGCG reduced the activation of the WNT pathway, reducing WNT3a, cysteine-rich domain frizzled (FZ)1 and FZ8 expressions, and both cytosolic and nuclear ß-catenin expression, and the noncanonical ß-catenin-independent signaling pathways, reducing the activation of the NMDA receptor subtype NR2B (pNR2B), pPKC and cAMP response element-binding protein (pCREB) expressions at all time points. Additionally, EGCG reduced spinal astrocytes and microglia activation, cytokines overexpression and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) pathway, downregulating inducible nitric oxide synthase (iNOS) activation, cyclooxygenase 2 (COX-2) expression, and prostaglandin E2 (PGE2) levels. Thus, EGCG administration managing the WNT/ß-catenin signaling pathways modulates PO pain related neurochemical and inflammatory alterations.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Catequina/análogos & derivados , Dor Pós-Operatória/tratamento farmacológico , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Catequina/farmacologia , Catequina/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
3.
Molecules ; 26(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208700

RESUMO

Cardamonin, a naturally occurring chalcone isolated from Alpinia species has shown to possess strong anti-inflammatory and anti-nociceptive activities. Previous studies have demonstrated that cardamonin exerts antihyperalgesic and antiallodynic properties in chronic constriction injury (CCI)-induced neuropathic pain animal model. However, the mechanisms underlying cardamonin's effect have yet to be fully understood. The present study aims to investigate the involvement of the serotonergic system in cardamonin induced antihyperalgesic and antiallodynic effects in CCI-induced neuropathic pain mice model. The neuropathic pain symptoms in the CCI mice model were assessed using Hargreaves Plantar test and von-Frey filament test on day 14 post-surgery. Central depletion of serotonin along the descending serotonergic pathway was done using ρ-chlorophenylalanine (PCPA, 100 mg/kg, i.p.), an inhibitor of serotonin synthesis for four consecutive days before cardamonin treatment, and was found to reverse the antihyperalgesic and antiallodynic effect produced by cardamonin. Pretreatment of the mice with several 5-HT receptor subtypes antagonists: methiothepin (5-HT1/6/77 receptor antagonist, 0.1 mg/kg), WAY 100635 (5-HT1A receptor antagonist, 1 mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5 mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3 mg/kg), and ondansetron (5-HT3 receptor antagonist, 0.5 mg/kg) were shown to abolish the effect of cardamonin induced antihyperalgesic and antiallodynic effects. Further evaluation of the 5-HT1A receptor subtype protein expressions reveals that cardamonin significantly upregulated its expression in the brainstem and spinal cord. Our results suggest that the serotonergic pathway is essential for cardamonin to exert its antineuropathic effect in CCI mice through the involvement of the 5-HT1A receptor subtype in the central nervous system.


Assuntos
Chalconas/farmacologia , Neuralgia/tratamento farmacológico , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Chalconas/metabolismo , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Receptor 5-HT1A de Serotonina/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Medula Espinal/efeitos dos fármacos
4.
Methods Mol Biol ; 2311: 109-130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033080

RESUMO

The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows for straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease.Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize "CNS-specific" cytokine production, and, (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology.


Assuntos
Encéfalo/virologia , Encefalite Viral/virologia , Mielite/virologia , Medula Espinal/virologia , Animais , Animais Recém-Nascidos , Antivirais/farmacologia , Apoptose , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Citocinas/metabolismo , Encefalite Viral/tratamento farmacológico , Encefalite Viral/metabolismo , Encefalite Viral/patologia , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/metabolismo , Camundongos , Mielite/tratamento farmacológico , Mielite/metabolismo , Mielite/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Técnicas de Cultura de Tecidos , Replicação Viral
5.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R824-R832, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33789445

