Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.611
Filtrar
1.
J Photochem Photobiol B ; 204: 111811, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32028187

RESUMO

The development of multidrug resistance is often associated with the over-expression of P-glycoprotein (P-gp). This protein prevents drug accumulation and extrudes them out of the cell before they reach the intended target. The aim of this study was to develop an in vitro MCF-7 cell line with increased expression of P-gp and test the phototoxicity of a novel photoactivated zinc phthalocyanine tetrasulfonic acid (ZnPcS4) on these cells. The over-expressed P-gp MCF-7 cells (MCF-7/DOX) were developed from wildtype (WT) MCF-7 cells by a stepwise continuous exposure of the WT cells to different concentrations of Doxorubicin (DOX) (0.1 - 1 µM) over a period of 4 months. The P-gp expression was measured using flow cytometry, immunofluorescence and enzyme immunoassay. To verify whether zinc phthalocyanine-mediated photodynamic therapy (ZnPcS4 - PDT) is effective in MCF-7/DOX, we studied the subcellular localization, phototoxicity and nuclear damage. The flow cytometry result showed two distinct peaks of P-gp positive and negative expression in MCF-7/DOX cell population, which correlates with the ELISA-based assay (p˂0.001). The ME16C (Normal breast cells) was used as control. The localization studies showed that ZnPcS4 have greater affinity for lysosome than mitochondria. Phototoxicity results indicated that photoactivated zinc phthalocyanine decreased the cell proliferation and viability as the drug and laser light dosages increased to 16 µM and 20 J/cm2 respectively. PDT-induced cytotoxicity using lactose dehydrogenase (LDH) enzyme leakage as measure did not increase likewise. The ZnPcS4-induced PDT was less effective for MCF-7/DOX cells which could be attributed to decreased retention of ZnPcS4 in major cellular organelles due to the presence of increased drug efflux P-gp. The current findings suggest that, increased P-gp expression, a characteristic of multidrug resistance together with other related intrinsic mechanisms might contribute to render MCF-7/DOX cells less sensitive to ZnPcS4-induced phototoxicity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Lasers Semicondutores , Compostos Organometálicos/farmacologia , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Feminino , Humanos , Indóis/química , Células MCF-7 , Compostos Organometálicos/química , Fotoquimioterapia , Rodamina 123/química , Rodamina 123/metabolismo
2.
J Agric Food Chem ; 68(5): 1257-1265, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927919

RESUMO

Bedaquiline (TMC-207) is a recently approved drug for the treatment of multidrug-resistant tuberculosis (MDR-TB). Moreover, there is a present and growing concern for natural-product-mediated drug interaction, as these are inadvertently taken by patients as a dietary supplement, food additive, and medicine. In the present study, we investigated the impact of 20 plant-based natural products, typically phenolics, on in vivo oral bedaquiline pharmacokinetics, as previous studies are lacking. Three natural phenolics were identified that can significantly enhance the oral exposure of bedaquiline upon coadministration. We further investigated the possible role of all of the phytochemicals on in vitro P-glycoprotein (P-gp) induction and inhibition and CYP3A4 inhibition in a single platform as bedaquiline is the substrate for both P-gp and CYP3A4. In conclusion, curcumin, CC-I (3',5-dihydroxyflavone-7-O-ß-d-galacturonide-4'-O-ß-d-glucopyranoside), and 6-gingerol should not be coadministered with bedaquiline to avoid untoward drug interactions and, subsequently, its dose-dependent adverse effects.


Assuntos
Antituberculosos/farmacocinética , Diarilquinolinas/farmacocinética , Suplementos Nutricionais/efeitos adversos , Interações Alimento-Droga , Fenóis/efeitos adversos , Extratos Vegetais/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antituberculosos/administração & dosagem , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Diarilquinolinas/administração & dosagem , Suplementos Nutricionais/análise , Feminino , Humanos , Fenóis/administração & dosagem , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
3.
Chemistry ; 26(11): 2470-2477, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31912555

