Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.260
Filtrar
1.
Elife ; 102021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34350827

RESUMO

For an emerging disease like COVID-19, systems immunology tools may quickly identify and quantitatively characterize cells associated with disease progression or clinical response. With repeated sampling, immune monitoring creates a real-time portrait of the cells reacting to a novel virus before disease-specific knowledge and tools are established. However, single cell analysis tools can struggle to reveal rare cells that are under 0.1% of the population. Here, the machine learning workflow Tracking Responders EXpanding (T-REX) was created to identify changes in both rare and common cells across human immune monitoring settings. T-REX identified cells with highly similar phenotypes that localized to hotspots of significant change during rhinovirus and SARS-CoV-2 infections. Specialized MHCII tetramer reagents that mark rhinovirus-specific CD4+ cells were left out during analysis and then used to test whether T-REX identified biologically significant cells. T-REX identified rhinovirus-specific CD4+ T cells based on phenotypically homogeneous cells expanding by ≥95% following infection. T-REX successfully identified hotspots of virus-specific T cells by comparing infection (day 7) to either pre-infection (day 0) or post-infection (day 28) samples. Plotting the direction and degree of change for each individual donor provided a useful summary view and revealed patterns of immune system behavior across immune monitoring settings. For example, the magnitude and direction of change in some COVID-19 patients was comparable to blast crisis acute myeloid leukemia patients undergoing a complete response to chemotherapy. Other COVID-19 patients instead displayed an immune trajectory like that seen in rhinovirus infection or checkpoint inhibitor therapy for melanoma. The T-REX algorithm thus rapidly identifies and characterizes mechanistically significant cells and places emerging diseases into a systems immunology context for comparison to well-studied immune changes.


Assuntos
COVID-19/imunologia , Leucemia Mieloide Aguda/imunologia , Melanoma/imunologia , Infecções por Picornaviridae/imunologia , Aprendizado de Máquina não Supervisionado , Adolescente , Adulto , Algoritmos , Linfócitos T CD4-Positivos/imunologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Melanoma/tratamento farmacológico , Neoplasias , Rhinovirus/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Adulto Jovem
2.
Sci Adv ; 7(34)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34407944

RESUMO

The COVID-19 pandemic has spread worldwide, yet the role of antiviral T cell immunity during infection and the contribution of immune checkpoints remain unclear. By prospectively following a cohort of 292 patients with melanoma, half of which treated with immune checkpoint inhibitors (ICIs), we identified 15 patients with acute or convalescent COVID-19 and investigated their transcriptomic, proteomic, and cellular profiles. We found that ICI treatment was not associated with severe COVID-19 and did not alter the induction of inflammatory and type I interferon responses. In-depth phenotyping demonstrated expansion of CD8 effector memory T cells, enhanced T cell activation, and impaired plasmablast induction in ICI-treated COVID-19 patients. The evaluation of specific adaptive immunity in convalescent patients showed higher spike (S), nucleoprotein (N), and membrane (M) antigen-specific T cell responses and similar induction of spike-specific antibody responses. Our findings provide evidence that ICI during COVID-19 enhanced T cell immunity without exacerbating inflammation.


Assuntos
COVID-19/imunologia , Inibidores de Checkpoint Imunológico/imunologia , Melanoma/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Imunidade Adaptativa/imunologia , Idoso , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , COVID-19/complicações , COVID-19/virologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Memória Imunológica/efeitos dos fármacos , Memória Imunológica/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Masculino , Melanoma/complicações , Melanoma/tratamento farmacológico , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/virologia
3.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360781