RESUMO

To examine the role of chronic (in)activity on muscle carnosine (MCarn) and how chronic (in)activity affects MCarn responses to ß-alanine supplementation in spinal cord-injured athletes, 16 male athletes with paraplegia were randomized (2:1 ratio) to receive ß-alanine (n = 11) or placebo (PL, n = 5). They consumed 6.4 g/day of ß-alanine or PL for 28 days. Muscle biopsies of the active deltoid and the inactive vastus lateralis (VL) were taken before and after supplementation. MCarn in the VL was also compared with the VL of a group of individuals without paraplegia (n = 15). MCarn was quantified in whole muscle and in pools of individual fibers by high-performance liquid chromatography. MCarn was higher in chronically inactive VL vs. well-trained deltoid (32.0 ± 12.0 vs. 20.5 ± 6.1 mmol/kg DM; P = 0.018). MCarn was higher in inactive vs. active VL (32.0 ± 12.0 vs. 21.2 ± 7.5 mmol/kg DM; P = 0.011). In type-I fibers, MCarn was significantly higher in the inactive VL than in the active deltoid (38.3 ± 4.7 vs. 27.3 ± 11.8 mmol/kg DM, P = 0.014). MCarn increased similarly between inactive VL and active deltoid in the ß-alanine group (VL: 68.9 ± 55.1%, P = 0.0002; deltoid: 90.5 ± 51.4%, P < 0.0001), with no changes in the PL group. MCarn content was higher in the inactive VL than in the active deltoid and the active VL, but this is probably a consequence of fiber type shift (type I to type II) that occurs with chronic inactivity. Chronically inactive muscle showed an increase in MCarn after BA supplementation equally to the active muscle, suggesting that carnosine accretion following ß-alanine supplementation is not influenced by muscle inactivity.


Assuntos
Carnosina/metabolismo , Homeostase/fisiologia , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiopatologia , Atletas , Suplementos Nutricionais , Humanos , Medula Espinal/efeitos dos fármacos , beta-Alanina/administração & dosagem , beta-Alanina/farmacologia
6.
Theranostics ; 11(12): 5970-5985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897893

RESUMO

Overactivation of N-methyl-D-aspartate receptor (NMDAR) in the spinal cord dorsal horn (SDH) in the setting of injury represents a key mechanism of neuropathic pain. However, directly blocking NMDAR or its downstream signaling, interaction between postsynaptic density-95 (PSD-95) and neuronal nitric oxide synthase (nNOS), causes analgesic tolerance, mainly due to GABAergic disinhibition. The aim of this study is to explore the possibility of preventing analgesic tolerance through co-targeting NMDAR downstream signaling and γ-aminobutyric acid type A receptors (GABAARs). Methods: Mechanical/thermal hyperalgesia were quantified to assess analgesic effects. Miniature postsynaptic currents were tested by patch-clamp recording to evaluate synaptic transmission in the SDH. GABA-evoked currents were tested on HEK293 cells expressing different subtypes of recombinant GABAARs to assess the selectivity of (+)-borneol and ZL006-05. The expression of α2 and α3 subunits of GABAARs and BDNF, and nNOS-PSD-95 complex levels were analyzed by western blotting and coimmunoprecipitation respectively. Open field test, rotarod test and Morris water maze task were conducted to evaluate the side-effect of ZL006-05. Results: (+)-Borneol selectively potentiated α2- and α3-containing GABAARs and prevented the disinhibition of laminae I excitatory neurons in the SDH and analgesic tolerance caused by chronic use of ZL006, a nNOS-PSD-95 blocker. A dual-target compound ZL006-05 produced by linking ZL006 and (+)-borneol through an ester bond blocked nNOS-PSD-95 interaction and potentiated α2-containing GABAAR selectively. Chronic use of ZL006-05 did not produce analgesic tolerance and unwanted side effects. Conclusion: By targeting nNOS-PSD-95 interaction and α2-containing GABAAR simultaneously, chronic use of ZL006-05 can avoid analgesic tolerance and unwanted side effects. Therefore, we offer a novel candidate drug without analgesic tolerance for treating neuropathic pain.


Assuntos
Analgésicos/farmacologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Neuralgia/tratamento farmacológico , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores de GABA-A/metabolismo , Ácidos Aminossalicílicos/farmacologia , Animais , Benzilaminas/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Manejo da Dor/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Ácido gama-Aminobutírico/metabolismo
7.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925035