RESUMO

Multidrug resistance (MDR) is regarded as a main obstacle for effective chemotherapy, and P-glycoprotein (P-gp)-mediated drug efflux has been demonstrated to be the key factor responsible for MDR. In this study, a novel pH-responsive hybrid drug delivery system was developed by conjugating d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a kind of P-gp inhibitor, on the surface of laponite nanodisks to overcome MDR. The prepared LM-TPGS display excellent colloidal stability, a high encapsulation efficiency of doxorubicin (DOX), and a pH-responsive drug release profile. In vitro experiments verified that LM-TPGS/DOX could exhibit significantly enhanced therapeutic efficacy in treating DOX-resistant breast cancer cells (MCF-7/ADR) through inhibiting the activity of P-gp-mediated drug efflux and effectively accumulating DOX within cancer cells. In vivo results revealed that LM-TPGS/DOX outstandingly suppressed MCF-7/ADR tumors with low side effects. Therefore, the high drug payload, enhanced inhibition efficacy to drug-resistant cells, and low side effects make the LM-TPGS/DOX a promising nanoplatform to reverse MDR for effective chemotherapy.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Nanocápsulas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Composição de Medicamentos/métodos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Vitamina E/química , Vitamina E/metabolismo
4.
Chem Biol Interact ; 315: 108886, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31682804

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies, and multidrug resistance (MDR) reduces the efficiency of anticancer drugs. Therefore, the development of novel anticancer drugs that are highly active against CRC with MDR is urgently needed. Our previous study showed that 5-(3,4,5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl) imidazol (BZML) is not a P-glycoprotein (P-gp) substrate and has a potent anticancer effect against paclitaxel -sensitive or -resistant non-small-cell lung cancer (NSCLC) in vitro and in vivo. In the present study, we found that BZML exhibited strong anticancer activity not only in sensitive CRC cells (SW480 and HCT-116 cells) but also in intrinsically drug-resistant CRC cells (Caco2 cells). In addition, by targeting the colchicine binding site, BZML inhibited tubulin polymerization, which induced G2/M phase arrest, and it caused DNA damage by directly targeting DNA or producing ROS. Further, BZML induced apoptosis through the time-dependent ROS-mediated mitochondrial apoptotic pathway in the CRC cells. Additionally, BZML inhibited P-gp-mediated drug efflux and enhanced the inhibition of the cell growth that had been induced by paclitaxel or doxorubicin in Caco2 cells. In summary, BZML is a multi-targeted anticancer drug that targets tubulin and DNA, and the mechanisms underlying its potent anticancer activity involve disrupting microtubule assembly, causing DNA damage, inducing cell cycle arrest and eventually activating the ROS-mediated mitochondrial apoptotic pathway in SW480, HCT-116 and Caco2 cells. Therefore, the novel compound BZML is a promising anticancer drug that has tremendous potential for CRC treatment, especially for the treatment of drug-resistant CRC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , DNA/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imidazóis/farmacologia , Tubulina (Proteína)/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Células CACO-2 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacologia
5.
Chem Biol Interact ; 315: 108892, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31704064

RESUMO

Oleanolic acid (OA) is a triterpenoid, widely found in plants and possesses antitumor activity in many cancer lines. However, cancer cells develop multidrug resistance (mdr) hindering the effect of anticancer drugs. P-glycoprotein (P-gp) is a major cause of mdr. Therefore, the cytotoxic effect of OA was evaluated on human breast cancer MDA-MB-231 and human liver cancer HepG2 with absence and presence of P-gp, respectively. OA reduced MDA-MB-231 viability in a dose dependent manner, whereas no remarkable effect was observed on HepG2 in the same range of concentrations (1-60 µM). Moreover, cytotoxicity studies were conducted in the presence of verapamil (20 mg/L), a P-gp inhibitor. OA exhibited the same effect on MDA-MB-231 in the absence and presence of verapamil. However, the cytotoxicity was greatly enhanced for HepG2 cells in the presence of verapamil (cell viability dropped from 63.7% to 25% after 72 h at 60 µM). The results were then confirmed in vivo on zebrafish embryos. Increased mortality and malformations were observed in verapamil pretreated group between 5 and 15 µM of OA compared to control; also, all embryos died at 20 µΜ OA and above. These results demonstrate that inhibiting P-gp enhances the chemotherapeutic activity of OA.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Ácido Oleanólico/farmacologia , Peixe-Zebra/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Feminino , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Verapamil/farmacologia
6.
Chem Biol Interact ; 315: 108865, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31628941