RESUMO

To identify potential early biomarkers of treatment response and immune-related adverse events (irAE), a pilot immune monitoring study was performed in stage IV melanoma patients by flow cytometric analysis of peripheral blood mononuclear cells (PBMC). Overall, 17 patients were treated with either nivolumab or pembrolizumab alone, or with a combination of nivolumab and ipilimumab every three weeks. Of 15 patients for which complete response assessment was available, treatment responders (n = 10) as compared to non-responders (n = 5) were characterized by enhanced PD-1 expression on CD8+ T cells immediately before treatment (median ± median absolute deviation/MAD 26.7 ± 10.4% vs. 17.2 ± 5.3%). Responders showed a higher T cell responsiveness after T cell receptor ex vivo stimulation as determined by measurement of programmed cell death 1 (PD-1) expression on CD3+ T cells before the second cycle of treatment. The percentage of CD8+ effector memory (CD8+CD45RA-CD45RO+CCR7-) T cells was higher in responders compared to non-responders before and immediately after the first cycle of treatment (median ± MAD 39.2 ± 7.3% vs. 30.5 ± 4.1% and 37.7 ± 4.6 vs. 24.0 ± 6.4). Immune-related adverse events (irAE) were accompanied by a higher percentage of activated CD4+ (CD4+CD38+HLADR+) T cells before the second treatment cycle (median ± MAD 14.9 ± 3.9% vs. 5.3 ± 0.4%). In summary, PBMC immune monitoring of immune-checkpoint inhibition (ICI) treatment in melanoma appears to be a promising approach to identify early markers of treatment response and irAEs.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Inibidores de Checkpoint Imunológico/administração & dosagem , Melanoma , Nivolumabe/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/efeitos adversos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Feminino , Citometria de Fluxo , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Memória Imunológica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Proteínas de Neoplasias/imunologia , Nivolumabe/efeitos adversos , Receptor de Morte Celular Programada 1/imunologia
4.
Anticancer Res ; 41(8): 3825-3831, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281842

RESUMO

BACKGROUND/AIM: The enzyme-linked immunospot (ELISPOT) assay is a well-established method used to evaluate the strength of T cell-mediated immune activity, and accepted as a standard functional immunological assay. Cytokine activity is a novel parameter reflecting spot size and intensity, which has not been used in ELISPOT assay before. MATERIALS AND METHODS: In the present study, from 113 ELISPOT assay data derived from previous clinical trials with dendritic cell vaccines, both spot number count and cytokine activity data for IFN-γ secretion were obtained using an ELISPOT reader. Comparing the new parameter cytokine activity with the existing parameter spot number, the feasibility of cytokine activity was investigated. RESULTS: There were no significant differences in sensitivity and specificity between spot number and cytokine activity among ELISPOT assay data from CMVpp65 and other antigen peptide-stimulated cytotoxic T lymphocytes. CONCLUSION: Although cytokine activity is a novel parameter unreported so far, it did not show any advantages in the evaluation T cell immune responses compared to the existing spot number parameter.


Assuntos
Citocinas/metabolismo , ELISPOT/métodos , Neoplasias/imunologia , Glioblastoma/imunologia , Humanos , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Melanoma/imunologia , Linfócitos T Citotóxicos/imunologia
5.
Nature ; 596(7870): 119-125, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290406

RESUMO

Interactions between T cell receptors (TCRs) and their cognate tumour antigens are central to antitumour immune responses1-3; however, the relationship between phenotypic characteristics and TCR properties is not well elucidated. Here we show, by linking the antigenic specificity of TCRs and the cellular phenotype of melanoma-infiltrating lymphocytes at single-cell resolution, that tumour specificity shapes the expression state of intratumoural CD8+ T cells. Non-tumour-reactive T cells were enriched for viral specificities and exhibited a non-exhausted memory phenotype, whereas melanoma-reactive lymphocytes predominantly displayed an exhausted state that encompassed diverse levels of differentiation but rarely acquired memory properties. These exhausted phenotypes were observed both among clonotypes specific for public overexpressed melanoma antigens (shared across different tumours) or personal neoantigens (specific for each tumour). The recognition of such tumour antigens was provided by TCRs with avidities inversely related to the abundance of cognate targets in melanoma cells and proportional to the binding affinity of peptide-human leukocyte antigen (HLA) complexes. The persistence of TCR clonotypes in peripheral blood was negatively affected by the level of intratumoural exhaustion, and increased in patients with a poor response to immune checkpoint blockade, consistent with chronic stimulation mediated by residual tumour antigens. By revealing how the quality and quantity of tumour antigens drive the features of T cell responses within the tumour microenvironment, we gain insights into the properties of the anti-melanoma TCR repertoire.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma/imunologia , Especificidade por Substrato/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/sangue , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Célula Única , Transcriptoma/genética , Microambiente Tumoral
6.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299373

RESUMO

Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an 'MRT-induced immune effect'. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.