RESUMO

Polyunsaturated fatty acids (PUFAs) are essential FAs for human health. Cytochrome P450 oxygenates PUFAs to produce anti-inflammatory and pain-resolving epoxy fatty acids (EpFAs) and other oxylipins whose epoxide ring is opened by the soluble epoxide hydrolase (sEH/Ephx2), resulting in the formation of toxic and pro-inflammatory vicinal diols (dihydroxy-FAs). Pharmacological inhibition of sEH is a promising strategy for the treatment of pain, inflammation, cardiovascular diseases, and other conditions. We tested the efficacy of a potent, selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Prophylactic TPPU treatment significantly ameliorated EAE without affecting circulating white blood cell counts. TPPU accumulated in the spinal cords (SCs), which was correlated with plasma TPPU concentration. Targeted lipidomics in EAE SCs and plasma identified that TPPU blocked production of dihydroxy-FAs efficiently and increased some EpFA species including 12(13)-epoxy-octadecenoic acid (12(13)-EpOME) and 17(18)-epoxy-eicosatrienoic acid (17(18)-EpETE). TPPU did not alter levels of cyclooxygenase (COX-1/2) metabolites, while it increased 12-hydroxyeicosatetraenoic acid (12-HETE) and other 12/15-lipoxygenase metabolites. These analytical results are consistent with sEH inhibitors that reduce neuroinflammation and accelerate anti-inflammatory responses, providing the possibility that sEH inhibitors could be used as a disease modifying therapy, as well as for MS-associated pain relief.


Assuntos
Encefalomielite Autoimune Experimental/prevenção & controle , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Ácidos Graxos/biossíntese , Ácidos Graxos/sangue , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
8.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804568

RESUMO

The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30-60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Glicina/líquido cefalorraquidiano , Hiperalgesia/prevenção & controle , Neuralgia/tratamento farmacológico , Sarcosina/análogos & derivados , Animais , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Atividade Motora , Neuralgia/metabolismo , Neuralgia/patologia , Ratos , Ratos Wistar , Sarcosina/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
9.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808491

RESUMO

The bioactive form of vitamin D, 1,25-dihydroxyvitamin D (1,25D3), exerts immunomodulatory actions resulting in neuroprotective effects potentially useful against neurodegenerative and autoimmune diseases. In fact, vitamin D deficiency status has been correlated with painful manifestations associated with different pathological conditions. In this study, we have investigated the effects of vitamin D deficiency on microglia cells, as they represent the main immune cells responsible for early defense at central nervous system (CNS), including chronic pain states. For this purpose, we have employed a model of low vitamin D intake during gestation to evaluate possible changes in primary microglia cells obtained from postnatal day(P)2-3 pups. Afterwards, pain measurement and microglia morphological analysis in the spinal cord level and in brain regions involved in the integration of pain perception were performed in the parents subjected to vitamin D restriction. In cultured microglia, we detected a reactive-activated and proliferative-phenotype associated with intracellular reactive oxygen species (ROS) generation. Oxidative stress was closely correlated with the extent of DNA damage and increased ß-galactosidase (B-gal) activity. Interestingly, the incubation with 25D3 or 1,25D3 or palmitoylethanolamide, an endogenous ligand of peroxisome proliferator-activated-receptor-alpha (PPAR-α), reduced most of these effects. Morphological analysis of ex-vivo microglia obtained from vitamin-D-deficient adult mice revealed an increased number of activated microglia in the spinal cord, while in the brain microglia appeared in a dystrophic phenotype. Remarkably, activated (spinal) or dystrophic (brain) microglia were detected in a prominent manner in females. Our data indicate that vitamin D deficiency produces profound modifications in microglia, suggesting a possible role of these cells in the sensorial dysfunctions associated with hypovitaminosis D.


Assuntos
Dor Crônica/etiologia , Microglia/efeitos dos fármacos , Deficiência de Vitamina D/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Células Cultivadas , Dor Crônica/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Vitamina D/metabolismo , Vitamina D/farmacologia , Deficiência de Vitamina D/fisiopatologia
10.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805709

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by selective neuronal death in the brain stem and spinal cord. The cause is unknown, but an increasing amount of evidence has firmly certified that neuroinflammation plays a key role in ALS pathogenesis. Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and has been implicated as driver of disease progression. Here, we describe a treatment study demonstrating the therapeutic potential of a tandem version of the well-known all-d-peptide RD2 (RD2RD2) in a transgenic mouse model of ALS (SOD1*G93A). Mice were treated intraperitoneally for four weeks with RD2RD2 vs. placebo. SOD1*G93A mice were tested longitudinally during treatment in various behavioural and motor coordination tests. Brain and spinal cord samples were investigated immunohistochemically for gliosis and neurodegeneration. RD2RD2 treatment in SOD1*G93A mice resulted not only in a reduction of activated astrocytes and microglia in both the brain stem and lumbar spinal cord, but also in a rescue of neurons in the motor cortex. RD2RD2 treatment was able to slow progression of the disease phenotype, especially the motor deficits, to an extent that during the four weeks treatment duration, no significant progression was observed in any of the motor experiments. Based on the presented results, we conclude that RD2RD2 is a potential therapeutic candidate against ALS.