RESUMO

Treatment of breast cancer by paclitaxel (PAX) often encounters therapeutic failure most likely caused by innate/acquired resistance. Cancer stem cells (CSCs) and multidrug resistance complex (MDR-1 or P-glycoprotein) overexpression are main mechanisms implicated in chemoresistance. Increased aldehyde dehrogenase-1 (ALDH-1) was previously correlated with the stemness features of CSCs and hence is used as a marker for identification and CSCs targeting. The present study, therefore, aimed at investigating the effect of both curcumin (CUR) and vitamin D3 (D3) on MDR-1 and ALDH-1 expression and consequently the resistance to PAX both in vitro and in vivo. CUR was isolated from Turmeric rhizomes and identified using UPLC-ESI-MS/MS. For in vitro studies, the antiproliferative effect of PAX, CUR, 1,25(OH)2D3 (the active form of D3, also known as calcitriol) was determined, each alone and combined (PAX+CUR, PAX+1,25(OH)2D3, and PAX+CUR+1,25(OH)2D3) on MCF-7 breast cancer cells. Ehrlich ascites carcinoma solid tumor animal model was also used for in vivo studies. Combining CUR and/or 1,25(OH)2D3 to PAX showed synergistic cytotoxic interaction on MCF-7 cells. The apoptotic potential was also enhanced, as evidenced by a significant increase in caspase-7 and -9 as well as the pro-apoptotic Bax whereas a decrease in Bcl-2 levels was reported. Combining CUR and 1,25(OH)2D3 to PAX caused a downregulation in both MDR-1 and ALDH-1 gene expression in MCF-7 besides a decrease in their protein levels. In vivo, the triple therapy group (PAX+CUR+D3) showed the least tumor size. It also showed the lowest levels of MDR-1 and ALDH-1. PAX alone, however, showed increased levels of MDR-1 and ALDH-1 compared to control. Overall, the present study showed that PAX, as a monotherapy, demonstrated acquired resistance possibly by increasing MDR-1 expression and enriching CSCs population, as evidenced by increased ALDH-1. However, using CUR and D3 enhanced tumor response to PAX.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Colecalciferol/farmacologia , Curcumina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Paclitaxel/farmacologia , Retinal Desidrogenase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Camundongos , Receptores de Calcitriol/metabolismo
7.
Expert Opin Drug Metab Toxicol ; 16(1): 59-78, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31821048

RESUMO

Introduction: ATP-binding cassette (ABC) transporters, especially P-glycoprotein (P-gp), and various metabolic enzymes, in particular, CYP3A, expressed in the small intestine cooperatively limit the absorption of orally administered P-gp substrate drugs. The expression and/or function of intestinal P-gp, however, is easily modulated by various factors.Areas covered: Through extensive literature searches primarily utilizing PubMed, the authors reviewed factors that may cause inter- or intra-individual variations of the pharmacokinetics of orally administered P-gp substrate drugs due to the modulation of intestinal P-gp expression/function. The information on P-gp modulating factors can help to develop safer and more reliable oral formulations and pharmacotherapy.Expert opinion: In clinical pharmacotherapy with orally administered P-gp substrate drugs, the pharmacological action may exhibit a large interindividual variation among patients. Factors modulating intestinal P-gp expression/function listed here include: circadian rhythm (or drug dosing time), drug-drug interactions, formulation/excipients (vehicle, nonionic surfactants), food/supplements, gene polymorphism, obesity, colorectal carcinomas, diarrhea, hepatic failure, inflammation, inflammatory bowel disease, ischemia/reperfusion, organ transplant, renal failure, and others. We will discuss the methods for reducing the effect of modulated intestinal P-gp function on the pharmacokinetics of orally administered P-gp substrate drugs to achieve safer and more reliable oral formulations and pharmacotherapy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Absorção Intestinal , Preparações Farmacêuticas/metabolismo , Administração Oral , Animais , Citocromo P-450 CYP3A/metabolismo , Interações de Medicamentos , Humanos , Mucosa Intestinal/metabolismo , Preparações Farmacêuticas/administração & dosagem
8.
Ultrasonics ; 101: 106033, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31561207