Assuntos
Melanoma/radioterapia , Animais , Terapia Combinada/métodos , Humanos , Imunidade/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Melanoma/terapia , Radioterapia/métodos , Síncrotrons
7.
Genes (Basel) ; 12(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200642

RESUMO

FENDRR (Fetal-lethal non-coding developmental regulatory RNA, LncRNA FOXF1-AS1) is a recently identified tumor suppressor long non-coding (LncRNA) RNA, and its expression has been linked with epigenetic modulation of the target genes involved in tumor immunity. In this study, we aimed to understand the role of FENDRR in predicting immune-responsiveness and the inflammatory tumor environment. Briefly, FENDRR expression and its relationship to immune activation signals were assessed in murine cell lines. Data suggested that tumor cells (e.g., C26 colon, 4T1 breast) that typically upregulate immune activation genes and the MHC class I molecule exhibited high FENDRR expression levels. Conversely, tumor cells with a generalized downregulation of immune-related gene expression (e.g., B16F10 melanoma) demonstrated low to undetectable FENDRR levels. Mechanistically, the modulation of FENDRR expression enhanced the inflammatory and WNT signaling pathways in tumors. Our early data suggest that FENDRR can play an important role in the development of immune-relevant phenotypes in tumors, and thereby improve cancer immunotherapy.


Assuntos
Neoplasias do Colo/genética , Melanoma/genética , RNA Longo não Codificante/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt
8.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34272309

RESUMO

The clinical and immunologic implications of the SARS-CoV-2 pandemic for patients with cancer receiving systemic anticancer therapy have introduced a multitude of clinical challenges and academic controversies. This review summarizes the current evidence, discussion points, and recommendations regarding the use of immune checkpoint inhibitors (ICIs) in patients with cancer during the SARS-CoV-2 pandemic, with a focus on patients with melanoma and renal cell carcinoma (RCC). More specifically, we summarize the theoretical concepts and available objective data regarding the relationships between ICIs and the antiviral immune response, along with recommended clinical approaches to the management of melanoma and RCC patient cohorts receiving ICIs throughout the course of the COVID-19 pandemic. Additional insights regarding the use of ICIs in the setting of current and upcoming COVID-19 vaccines and broader implications toward future pandemics are also discussed.


Assuntos
COVID-19/imunologia , Carcinoma de Células Renais/imunologia , Inibidores de Checkpoint Imunológico/imunologia , Neoplasias Renais/imunologia , Melanoma/imunologia , SARS-CoV-2/imunologia , COVID-19/tratamento farmacológico , COVID-19/epidemiologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Carcinoma de Células Renais/terapia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias Renais/terapia , Melanoma/terapia , Pandemias/prevenção & controle , SARS-CoV-2/efeitos dos fármacos
9.
Int J Mol Sci ; 22(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281259