Assuntos
Esclerose Amiotrófica Lateral/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Oligopeptídeos/uso terapêutico , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/fisiopatologia , Animais , Anti-Inflamatórios/química , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Destreza Motora/efeitos dos fármacos , Destreza Motora/fisiologia , Proteínas Mutantes/genética , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Oligopeptídeos/química , Fenótipo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
11.
Int J Biol Macromol ; 182: 82-90, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766598

RESUMO

The potential of berberine loaded in chitosan nanoparticles (BerNChs) within a hybrid of alginate (Alg) and chitosan (Ch) hydrogel was investigated for the substrate which is known as an inhibit activator proteins. The physicochemical properties of the developed Alg-Ch hydrogel were investigated by fourier-transform infrared spectroscopy. The swelling ability and degradation rate of hydrogels were also analyzed in a phosphate-buffered saline solution at physiological pH. The seeded scaffolds with endometrial stem cells as well as scaffolds alone were then transplanted into hemisected SCI rats. The SEM images displayed the favorable seeding and survival of the cells on the Alg-Ch/BerNChs hydrogel scaffold. The obtained data from immunostining of neuroflilament (NF), as a neuronal growth marker, in the various groups showed that the lowest and highest immunoractivity was belonged to the control and Alg-Ch/BerNCh seeded with ESCs groups, respectively. Finally, the Basso, Beattie, and Bresnahan (BBB) test confirmed the recovery of sensory and motor functions, clinically. The results suggested that combination therapy using the endometrial stem cells seeded on Alg-Ch/BerNChs hydrogel scaffold has the potential to regenerate the injured spinal cord and to limit the secondary damage.


Assuntos
Alginatos/química , Berberina/administração & dosagem , Quitosana/análogos & derivados , Hidrogéis/química , Nanopartículas/química , Regeneração da Medula Espinal , Animais , Berberina/farmacologia , Células Cultivadas , Liberação Controlada de Fármacos , Endométrio/citologia , Feminino , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Ratos Wistar , Medula Espinal/efeitos dos fármacos
12.
Int J Biol Macromol ; 179: 610-619, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662422

RESUMO

Jararhagin is a hyperalgesic metalloproteinase from Bothrops jararaca venom. In rodents, jararhagin induces nociceptive behaviors that correlate with an increase in peripheral cytokine levels. However, the role of the spinal cord glia in pain processing after peripheral stimulus of jararhagin has not been investigated. Aiming to explore this proposal, mice received intraplantar (i.pl.) injection of jararhagin and the following parameters were evaluated: hyperalgesia, spinal cord TNF-α, IL-1ß levels, and CX3CR1, GFAP and p-NFκB activation. The effects of intrathecal (i.t.) injection of TNF-α soluble receptor (etanercept), IL-1 receptor antagonist (IL-1Ra), and inhibitors of NFκB (PDTC), microglia (minocycline) and astrocytes (α-aminoadipate) were investigated. Jararhagin inoculation induced cytokine production (TNF-α and IL-1ß) in the spinal cord, which was reduced by treatment with PDTC (40% and 50%, respectively). Jararhagin mechanical hyperalgesia and cytokine production were inhibited by treatment with etanercept (67%), IL-1Ra (60%), PDTC (70%), minocycline (60%) and α-aminoadipate (45%). Furthermore, jararhagin induced an increase in p-NFκB, CX3CR1 and GFAP detection in the spinal cord indicating activation of NFκB, microglia and astrocytes. These results demonstrate for the first time that jararhagin-induced mechanical hyperalgesia is dependent on spinal cord activation of glial cells, consequent NFκB activation, and cytokine production in mice.