RESUMO

The objective of this study was to use ultrasound in combination with nanoparticulate formulations of taxane drugs for an additive approach to overcome multidrug resistance (MDR). Polymeric nanoparticulate formulations containing both chemotherapeutic taxane drugs and a polymeric inhibitor (MePEG17-b-PCL5) of drug resistant proteins have been previously developed in an attempt to overcome MDR in cells. High frequency (>1 MHz) ultrasound has been shown to increase the uptake of cytotoxic drugs in MDR proliferating cells and has been suggested as a different way to overcome MDR, resensitize drug resistant cancer cells and allow for chemotherapeutic efficacy. MDCK-MDR cells were incubated with docetaxel (DTX) or paclitaxel (PTX) loaded, solid core, nanoparticles made from a 50:50 ratio of two diblock copolymers, MePEG114-b-PCL200 and MePEG17-b-PCL5 (PCL200/PCL5). The accumulation of drug in MDCK-MDR cells was measured using radiolabeled drug and the viability of cells was determined using an MTS cell proliferation assay. The effect of ultrasound (4 MHz, 32 W/cm2, 10 s, 25% duty cycle) on drug uptake and cell viability was studied. Using free DTX or PTX, MDCK-MDR cells were killed at sublethal doses of drug with the P-gp inhibitor (MePEG17-b-PCL5) present at a concentration of just 0.006% (m/v) and cell death began after just 3 h of incubation. Using sublethal incubation doses of PTX or DTX in PCL200/PCL5 nanoparticles for 90 min, followed by a second exposure to blank PCL200/PCL5 nanoparticles, cell viability dropped by approximately 60% at 24 h. Drug accumulation increased by 1.43-1.9 fold following five bursts of ultrasound applied at 90 min. Both, increased ultrasound exposure and increased concentrations of blank nanoparticles during the second incubation allowed for increased levels of cell death. The combined use of ultrasound with taxane and P-gp inhibitor loaded polymeric nanoparticles may allow for increased accumulation of drug and inhibitor which may then release both agents inside cells in a controlled manner to overcome drug resistance in MDR cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Docetaxel/farmacologia , Nanopartículas/química , Paclitaxel/farmacologia , Polietilenoglicóis/farmacologia , Ondas Ultrassônicas , Animais , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/química , Cães , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Paclitaxel/química , Polietilenoglicóis/química , Polímeros/química , Polímeros/farmacologia , Células Tumorais Cultivadas
9.
Int J Nanomedicine ; 14: 9453-9467, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819443

RESUMO

Background: Ovarian cancer is a common malignancy in the female reproductive system with a high mortality rate. The most important reason is multidrug resistance (MDR) of cancer chemotherapy. To reduce side effects, reverse resistance and improve efficacy for the treatment of ovarian cancer, a "core-shell" polymeric nanoparticle-mediated curcumin and paclitaxel co-delivery platform was designed. Methods: Nuclear magnetic resonance confirmed the successful grafting of polyethylenimine (PEI) and stearic acid (SA) (PEI-SA), which is designed as a mother core for transport carrier. Then, PEI-SA was modified with hyaluronic acid (HA) and physicochemical properties were examined. To understand the regulatory mechanism of resistance and measure the anti-tumor efficacy of the treatments, cytotoxicity assay, cellular uptake, P-glycoprotein (P-gp) expression and migration experiment of ovarian cancer cells were performed. In addition, adverse reactions of nanoformulation to the reproductive system were examined. Results: HA-modified drug-loaded PEI-SA had a narrow size of about 189 nm in diameters, and the particle size was suitable for endocytosis. The nanocarrier could target specifically to CD44 receptor on the ovarian cancer cell membrane. Co-delivery of curcumin and paclitaxel by the nanocarriers exerts synergistic anti-ovarian cancer effects on chemosensitive human ovarian cancer cells (SKOV3) and multi-drug resistant variant (SKOV3-TR30) in vitro, and it also shows a good anti-tumor effect in ovarian tumor-bearing nude mice. The mechanism of reversing drug resistance may be that the nanoparticles inhibit the efflux of P-gp, inhibit the migration of tumor cells, and curcumin synergistically reverses the resistance of PTX to increase antitumor activity. It is worth noting that the treatment did not cause significant toxicity to the uterus and ovaries with the observation of macroscopic and microscopic. Conclusion: This special structure of targeting nanoparticles co-delivery with the curcumin and paclitaxel can increase the anti-tumor efficacy without increasing the adverse reactions as a promising strategy for therapy ovarian cancer.