RESUMO

Therapy targeting immune checkpoints represents an integral part of the treatment for patients suffering from advanced melanoma. However, the mechanisms of resistance are responsible for a lower therapeutic outcome than expected. Concerning melanoma, insufficient stimulation of the immune system by tumour neoantigens is a likely explanation. As shown previously, radiotherapy is a known option for increasing the production of tumour neoantigens and their release into the microenvironment. Consequently, neoantigens could be recognized by antigen presenting cells (APCs) and subjected to effector T lymphocytes. Enhancing the immune reaction can trigger the therapeutic response also at distant metastases, a phenomenon known as an abscopal effect (from "ab scopus", that is, away from the target). To illustrate this, we present the case of a 78-year old male treated by anti-CTLA-4/ipilimumab for metastatic melanoma. The patient received the standard four doses of ipilimumab administered every three weeks. However, the control CT scans detected disease progression in the form of axillary lymph nodes metastasis and liver metastasis two months after ipilimumab. At this stage, palliative cryotherapy of the skin metastases was initiated to alleviate the tumour burden. Surprisingly, the effect of cryotherapy was also observed in untreated metastases and deep subcutaneous metastases on the back. Moreover, we observed the disease remission of axillary lymph nodes and liver metastasis two months after the cryotherapy. The rarity of the abscopal effect suggests that even primed anti-tumour CD8+ T cells cannot overcome the tumour microenvironment's suppressive effect and execute immune clearance. However, the biological mechanism underlying this phenomenon is yet to be elucidated. The elicitation of a systemic response by cryotherapy with documented abscopal effect was rarely reported, although the immune response induction is presumably similar to a radiotherapy-induced one. The report is a combination case study and review of the abscopal effect in melanoma treated with checkpoint inhibitors.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Ipilimumab/uso terapêutico , Melanoma/secundário , Melanoma/terapia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Idoso , Células Apresentadoras de Antígenos/imunologia , Antígenos de Neoplasias/metabolismo , Crioterapia , Humanos , Masculino , Melanoma/imunologia , Modelos Imunológicos , Cuidados Paliativos , Neoplasias Cutâneas/imunologia , Resultado do Tratamento , Microambiente Tumoral/imunologia
10.
Science ; 372(6547)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34112666

RESUMO

Next-generation tissue-based biomarkers for immunotherapy will likely include the simultaneous analysis of multiple cell types and their spatial interactions, as well as distinct expression patterns of immunoregulatory molecules. Here, we introduce a comprehensive platform for multispectral imaging and mapping of multiple parameters in tumor tissue sections with high-fidelity single-cell resolution. Image analysis and data handling components were drawn from the field of astronomy. Using this "AstroPath" whole-slide platform and only six markers, we identified key features in pretreatment melanoma specimens that predicted response to anti-programmed cell death-1 (PD-1)-based therapy, including CD163+PD-L1- myeloid cells and CD8+FoxP3+PD-1low/mid T cells. These features were combined to stratify long-term survival after anti-PD-1 blockade. This signature was validated in an independent cohort of patients with melanoma from a different institution.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/análise , Imunofluorescência , Melanoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Antígeno B7-H1/análise , Antígenos CD8/análise , Feminino , Fatores de Transcrição Forkhead/análise , Humanos , Proteínas de Checkpoint Imunológico/análise , Macrófagos/química , Masculino , Melanoma/química , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Prognóstico , Receptor de Morte Celular Programada 1/análise , Intervalo Livre de Progressão , Receptores de Superfície Celular/análise , Fatores de Transcrição SOXE/análise , Análise de Célula Única , Subpopulações de Linfócitos T/química , Subpopulações de Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral
11.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073188

RESUMO

Building upon the resounding therapeutic success of monoclonal antibodies, and supported by accelerating progress in engineering methods, the field of multispecific therapeutic antibodies is growing rapidly. Over 140 different molecules are currently in clinical testing, with excellent results in recent phase 1-3 clinical trials for several of them. Multivalent bispecific IgG-modified formats predominate today, with a clear tendency for more target antigens and further increased valency in newer constructs. The strategies to augment anticancer efficacy are currently equally divided between disruption of multiple surface antigens, and additional redirection of cytotoxic T or NK lymphocytes against the tumor. Both effects complement other modern modalities, such as tyrosine kinase inhibitors and adoptive cell therapies, with which multispecifics are increasingly applied in combination or merged, for example, in the form of antibody producing CAR-T cells and oncolytics. While mainly focused on B-cell malignancies early on, the contemporary multispecific antibody sector accommodates twice as many trials against solid compared to hematologic cancers. An exciting emerging prospect is the targeting of intracellular neoantigens using T-cell receptor (TCR) fusion proteins or TCR-mimic antibody fragments. Considering the fact that introduction of PD-(L)1 inhibitors only a few years ago has already facilitated 5-year survival rates of 30-50% for per se highly lethal neoplasms, such as metastatic melanoma and non-small-cell lung carcinoma, the upcoming enforcement of current treatments with "next-generation" immunotherapeutics, offers a justified hope for the cure of some advanced cancers in the near future.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Animais , Anticorpos Biespecíficos/imunologia , Especificidade de Anticorpos , Antineoplásicos Imunológicos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Melanoma/imunologia , Melanoma/patologia
12.
Cancer Treat Rev ; 99: 102253, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34186441