Assuntos
Astrócitos/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Hiperalgesia , Metaloendopeptidases/toxicidade , Microglia/efeitos dos fármacos , Dor , Medula Espinal/efeitos dos fármacos , Animais , Bothrops/metabolismo , Citocinas/metabolismo , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Dor/induzido quimicamente
13.
Nat Neurosci ; 24(5): 658-666, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33737752

RESUMO

Cannabinoids reduce tremor associated with motor disorders induced by injuries and neurodegenerative disease. Here we show that this effect is mediated by cannabinoid receptors on astrocytes in the ventral horn of the spinal cord, where alternating limb movements are initiated. We first demonstrate that tremor is reduced in a mouse model of essential tremor after intrathecal injection of the cannabinoid analog WIN55,212-2. We investigate the underlying mechanism using electrophysiological recordings in spinal cord slices and show that endocannabinoids released from depolarized interneurons activate astrocytic cannabinoid receptors, causing an increase in intracellular Ca2+, subsequent release of purines and inhibition of excitatory neurotransmission. Finally, we show that the anti-tremor action of WIN55,212-2 in the spinal cords of mice is suppressed after knocking out CB1 receptors in astrocytes. Our data suggest that cannabinoids reduce tremor via their action on spinal astrocytes.


Assuntos
Astrócitos/metabolismo , Tremor Essencial/metabolismo , Interneurônios/metabolismo , Receptores de Canabinoides/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Modelos Animais de Doenças , Interneurônios/efeitos dos fármacos , Camundongos , Morfolinas/farmacologia , Naftalenos/farmacologia , Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
14.
Eur J Pharmacol ; 899: 174029, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33727053

RESUMO

The recently identified molecule P7C3 has been highlighted in the field of pain research. We examined the effect of intrathecal P7C3 in tissue injury pain evoked by formalin injection and determined the role of the GABA system in the activity of P7C3 at the spinal level. Male Sprague-Dawley rats with intrathecal catheters implanted for experimental drug delivery were studied. The effects of intrathecal P7C3 and nicotinamide phosphoribosyltransferase (NAMPT) administered 10 min before the formalin injection were examined. Animals were pretreated with bicuculline, a GABA-A receptor antagonist; saclofen, a GABA-B receptor antagonist; L-allylglycine, a glutamic acid decarboxylase (GAD) blocker; and CHS 828, an NAMPT inhibitor; to observe involvement in the effects of P7C3. The effects of P7C3 alone and the mixture of P7C3 with GABA receptor antagonists on KCl-induced calcium transients were examined in rat dorsal root ganglion (DRG) neurons. The expression of GAD and the concentration of GABA in the spinal cord were evaluated. Intrathecal P7C3 and NAMPT produced an antinociceptive effect in the formalin test. Intrathecal bicuculline, saclofen, L-allylglycine, and CHS 828 reversed the antinociception of P7C3 in both phases. P7C3 decreased the KCl-induced calcium transients in DRG neurons. Both bicuculline and saclofen reversed the blocking effect of P7C3. The levels of GAD expression and GABA concentration decreased after formalin injection and were increased by P7C3. These results suggest that P7C3 increases GAD activity and then increases the GABA concentration in the spinal cord, which in turn may act on GABA receptors causing the antinociceptive effect against pain evoked by formalin injection.


Assuntos
Analgésicos/administração & dosagem , Carbazóis/administração & dosagem , Dor Nociceptiva/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Sinalização do Cálcio , Modelos Animais de Doenças , Formaldeído , Glutamato Descarboxilase/metabolismo , Inflamação/induzido quimicamente , Injeções Espinhais , Masculino , Dor Nociceptiva/etiologia , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
15.
Eur J Pharmacol ; 899: 174008, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705800

RESUMO

Neuropathic pain is a debilitating chronic pain condition, and its treatment remains a clinical challenge. Curcumin, a naturally occurring phenolic compound, possesses diverse biological and pharmacological effects but has not yet been approved as a drug due to its low bioavailability. In order to overcome this limitation, we synthesized a potential ester prodrug of curcumin, curcumin diethyl diglutarate (CurDDG). In this study, we evaluated the pharmacological advantages of CurDDG over curcumin in a mouse model of chronic constriction injury (CCI), and the anti-inflammatory effect of CurDDG in LPS-induced RAW 264.7 macrophage cells was accessed to clarify the underline mechanism. Mice were treated with various oral doses of curcumin (25, 50, 100 and 200 mg/kg/day, daily for 14 days) or equimolar doses of CurDDG. CurDDG at all doses tested significantly attenuated CCI-induced thermal hyperalgesia and mechanical allodynia compared with the CCI-control group. CurDDG at 25, 50 and 100 mg/kg demonstrated significantly greater efficacy on both mechanical and thermal hypersensitivities compared to that of curcumin. The effect of CurDDG correlated well with the inhibition of TNF-α and IL-6 levels in both the sciatic nerve and the spinal cord, as compared to its respective control groups. Similarly, in the in vitro study, CurDDG significantly reduced the LPS-induced expression of TNF-α and IL-6. Moreover, CurDDG significantly decreased COX-2 and iNOS levels and attenuated p38, JNK, and ERK1/2 phosphorylation as compared to the curcumin-treated cells. Altogether, this study demonstrated the improved pharmacological effects of curcumin by its diglutarate conjugate, CurDDG.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Glutaratos/farmacologia , Hiperalgesia/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Pró-Fármacos/farmacologia , Nervo Isquiático/efeitos dos fármacos , Ciática/prevenção & controle , Medula Espinal/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Células RAW 264.7 , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiopatologia , Ciática/metabolismo , Ciática/fisiopatologia , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Succinatos , Fator de Necrose Tumoral alfa/metabolismo
16.
Nat Commun ; 12(1): 781, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536416