Assuntos
Curcumina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/uso terapêutico , Polímeros/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Curcumina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Ácido Hialurônico/química , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Nanopartículas/química , Nanopartículas/ultraestrutura , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Polietilenoimina/química , Ácidos Esteáricos/química , Distribuição Tecidual , Resultado do Tratamento
10.
Pharm Res ; 37(1): 13, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873817

RESUMO

PURPOSE: Multiple time-point sampling is required in transcellular transport studies to accurately calculate the appropriate efflux ratio (ER). Our study sought to develop a simplified method to determine the ER in Caco-2 cells. METHODS: The equation for the ER was derived from a three-compartment model of apical to basal and basal to apical transport. Transcellular transport studies were conducted with 10 non-P-glycoprotein (P-gp) and 6 P-gp substrates in Caco-2 cells, and the ER was calculated using this equation. RESULTS: The equation for the ER used the concentration ratio in the receiver compartment at the same time-point; therefore, the ER can theoretically be calculated using only a single point. The ER of all non-P-gp substrates tested was close to 1 at all sampling times. The ERs of cyclosporine A calculated from the concentration ratio at 30, 60, 90, and 120 min incubation were 2.93, 6.43, 7.12, and 9.57, respectively, and the ER at 120 min was almost identical to the theoretical value (9.62) calculated using three-compartment model analysis. The other 5 P-gp substrates showed a similar tendency. Single-point sampling can be used to accurately calculate ER at 120 min. CONCLUSIONS: Single-point sampling is a promising approach for calculating appropriate ERs in the drug discovery stage.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Modelos Biológicos , Transporte Biológico , Técnicas Biossensoriais/métodos , Células CACO-2 , Ciclosporina , Interações de Medicamentos/fisiologia , Humanos , Permeabilidade , Ligação Proteica , Fatores de Tempo , Transcitose
11.
Vet J ; 253: 105378, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31685133

RESUMO

Epilepsy is the most common chronic neurological disorder in dogs. Approximately 20-30% of dogs do not achieve satisfactory seizure control with two or more anti-epileptic drugs at appropriate dosages. This condition, defined as refractory epilepsy, is a multifactorial condition involving both acquired and genetic factors. The P glycoprotein might play and important role in the pathophysiological mechanism and it is encoded by the ABCB1 gene. An association between a single nucleotide variation of the ABCB1 gene (c.-6-180T>G) and phenobarbital resistance has previously been reported in a Border collie population with idiopathic epilepsy. To date, the presence and relevance of this polymorphism has not been assessed in other breeds. A multicentre retrospective, case-control study was conducted to investigate associations between ABCB1 c.-6-180T>G, clinical variables, and refractoriness in a multi-breed population of dogs with refractory idiopathic epilepsy. A secondary aim was to evaluate the possible involvement of the ABCB1 c.-6-180T>G single nucleotide variation this population. Fifty-two refractory and 50 responsive dogs with idiopathic epilepsy were enrolled. Of these, 45 refractory and 50 responsive (control) dogs were genotyped. The G allele was found in several breeds, but there was no evidence of association with refractoriness (P=0.69). The uncertain role of the c.-6-180T>G variation was further suggested by an association between the T/T genotype with both refractoriness and responsiveness in different breeds. Furthermore, high seizure density (cluster seizure) was the main clinical risk factor for refractory idiopathic epilepsy (P=0.003).


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Doenças do Cão/genética , Epilepsia Resistente a Medicamentos/veterinária , Polimorfismo de Nucleotídeo Único , Animais , Estudos de Casos e Controles , Estudos de Coortes , Cães , Epilepsia Resistente a Medicamentos/genética , Feminino , Itália , Masculino , Linhagem , Estudos Retrospectivos , Fatores de Risco
12.
Intern Med ; 58(21): 3173-3178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31685786