RESUMO

In the last decade, immunotherapy and target therapy have revolutionized the prognosis of patients with BRAF-V600 mutation-positive metastatic melanoma. To date, three different combinations of BRAF/MEK inhibitors have been approved for this population, showing comparable efficacy and unique toxicity profiles. Several immune-checkpoint inhibitors, including pembrolizumab, nivolumab and the combination of nivolumab plus ipilimumab, are also available options for untreated metastatic melanoma patients. A novel approach has emerged by combining immune-checkpoint inhibitors and targeted agents, based on preclinical hints of synergy, prompting clinical results from large randomized trials. Specifically, the triplet of atezolizumab, vemurafenib and cobimetinib has been recently approved by FDA for patients with untreated BRAF-mutant metastatic melanoma. With a wide variety of available treatment options in this setting, it is paramount to establish criteria to select the most effective and safe frontline tailored approaches, for each patient. Results from ongoing studies are awaited, to maximise the benefits in survival outcomes and quality of life for patients, balancing adverse events and clinical benefit. The purpose of this review is to summarize the current landscape of standard and experimental treatment strategies for the first line treatment of patients with BRAF-mutated advanced melanoma and discuss the best patient-centered tailored strategies in the first-line setting.


Assuntos
Melanoma/tratamento farmacológico , Melanoma/enzimologia , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Clínicos Fase III como Assunto , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/genética , Melanoma/imunologia , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Resultado do Tratamento
13.
Cancer Sci ; 112(8): 3163-3172, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34101300

RESUMO

To evaluate the feasibility of adoptive cell therapy (ACT) using ex vivo-expanded tumor-infiltrating lymphocytes (TILs) in Japanese patients with melanoma who failed immune-checkpoint inhibitor therapy, an open-label, single-arm, pilot study was conducted. We investigated the immunological and genetic factors of the pretreatment tumor and expanded TILs that may be associated with the clinical response. The treatment protocol comprised preparation of TIL culture, lympho-depleting non-myeloablative preconditioning with cyclophosphamide and fludarabine, TIL infusion, and intravenous administration of low-dose IL-2. Three patients of clinical subtypes mucosal, superficial spreading, and acral melanoma underwent TIL-ACT. Most severe adverse events, including fever and leukopenia, were manageable with the supportive regimen specified in the protocol, suggesting that the TIL-ACT regimen is suitable for Japanese patients with melanoma. One patient showed a short-term partial response, one relatively long-stable disease, and one experienced disease progression. Whole-exome and transcriptional sequencing of isolated tumor cells and immunohistochemical analyses before TIL-ACT revealed various immunostimulatory factors, including a high tumor mutation burden and immune cell-recruiting chemokines, as well as various immunosuppressive factors including TGF-ß, VEGF, Wnt/ß-catenin, and MAPK signaling and epithelial-to-mesenchymal transition, which might influence the efficacy of TIL-ACT. Our results imply mechanisms for the antitumor effect of and resistance to TIL-ACT. Further studies of immune-resistant mechanisms of TIL-ACT are warranted. This study is registered with the UMIN Clinical Trial Registry (UMIN 000011431).