RESUMO

After complete spinal cord injuries (SCI), spinal segments below the lesion maintain inter-segmental communication via the intraspinal propriospinal network. However, it is unknown whether selective manipulation of these circuits can restore locomotor function in the absence of brain-derived inputs. By taking advantage of the compromised blood-spinal cord barrier following SCI, we optimized a set of procedures in which AAV9 vectors administered via the tail vein efficiently transduce neurons in lesion-adjacent spinal segments after a thoracic crush injury in adult mice. With this method, we used chemogenetic actuators to alter the excitability of propriospinal neurons in the thoracic cord of the adult mice with a complete thoracic crush injury. We showed that activating these thoracic neurons enables consistent and significant hindlimb stepping improvement, whereas direct manipulations of the neurons in the lumbar spinal cord led to muscle spasms without meaningful locomotion. Strikingly, manipulating either excitatory or inhibitory propriospinal neurons in the thoracic levels leads to distinct behavioural outcomes, with preferential effects on standing or stepping, two key elements of the locomotor function. These results demonstrate a strategy of engaging thoracic propriospinal neurons to improve hindlimb function and provide insights into optimizing neuromodulation-based strategies for treating SCI.


Assuntos
Dependovirus/genética , Membro Posterior/fisiopatologia , Locomoção/fisiologia , Neurônios/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Animais , Antipsicóticos/administração & dosagem , Clozapina/administração & dosagem , Clozapina/análogos & derivados , Vetores Genéticos/genética , Membro Posterior/inervação , Locomoção/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia
17.
Toxicol Appl Pharmacol ; 416: 115458, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607128

RESUMO

Morphine is an opioid agonist and a nonselective mu, kappa and delta receptor agonist. It is a commonly used analgesic drug for the treatment of acute and chronic pain as well as cancer pain. Morphine is particularly important to address the problem of morphine tolerance. Tcf7l2, known as a risk gene for schizophrenia and autism, encodes a member of the LEF1/TCF transcription factor family. TCF7L2 is an important transcription factor that is upregulated in neuropathic pain models. However, the relationship between TCF7L2 and morphine tolerance has not been reported. In this study, we found that morphine tolerance led to the upregulation of TCF7L2 in the spinal cord, and also led to the upregulation of TCF7L2 expression in glial cells, which promoted inflammation related signal, and activated TLR4 / NF-κB/NLRP3 pathway. In addition, TCF7L2 regulated microglial cell activation induced by chronic morphine treatment. Mechanically, we found that TCF7L2 transcriptionally regulated TLR4 expression, and the depletion of TCF7L2 alleviated morphine tolerance induced by chronic morphine treatment, and further alleviated pain hypersensitivity induced by chronic morphine treatment. We therefore suggested that TCF7L2 regulates the activation of TLR4/ NF-κB/NLRP3 pathway in microglia, and is involved in the formation of morphine tolerance. Our results provide a new idea for the regulation mechanism of morphine tolerance.