RESUMO

Diffuse proliferative lupus nephritis (DPLN) is a serious organ complication. Drug resistance correlates with P-glycoprotein (P-gp) expression on activated lymphocytes. We encountered a refractory DPLN patient with expansion of peripheral CD69/CXCR3-co-expressing P-gp+CD4+ cells producing IL-2 and IL-6. Treatment with high-dose corticosteroid combined with biweekly intravenous cyclophosphamide pulse therapy (IVCY) failed to reduce the population of activated P-gp+CD4+ cells or control the disease activity. Methotrexate (MTX) with monthly IVCY reduced activated P-gp+CD4+ cells and improved the clinical symptoms, resulting in long-term remission and tapering of corticosteroids. MTX-IVCY combination therapy, which down-regulates the activated P-gp+CD4+ cell-mediated disease activity, may be useful for the treatment of refractory DPLN.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Imunossupressores/administração & dosagem , Nefrite Lúpica/tratamento farmacológico , Metotrexato/administração & dosagem , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Administração Intravenosa , Adulto , Esquema de Medicação , Resistência a Medicamentos , Quimioterapia Combinada , Feminino , Humanos , Infusões Intravenosas
13.
J Vet Diagn Invest ; 31(6): 889-892, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31711409

RESUMO

A 4-bp deletion (c.230_233delATAG) of the ABCB1 gene, frequently found in various dog breeds, results in intolerance to certain drugs routinely used in veterinary medicine, including many chemotherapeutic agents and macrocyclic lactones. The use of rapid and reliable genetic testing is fundamental for early detection of the mutation and prevention of undesirable toxicoses. We developed and compared 2 genotyping tests: PCR-high-resolution melting (PCR-HRM) and PCR-restriction-fragment length polymorphism (PCR-RFLP) to identify the 4-bp deletion in the ABCB1 gene of canine breeds. Amplified PCR products were sequenced in order to confirm different genotypes. Both techniques were efficient in discriminating homozygous wild-type, homozygous mutated, and heterozygous ABCB1 genotypes, and proved to be reproducible and economical methods. The HRM analysis, a sensitive and specific method for the molecular detection of genetic disorders, does not require labeled probes, processing, or separations after PCR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Sequência de Bases , Técnicas de Genotipagem/veterinária , Reação em Cadeia da Polimerase/veterinária , Deleção de Sequência , Animais , Cães , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição
14.
Adv Exp Med Biol ; 1182: 79-118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31777015

RESUMO

The anticancer potential of Ganoderma (Lingzhi) and its extracts has been widely demonstrated, including antiproliferative and apoptosis inductive, antimetastatic, antiangiogenic, and multidrug resistance reversional activities, involving a variety of cellular and molecular mechanisms besides antitumor immunology. Intrinsic- and extrinsic-initiated apoptotic pathway in association with cell cycle arresting, telomerase inhibiting, autophagy, and oxidative stress is involved in the antiproliferative and apoptosis inductive activities of Ganoderma and its extracts. The inhibition of tumor cell adhesion, invasion, and migration by Ganoderma and its extracts involves molecular mechanisms such as AP-1, NF-κB, MMP, cadherin, ß-integrin, c-Met, FAK, EMT, and so on. Targeting the major pro-angiogenic stimulus, VEGF, and its receptor contributes to the inhibition of tumor angiogenesis by Ganoderma and its extracts. Inhibition against the ATP-dependent transmembrane drug transporter such as P-glycoprotein (P-gp) on the surface of resistant tumor cells to prevent reduction of the intracellular accumulation of anticancer drugs by pumping out the drugs plays an important role in the activities of Ganoderma and its extracts to reverse tumor cell multidrug resistance.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Reishi/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos
15.
Eur J Med Chem ; 183: 111726, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585275

RESUMO

Multidrug resistance (MDR) is a main cause of chemotherapy failure and patient death. This situation usually involves a glycoprotein (P-gp) mediated drug efflux, resulting in a low cellular drug concentration and insensitivity. Here we report the design, synthesis and evaluation of novel (+/-)-securinine bivalents as P-gp inhibitors in vitro and in vivo. MTT assays reflected that bivalent mimetics of securinine particularly the virosecurinine bivalent mimetic 8C showed promissing MDR reversal potential in both P-gp highly expressed cell line HepG2/DOX and MCF-7/ADM. At a 10 µM concentration, 8C can entirely reverse the resistance of HepG2/DOX to doxorubicin (DOX), and is more effective than the positive control verapamil (VRP). Fluorescence, flow cytometry, and DOX efflux assays demonstrated that 8C can facilitate the accumulation and diminish the efflux of intracellular DOX. Molecular docking analysis and western blot assays indicated that 8C accomplished this by competitively inhibiting the activity of P-gp rather than by affecting its expression. Compound 8C was also observed to reverse drug resistance effectively in xenograft models when combined with DOX. This study lays a foundation for the discovery of (+/-)-securinine ramifications as P-gp inhibitors and provides a promising lead compound 8C as a P-gp mediated MDR reversal agent.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Alcaloides , Antineoplásicos , Azepinas , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lactonas , Piperidinas , Alcaloides/química , Alcaloides/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Azepinas/química , Azepinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Compostos Heterocíclicos de Anel em Ponte/química , Compostos Heterocíclicos de Anel em Ponte/farmacologia , Humanos , Lactonas/química , Lactonas/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Piperidinas/química , Piperidinas/farmacologia , Verapamil/farmacologia
16.
Molecules ; 24(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623176