Assuntos
Ciclofosfamida/administração & dosagem , Interleucina-2/administração & dosagem , Linfócitos do Interstício Tumoral/transplante , Melanoma/terapia , Vidarabina/análogos & derivados , Administração Intravenosa , Técnicas de Cultura de Células , Ciclofosfamida/uso terapêutico , Estudos de Viabilidade , Redes Reguladoras de Genes , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral/citologia , Masculino , Melanoma/genética , Melanoma/imunologia , Pessoa de Meia-Idade , Projetos Piloto , Condicionamento Pré-Transplante , Resultado do Tratamento , Vidarabina/administração & dosagem , Vidarabina/uso terapêutico
14.
Theranostics ; 11(14): 6936-6949, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093863

RESUMO

Substantial progress has been made with cancer immunotherapeutic strategies in recent years, most of which mainly rely on enhancing the T cell response. However, sufficient tumor antigen information often cannot be presented to T cells, resulting in a failed effector T cell response. The innate immune system can effectively recognize tumor antigens and then initiate an adaptive immune response. Here, we developed a spontaneous multifunctional hydrogel (NOCC-CpG/OX-M, Ncom Gel) vaccine to amplify the innate immune response and harness innate immunity to launch and maintain a powerful adaptive immune response. Methods: Ncom Gel was formed by a Schiff base reaction between CpG-modified carboxymethyl chitosan (NOCC-CpG) and partially oxidized mannan (OX-M). The effects of the Ncom Gel vaccine on DCs and macrophages in vitro and antigen-specific humoral immunity and cellular immunity in vivo were studied. Furthermore, the antitumor immune response of the Ncom Gel vaccine and its effect on the tumor microenvironment were evaluated. Results: The Ncom Gel vaccine enhanced antigen presentation to T cells by facilitating DC uptake and maturation and inducing macrophages to a proinflammatory subtype, further leading to a T cell-mediated adaptive immune response. Moreover, the innate immune response could be amplified via the promotion of antigen-specific antibody production. The Ncom Gel vaccine reversed the tumor immune microenvironment to an inflamed phenotype and showed a significant antitumor response in a melanoma model. Conclusions: Our research implies the potential application of injectable hydrogels as a platform for tumor immunotherapy. The strategy also opens up a new avenue for multilayered cancer immunotherapy.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Vacinas Anticâncer/imunologia , Hidrogéis/química , Hidrogéis/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunoterapia/métodos , Melanoma/imunologia , Microambiente Tumoral/efeitos dos fármacos , Imunidade Adaptativa/imunologia , Animais , Linhagem Celular Tumoral , Quitosana/química , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Hidrogéis/síntese química , Inflamação/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Mananas/química , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Ovalbumina/imunologia , Reologia , Bases de Schiff/química , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
15.
Biomed Pharmacother ; 140: 111542, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34088571

RESUMO

Recent studies report that the gut microbiome can enhance systemic and antitumor immunity by modulating responses to antibody immunotherapy in melanoma patients. In this study, we found that icariside I, a novel anti-cancer agent isolated from Epimedium, significantly inhibited B16F10 melanoma growth in vivo through regulation of gut microbiota and host immunity. Oral administration of icariside I improved the microbiota community structure with marked restoration of Lactobacillus spp. and Bifidobacterium spp. abundance in the cecal contents of tumor-bearing mice. We also found that icariside I improves the levels of microbiota-derived metabolites such as short-chain fatty acids (SCFAs) and indole derivatives, consequently promoting repair of the intestinal barrier and reducing systemic inflammation of tumor-bearing mice. Icariside I exhibited strong immunological anti-tumor activity, directly manifested by up-regulation of multiple lymphocyte subsets including CD4+ and CD8+ T cells or NK and NKT cells in peripheral blood of tumor-bearing mice. Collectively, these results suggest that icariside I, via its microbiome remodeling and host immune regulation properties, may be developed as an anticancer drug.


Assuntos
Antineoplásicos/farmacologia , Flavonas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Melanoma/imunologia , Melanoma/terapia , Microbiota/efeitos dos fármacos , Umbeliferonas/farmacologia , Animais , Ceco/microbiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ácidos Graxos Voláteis/imunologia , Fezes/microbiologia , Feminino , Imunoterapia/métodos , Indóis/farmacologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
16.
Sci Transl Med ; 13(599)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162754