Assuntos
Analgésicos Opioides/toxicidade , Tolerância a Medicamentos , Hiperalgesia/induzido quimicamente , Microglia/efeitos dos fármacos , Morfina/toxicidade , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dor Nociceptiva/prevenção & controle , Receptor 4 Toll-Like/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Transdução de Sinais , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Receptor 4 Toll-Like/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Regulação para Cima
18.
J Neuroimmunol ; 352: 577480, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493985

RESUMO

The inflammatory mediator high-mobility group box 1 (HMGB1)-induced signaling pathway has been shown to play an important role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Matrine (MAT), a quinolizidine alkaloid component derived from the root of Sophorae flavescens, has the capacity to effectively suppress EAE. However, the impact of MAT treatment on HMGB1-induced signaling is not known. In the present study, we show that MAT treatment alleviated disease severity of ongoing EAE, reduced inflammatory infiltration and demyelination, and reduced the production of inflammatory factors including TNF-α, IL-6, and IL-1ß in the CNS. Moreover, MAT administration significantly reduced the protein and RNA expression of HMGB1 and TLR4 in the spinal cord, particularly in astrocytes and microglia/infiltrating macrophages. The expression of MyD88 and TRAF6, and the phosphorylation of NF-κB p65, was also down-regulated after MAT treatment. In contrast, the level of IκB-α, an inhibitory molecule for NF-κB activation, was significantly increased. Furthermore, the direct inhibitory effect of MAT on HMGB1/TLR4/NF-κB signaling in macrophages was further confirmed in vitro. Taken together, these findings demonstrate that MAT treatment alleviated CNS inflammatory demyelination and activation of astrocytes and microglia/macrophages in EAE rats, and that the mechanism underlying these effects may be closely related to modulation of HMGB1/TLR4/NF-κB signaling pathway.


Assuntos
Alcaloides/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Quinolizinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Medula Espinal/patologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
19.
J Neurosci ; 41(5): 845-854, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472820

RESUMO

Spinal interneurons are important facilitators and modulators of motor, sensory, and autonomic functions in the intact CNS. This heterogeneous population of neurons is now widely appreciated to be a key component of plasticity and recovery. This review highlights our current understanding of spinal interneuron heterogeneity, their contribution to control and modulation of motor and sensory functions, and how this role might change after traumatic spinal cord injury. We also offer a perspective for how treatments can optimize the contribution of interneurons to functional improvement.


Assuntos
Interneurônios/metabolismo , Doenças do Sistema Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Agonistas GABAérgicos/farmacologia , Agonistas GABAérgicos/uso terapêutico , Humanos , Interneurônios/efeitos dos fármacos , Interneurônios/patologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/patologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
20.
Biomed Pharmacother ; 135: 111215, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33418303

RESUMO

Neuropathic pain is still a critical public health problem worldwide. Thereby, the search for novel and more effective strategies against neuropathic pain is urgently considered. It is known that neuroinflammation plays a crucial role in the pathogenesis of neuropathic pain. SedumLineare Thunb. (SLT), a kind of Chinese herb originated from the whole grass of Crassulaceae plant, was reported to possess anti-inflammatory activity. However, whether SLT has anti-nociceptive effect on neuropathic pain and its possible underlying mechanisms remains poorly elucidated. In this study, a rat model of neuropathic pain induced by spared nerve injury (SNI)was applied. SLT (p.o.) was administered to SNI rats once every day lasting for 14 days. Pain-related behaviors were assessed by using paw withdrawal threshold (PWT) and CatWalk gait parameters. Expression levels of inflammatory mediators and pain-related signaling molecules in the spinal cord were detected using western blotting assay. The results revealed that SLT (30, 100, and 300 mg/kg, p.o.) treatment for SNI rats ameliorated mechanical hypersensitivity in a dose-dependent manner. Application of SLT at the most effective dose of 100 mg/kg to SNI rats not only significantly blocked microglial activation, but also markedly reduced the protein levels of spinal HMGB1, TLR4, MyD88, TRAF6, IL-1ß, IL-6, and TNF-α, along with an enhancement in gait parameters. Furthermore, SLT treatment dramatically inhibited the phosphorylation levels of both IKK and NF-κB p65 but obviously improved both IκB and IL-10 protein expression in the spinal cord of SNI rats. Altogether, these data suggested that SLT could suppress spinal TLR4/NF-κB signaling pathway in SNI rats, which might at least partly contribute to its anti-nociceptive action, indicating that SLT may serveas a potential therapeutic agent for neuropathic pain.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Neuralgia/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sedum , Medula Espinal/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Analgésicos/isolamento & purificação , Animais , Anti-Inflamatórios/isolamento & purificação , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Extratos Vegetais/isolamento & purificação , Ratos Sprague-Dawley , Sedum/química , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...