RESUMO

Resistance to anti-cancer drugs is one of the main factors of treatment failure resulting in high morbidity. Among the reasons of resistance, overexpression of efflux pumps leading to multidrug resistance is an important issue that needs to be solved. Taiwanofungus camphoratus has been used as a nutritional supplement to treat various cancers. However, its effects on the resistance to chemotherapeutic agents are still unknown. In this study, we report four new chemical constituents of T. camphoratus isolated from an ether extract: camphoratins K (1) and N (2) and benzocamphorins G (3) and I (4). Furthermore, we evaluated zhankuic acids A-C for their P-glycoprotein (P-gp) inhibitory effects. The results showed that zhankuic acid A was the most potent P-gp inhibitor compound and (at 20 µM) could reverse drug resistance in human cancer cells, restoring an IC50 of 78.5 nM for doxorubicin, of 48.5 nM for paclitaxel, and of 321.5 nM for vincristine, indicating a reversal fold of 48, 38, and 45 times, respectively. This study provides support for the use of T. camphoratus in the further development of cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Basidiomycota/química , Produtos Biológicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Feminino , Células HeLa , Humanos , Estrutura Molecular
17.
Eur J Pharm Biopharm ; 145: 76-84, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639417

RESUMO

Oral drug delivery is a preferred administration route due to its low cost, high patient compliance and fewer adverse events compared to intravenous administration. However, many pharmaceuticals suffer from poor solubility and low oral bioavailability. One major factor that contributes to low bioavailability are efflux transporters which prevent drug absorption through intestinal epithelial cells. P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) are two important efflux transporters in the intestine functioning to prevent toxic materials from entering systemic circulation. However, due to its broad substrate specificity, P-gp limits the absorption of many therapeutics, including chemotherapeutics and antibacterial agents. Methods to inhibit P-gp with competitive inhibitors have not been clinically successful. Here, we show that micron scale devices (microdevices) made from a commonly used biomaterial, polyethylene glycol (PEG), inhibit P-gp through a biosimilar mucus in Caco-2 cells and that transporter function is restored when the microdevices are removed. Microdevices were shown to inhibit P-gp mediated transport of calcein AM, doxorubicin, and rhodamine 123 (R123) and BCRP mediated transport of BODIPY-FL-prazosin. When in contact with Caco-2 cells, microdevices decrease the cell surface amount of P-gp without affecting the passive transport. Moreover, there was an increase in mucosal to serosal transport of R123 with microdevices in an ex-vivo mouse model and increased absorption in vivo. This biomaterial-based approach to inhibit efflux transporters can be applied to a range of drug delivery systems and allows for a nonpharmacologic method to increase intestinal drug absorption while limiting toxic effects.


Assuntos
Transporte Biológico/efeitos dos fármacos , Hidrogéis/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Disponibilidade Biológica , Compostos de Boro/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoglicóis/química , Prazosina/análogos & derivados , Prazosina/metabolismo , Rodamina 123/metabolismo , Solubilidade/efeitos dos fármacos
18.
Eur J Pharm Biopharm ; 145: 85-95, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639418