RESUMO

Increasing clinical evidence has demonstrated that the deletion or mutation of tumor suppressor genes such as the gene-encoding phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in cancer cells may correlate with an immunosuppressive tumor microenvironment (TME) and poor response or resistance to immune checkpoint blockade (ICB) therapy. It is largely unknown whether the restoration of functional PTEN may modulate the TME and improve the tumor's sensitivity to ICB therapy. Here, we demonstrate that mRNA delivery by polymeric nanoparticles can effectively induce expression of PTEN in Pten-mutated melanoma cells and Pten-null prostate cancer cells, which in turn induces autophagy and triggers cell death-associated immune activation via release of damage-associated molecular patterns. In vivo results illustrated that PTEN mRNA nanoparticles can reverse the immunosuppressive TME by promoting CD8+ T cell infiltration of the tumor tissue, enhancing the expression of proinflammatory cytokines, such as interleukin-12, tumor necrosis factor-α, and interferon-γ, and reducing regulatory T cells and myeloid-derived suppressor cells. The combination of PTEN mRNA nanoparticles with an immune checkpoint inhibitor, anti-programmed death-1 antibody, results in a highly potent antitumor effect in a subcutaneous model of Pten-mutated melanoma and an orthotopic model of Pten-null prostate cancer. Moreover, the combinatorial treatment elicits immunological memory in the Pten-null prostate cancer model.


Assuntos
Melanoma/imunologia , Nanopartículas , PTEN Fosfo-Hidrolase , Neoplasias da Próstata/imunologia , Linhagem Celular Tumoral , Genes Supressores de Tumor , Humanos , Masculino , PTEN Fosfo-Hidrolase/genética , RNA Mensageiro/genética , Microambiente Tumoral
17.
Cancer Sci ; 112(9): 3437-3454, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34152672

RESUMO

Metastasis is the main cause of death in individuals with cancer. Immune checkpoint blockade (ICB) can potentially reverse CD8+ cytotoxic T lymphocytes (CTLs) dysfunction, leading to significant remission in multiple cancers. However, the mechanism underlying the development of CTL exhaustion during metastatic progression remains unclear. Here, we established an experimental pulmonary metastasis model with melanoma cells and discovered a critical role for melanoma-released exosomes in metastasis. Using genetic knockdown of nSMase2 and Rab27a, 2 key enzymes for exosome secretion, we showed that high levels of effector-like tumor-specific CD8+ T cells with transitory exhaustion, instead of terminal exhaustion, were observed in mice without exosomes; these cells showed limited inhibitory receptors and strong proliferation and cytotoxicity. Mechanistically, the immunosuppression of exosomes depends on exogenous PD-L1, which can be largely rescued by pretreatment with antibody blockade. Notably, we also found that exosomal PD-L1 acts as a promising predictive biomarker for ICB therapies during metastasis. Together, our findings suggest that exosomal PD-L1 may be a potential immunotherapy target, suggesting a new curative therapy for tumor metastasis.


Assuntos
Antígeno B7-H1/metabolismo , Exossomos/metabolismo , Tolerância Imunológica , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/secundário , Melanoma/metabolismo , Melanoma/patologia , Linfócitos T Citotóxicos/imunologia , Transferência Adotiva/métodos , Idoso , Animais , Antígeno B7-H1/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Masculino , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética , Resultado do Tratamento , Proteínas rab27 de Ligação ao GTP/deficiência , Proteínas rab27 de Ligação ao GTP/genética
18.
Medicine (Baltimore) ; 100(21): e26017, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34032721

RESUMO

ABSTRACT: Skin melanoma remains a highly prevalent and yet deadly form of cancer, with the exact degree of melanoma-associated mortality being strongly dependent upon the local tumor microenvironment. The exact composition of stromal and immune cells within this microenvironmental region has the potential to profoundly impact melanoma progression and prognosis. As such, the present study was designed with the goal of clarifying the predictive relevance of stromal and immune cell-related genes in melanoma patients through comprehensive bioinformatics analyses. We therefore analyzed melanoma sample gene expression within The Cancer Genome Atlas database and employed the ESTIMATE algorithm as a means of calculating both stromal and immune scores that were in turn used for identifying differentially expressed genes (DEGs). Subsequently, univariate analyses were used to detect DEGs associated with melanoma patient survival, and through additional functional enrichment analyses, we determined that these survival-related DEGs are largely related to inflammatory and immune responses. A prognostic signature comprised of 10 genes (IL15, CCL8, CLIC2, SAMD9L, TLR2, HLA.DQB1, IGHV1-18, RARRES3, GBP4, APOBEC3G) was generated. This 10-gene signature effectively separated melanoma patients into low- and high-risk groups based upon their survival. These low- and high-risk groups also exhibited distinct immune statuses and differing degrees of immune cell infiltration. In conclusion, our results offer novel insights into a number of microenvironment-associated genes that impact survival outcomes in melanoma patients, potentially highlighting these genes as viable therapeutic targets.


Assuntos
Biomarcadores Tumorais/genética , Melanoma/mortalidade , Transcriptoma/genética , Microambiente Tumoral/genética , Adulto , Idoso , Algoritmos , Biomarcadores Tumorais/imunologia , Biologia Computacional , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Melanoma/genética , Melanoma/imunologia , Melanoma/terapia , Pessoa de Meia-Idade , Prognóstico , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/imunologia , Medição de Risco/métodos , Transcriptoma/imunologia , Microambiente Tumoral/imunologia
19.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34001664

RESUMO

Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.


Assuntos
Envelhecimento/genética , COVID-19/genética , Linhagem da Célula/genética , Melanoma/genética , RNA Citoplasmático Pequeno/genética , Neoplasias Cutâneas/genética , Envelhecimento/metabolismo , Linfócitos B/imunologia , Linfócitos B/virologia , Encéfalo/citologia , Encéfalo/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Linhagem da Célula/imunologia , Citocinas/genética , Citocinas/imunologia , Conjuntos de Dados como Assunto , Células Dendríticas/imunologia , Células Dendríticas/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Melanoma/imunologia , Melanoma/patologia , Monócitos/imunologia , Monócitos/virologia , Fenótipo , RNA Citoplasmático Pequeno/imunologia , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Análise de Célula Única/métodos , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T/imunologia , Linfócitos T/virologia , Transcriptoma
20.
Nat Commun ; 12(1): 2620, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976173

RESUMO

Tumor associated macrophage responses are regulated by distinct metabolic states that affect their function. However, the ability of specific signals in the local tumor microenvironment to program macrophage metabolism remains under investigation. Here, we identify NAMPT, the rate limiting enzyme in NAD salvage synthesis, as a target of STAT1 during cellular activation by interferon gamma, an important driver of macrophage polarization and antitumor responses. We demonstrate that STAT1 occupies a conserved element within the first intron of Nampt, termed Nampt-Regulatory Element-1 (NRE1). Through disruption of NRE1 or pharmacological inhibition, a subset of M1 genes is sensitive to NAMPT activity through its impact on glycolytic processes. scRNAseq is used to profile in vivo responses by NRE1-deficient, tumor-associated leukocytes in melanoma tumors through the creation of a unique mouse strain. Reduced Nampt and inflammatory gene expression are present in specific myeloid and APC populations; moreover, targeted ablation of NRE1 in macrophage lineages results in greater tumor burden. Finally, elevated NAMPT expression correlates with IFNγ responses and melanoma patient survival. This study identifies IFN and STAT1-inducible Nampt as an important factor that shapes the metabolic program and function of tumor associated macrophages.


Assuntos
Citocinas/genética , Melanoma/genética , Nicotinamida Fosforribosiltransferase/genética , Fator de Transcrição STAT1/metabolismo , Neoplasias Cutâneas/genética , Macrófagos Associados a Tumor/imunologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Elementos Facilitadores Genéticos , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Células HEK293 , Humanos , Interferon gama/metabolismo , Estimativa de Kaplan-Meier , Masculino , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/patologia , Camundongos , Camundongos Knockout , Nicotinamida Fosforribosiltransferase/metabolismo , Células RAW 264.7 , RNA-Seq , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Células THP-1 , Macrófagos Associados a Tumor/metabolismo , Regulação para Cima , Efeito Warburg em Oncologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...