RESUMO

The RPMI 2650 cell line has been a subject of evaluation as a physiological and pharmacological model of the nasal epithelial barrier. However, its suitability for drug permeability assays has not yet been established on a sufficiently large set of model drugs. We investigated two RPMI 2650 cell models (air-liquid and liquid-liquid) for nasal drug permeability determination by adopting the most recent regulatory guidelines on showing suitability of in vitro permeability methods for drug permeability classification. The permeability of 23 model drugs and several zero permeability markers across the cell models was assessed. The functional expression of two efflux transporters P-glycoprotein (P-gp) and Breast Cancer Resistant Protein (BCRP) was shown to be negligible by bidirectional transport studies using appropriate transporter substrates and inhibitors. The model drug permeability determined in the two RPMI 2650 cell models was correlated with the fully differentiated nasal epithelial model (MucilAir™). Additionally, correlations between the drug permeability in the investigated cell models and the ones determined in the Caco-2 cells and isolated rat jejunum were established. In conclusion, the air-liquid RPMI 2650 cell model is a promising pharmacological model of the nasal epithelial barrier and is much more suitable than the liquid-liquid model for nasal drug permeability prediction.


Assuntos
Técnicas de Cultura de Células/métodos , Mucosa Nasal/metabolismo , Preparações Farmacêuticas/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Permeabilidade , Ratos
19.
Pharm Res ; 36(11): 158, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31512001

RESUMO

PURPOSE: P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are xenobiotic transporters which pump out variety types of compounds, but information on their interaction with endogenous substrates in the skin is limited. The purpose of the present study was to clarify possible association of these transporters in dermal accumulation of inflammatory mediators. METHODS: Dermatitis model was constructed by repeated topical application of oxazolone in wild-type, and P-gp and BCRP gene triple knockout (Mdr1a/1b/Bcrp-/-) mice to observe difference in phenotype. Target metabolome analysis of 583 metabolites was performed using skin and plasma. RESULTS: Dermatitis and scratching behavior in dermatitis model of Mdr1a/1b/Bcrp-/- mice were more severe than wild-type mice, suggesting protective roles of these transporters. This hypothesis was supported by the metabolome analysis which revealed that concentration of histamine and other dermatitis-associated metabolites like urate and serotonin in the dermatitis skin, but not normal skin, of Mdr1a/1b/Bcrp-/- mice was higher than that of wild-type mice. Gene expression of P-gp and BCRP was reduced in oxazolone-treated skin and the skin of patients with atopic dermatitis or psoriasis. CONCLUSIONS: These results suggest possible association of these efflux transporters with dermal inflammatory mediators, and such association could be observed in the dermatitis skin.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Dermatite/metabolismo , Histamina/metabolismo , Metaboloma/efeitos dos fármacos , Proteínas de Neoplasias/genética , Pele/metabolismo , Animais , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout
20.
Eur J Pharm Sci ; 140: 105071, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525433

RESUMO

Multidrug resistance (MDR) is a major reason for anticancer chemotherapy failure, and P-glycoprotein (P-gp) over-expressing on tumor cells is considered as the important target to overcome MDR. Emerging reports have showed that vitamin E (VE) can cause significant reversal of MDR due to inhibition of ATPase activity. Accordingly, we synthesized hyaluronic acid (HA) conjugated vitamin E succinate (VES) polymer, which can self-assemble into micelles and thus achieve high drug (paclitaxel (PTX) used as model drug) encapsulation as well as tumor accumulation owing to the enhanced permeability and retention (EPR) effect and HA active targeting ability. In addition, the linker between HA and VES utilized in this work was disulfide bond with reduction-sensitive property, which would respond to high glutathione (GSH) concentration in tumor cytoplasmic environment and trigger HA-CYS-VES polymer disassociation and drug release. In vitro, PTX loaded HA-CYS-VES demonstrated enhanced cytotoxicity, high apoptosis-inducing activities and reversal effects of PTX on MCF-7/Adr cells, compared to PTX. Also, cellular uptake and intracellular PTX accumulation tests displayed that PTX loaded HA-CYS-VES could more efficiently enter tumor cells and selectively release drug in cytosol so as to facilitate its function on microtubule. More importantly, PTX loaded HA-CYS-VES showed better tumor targeting ability, improved antitumor efficacy and low adverse effects on tumor-bearing mice. In conclusion, PTX loaded HA-CYS-VES exhibited a great potential for reversing MDR in anticancer chemotherapeutics.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácido Hialurônico/química , Micelas , Paclitaxel/química , alfa-Tocoferol/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Citosol/metabolismo , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular/métodos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA