Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Chem Biol Interact ; 324: 109097, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32305507

RESUMO

Oroxylin A is a flavonoid monomer extracted from Scutellaria baicalensis Georgi with neuroprotective, anti-tumor activity and many other biological functions. However, the interaction between Oroxylin A and the drug transporters has not been clearly reported. The purpose of this study is to investigate the interaction between Oroxylin A and the solute carrier transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT2, MATE1, and MATE2K), and ATP-binding cassette transporters (BCRP, MDR1). The HEK293 cell lines (HEK293-OATP1B1, HEK293-OATP1B3, HEK293-OAT1, HEK293-OAT3, HEK293-OCT2, HEK293-MATE1, and HEK293-MATE2K) that stably expressing previous listed human-derived transporters were employed to evaluate the solute carrier transporters. Vesicles expressing human BCRP and MDR1 transporters was employed to research ATP-binding cassette transporters. Our work suggested that Oroxylin A was a substrate of OATP1B1, OATP1B3, but not a substrate of the other transporters in the concentration range of our study. Oroxylin A shows concentration-dependent inhibition of OATP1B1, OAT1, OAT3 and BCRP transportation with the half-inhibitory concentration (IC50) of 7.03, 0.961, 0.112 µM, and 0.477 µM, respectively. No inhibitory effects on the transport activities of other transporters were observed for Oroxylin A. Drug transporters profile of Oroxylin A was first confirmed by our work, which provides important information for its pharmacokinetics, pharmacodynamics, and drug-drug interactions studies.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Flavonoides/metabolismo , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células HEK293 , Humanos , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores
2.
Int J Cancer ; 146(6): 1631-1642, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304590

RESUMO

Galunisertib (LY2157299), a promising small-molecule inhibitor of the transforming growth factor-beta (TGF-ß) receptor, is currently in mono- and combination therapy trials for various cancers including glioblastoma, hepatocellular carcinoma and breast cancer. Using genetically modified mouse models, we investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, the OATP1A/1B uptake transporters and the drug-metabolizing CYP3A complex in galunisertib pharmacokinetics. In vitro, galunisertib was vigorously transported by human ABCB1, and moderately by mouse Abcg2. Orally administered galunisertib (20 mg/kg) was very rapidly absorbed. Galunisertib brain-to-plasma ratios were increased by ~24-fold in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- mice compared to wild-type mice, but not in single Abcg2-/- mice, whereas galunisertib oral availability was not markedly affected. However, recovery of galunisertib in the small intestinal lumen was strongly reduced in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- mice. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar boosted galunisertib brain accumulation in wild-type mice to equal the levels seen in Abcb1a/1b;Abcg2-/- mice. Oatp1a/1b deficiency did not alter oral galunisertib pharmacokinetics or liver distribution. Cyp3a-/- mice showed a 1.9-fold higher plasma AUC0-1 hr than wild-type mice, but this difference disappeared over 8 hr. Also, transgenic human CYP3A4 overexpression did not significantly alter oral galunisertib pharmacokinetics. Abcb1 thus markedly restricts galunisertib brain penetration and affects its intestinal disposition, possibly through biliary excretion. Elacridar coadministration could fully inhibit both processes, without causing acute toxicity. Moreover, mouse Cyp3a, but not human CYP3A4, may eliminate galunisertib at high plasma concentrations. These insights may help to guide the further clinical development and application of galunisertib.


Assuntos
Encéfalo/metabolismo , Pirazóis/farmacocinética , Quinolinas/farmacocinética , Fator de Crescimento Transformador beta/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Cães , Feminino , Interações Ervas-Drogas , Humanos , Células Madin Darby de Rim Canino , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Pirazóis/sangue , Pirazóis/farmacologia , Quinolinas/sangue , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tetra-Hidroisoquinolinas/farmacologia , Distribuição Tecidual
3.
Int J Biochem Cell Biol ; 119: 105682, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31877386

RESUMO

Cancer stem cell like cells (CSCs) present a challenge in the management of cancers due to their involvement in the development of resistance against various chemotherapeutic agents. Over expression of ABCG2 transporter gene is one of the factors responsible for drug resistance in CSCs, which causes efflux of therapeutic drugs from these cells. The development of inhibitors against CSCs has not achieved any significant success, till date. In this work, we have evaluated the anti-proliferative activity of curcumin (Cur) and quinacrine (QC) against CSCs using in vitro model system. Cur and QC synergistically inhibited the proliferation, migration and invasion of CSCs enriched side population (SP) cells of cigarette smoke condensate induced breast epithelial transformed (MCF-10A-Tr) generated metastatic cells. Cur + QC combination increased the DNA damage and inhibited the DNA repair pathways in SP cells. Uptake of QC increased in Cur pre-treated SP cells and this combination inhibited the ABCG2 activity by the reduction of ATP hydrolysis in cells. In vitro DNA binding reconstitution system suggests that QC specifically binds to DNA and caused DNA damage inside the cell. Decreased level of ABCG2, representative cell survival and DNA repair proteins were noted after Cur + QC treatment in SP cells. The molecular docking studies were performed to examine the binding behaviour of these drugs with ABCG2, which showed that QC (-53.99 kcal/mol) and Cur (-45.90 kcal/mol) occupy a highly overlapping interaction domain. This suggested that in Cur pre-treated cells, the Cur occupied the ligand-binding site in ABCG2, thus making the ligand binding site unavailable for the QC. This causes an increase in the intracellular concentration of QC. The results indicate that Cur + QC combination causes CSCs death by increasing the concentration of QC in the cells and thus causing the DNA damage and inhibiting the DNA repair pathways through modulating the ABCG2 activity.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Curcumina/farmacologia , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Quinacrina/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/administração & dosagem , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Sinergismo Farmacológico , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Quinacrina/administração & dosagem
4.
C R Biol ; 342(9-10): 279-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780416

RESUMO

The ATP-Binding Cassette, subfamily G, member 2 (ABCG2) transporter is associated with the regulation of protoporphyrin IX transport and of other intermediates in heme biosynthesis. Because the hamster Harderian gland (HG) exhibits high concentrations of porphyrins and sexual dimorphism, we analyzed the hamster ABCG2. Cloned cDNA [2098-base pairs (bp)] contains an open-reading frame (ORF) of 1971-bp that encodes a 656 amino-acid protein with a molecular weight of 72844.56Da. The hamster ABCG2 sequence is conserved phylogenetically and shares a high percentage of identity with mouse (89%), rat (88%), and human (84%) transporters. Within its structure, a Walker A (G-X-X-G-X-G-K-S), a C signature motif characteristic of ABC transporters, and six putative transmembrane domains (TMDs) were identified. ABCG2 mRNA was detected in all hamster tissues, with higher amounts found in HG, brain, cerebellum, kidney, gut, ovary, and testis. Harderian ABCG2 expression exhibits a sexually dimorphic pattern where females display higher mRNA levels than males. Different patterns of transcriptional profiles of ABCG2 during the estrous cycle and after gonadectomy in both sexes were also observed. The differential expression between male and female HGs suggests that ABCG2 is under the regulation of gonadal steroids. The ABCG2 transporter is likely involved in the endogenous regulation of porphyrins in hamster HGs.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Glândula de Harder/metabolismo , Protoporfirinas/metabolismo , Animais , Cricetinae , DNA Complementar , Feminino , Humanos , Masculino , Mesocricetus , Camundongos , Porfirinas/metabolismo , RNA Mensageiro , Ratos , Caracteres Sexuais
5.
J Photochem Photobiol B ; 201: 111640, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31734545

RESUMO

Fluorescence image guided surgical resection (FIGR) of high grade gliomas (HGGs) takes advantage of the accumulation of the tracer protoporphyrin IX (PpIX) in glioma cells following administration of 5-aminolevulinic acid (5-ALA). Occasionally, PpIX fluorescence intensity may be insufficient, thus compromising the efficacy and precision of the surgical intervention. The cause for the signal variation is unclear and strategies to improve the intensity of PpIX fluorescence are considered necessary. We have previously shown that differential expression of the epidermal growth factor receptor in glioblastoma cells affects PpIX fluorescence. Herein, we investigated other factors impairing PpIX accumulation and pharmacological treatments able to enhance PpIX fluorescence in glioblastoma cells displaying lower signal. In the present study we demonstrate that presence of serum in cell culture medium and differences in cellular confluence can negatively influence PpIX accumulation in U87 cell lines. We hypothesized that PpIX fluorescence intensity results from the interplay between the metabolic clearance of PpIX mediated by ferrochelatase and heme oxygenase-1 and the cellular efflux of PpIX through the ATP-binding cassette subfamily G member 2 (ABCG2). Based on the availability of compounds targeting these proteins and inhibiting them, in this study we used modulators such as genistein, an isoflavone able to inhibit ABCG2; deferoxamine, which chelate iron ions impairing FECH activity and tin protoporphyrin IX (SnPP), the specific HO-1 inhibitor. Finally, we showed the efficacy of a precisely tuned pharmacological treatment in increasing PpIX accumulation and consequently fluorescence in glioblastoma cells. This strategy may translate in more sensitive tracing of tumor cells in-vivo and improved FIGR of HGGs and possibly low grade gliomas (LGGs).


Assuntos
Corantes Fluorescentes/química , Microscopia Confocal , Protoporfirinas/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Corantes Fluorescentes/metabolismo , Genisteína/metabolismo , Genisteína/farmacologia , Glioblastoma/patologia , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Humanos , Metaloporfirinas/química , Metaloporfirinas/metabolismo , Metaloporfirinas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Protoporfirinas/metabolismo , Protoporfirinas/farmacologia
6.
Adv Exp Med Biol ; 1141: 241-291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571167

RESUMO

Drug transporters are considered to be determinants of drug disposition and effects/toxicities by affecting the absorption, distribution, and excretion of drugs. Drug transporters are generally divided into solute carrier (SLC) family and ATP binding cassette (ABC) family. Widely studied ABC family transporters include P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), and multidrug resistance proteins (MRPs). SLC family transporters related to drug transport mainly include organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug/toxin extrusions (MATEs). These transporters are often expressed in tissues related to drug disposition, such as the small intestine, liver, and kidney, implicating intestinal absorption of drugs, uptake of drugs into hepatocytes, and renal/bile excretion of drugs. Most of therapeutic drugs are their substrates or inhibitors. When they are comedicated, serious drug-drug interactions (DDIs) may occur due to alterations in intestinal absorption, hepatic uptake, or renal/bile secretion of drugs, leading to enhancement of their activities or toxicities or therapeutic failure. This chapter will illustrate transporter-mediated DDIs (including food drug interaction) in human and their clinical significances.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Interações Medicamentosas , Preparações Farmacêuticas , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Interações Alimento-Droga , Humanos , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos , Preparações Farmacêuticas/metabolismo
7.
Eur J Med Chem ; 184: 111772, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31630055

RESUMO

The membrane transporter BCRP/ABCG2 has emerged as a privileged biological target for the development of small compounds capable of abolishing multidrug resistance. In this context, the chromone skeleton was found as an excellent scaffold for the design of ABCG2 inhibitors. With the aims of optimizing and developing more potent modulators of the transporter, we herewith propose a multidisciplinary medicinal chemistry approach performed on this promising scaffold. A quantitative structure-activity relationship (QSAR) study on a series of chromone derivatives was first carried out, giving a robust model that was next applied to the design of 13 novel compounds derived from this nucleus. Two of the most active according to the model's prediction, namely compounds 22 (5-((3,5-dibromobenzyl)oxy)-N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-4-oxo-4H-chromene-2-carboxamide) and 31 (5-((2,4-dibromobenzyl)oxy)-N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-4-oxo-4H-chromene-2-carboxamide), were synthesized and had their biological potency evaluated by experimental assays, confirming their high inhibitory activity against ABCG2 (experimental EC50 below 0.10 µM). A supplementary docking study was then conducted on the newly designed derivatives, proposing possible binding modes of these novel molecules in the putative ligand-binding site of the transporter and explaining why the two aforementioned compounds exerted the best activity according to biological data. Results from this study are recommended as references for further research in hopes of discovering new potent inhibitors of ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Cromonas/farmacologia , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Cultivadas , Cromonas/síntese química , Cromonas/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Proteínas de Neoplasias/metabolismo
8.
Eur J Pharm Biopharm ; 145: 76-84, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639417

RESUMO

Oral drug delivery is a preferred administration route due to its low cost, high patient compliance and fewer adverse events compared to intravenous administration. However, many pharmaceuticals suffer from poor solubility and low oral bioavailability. One major factor that contributes to low bioavailability are efflux transporters which prevent drug absorption through intestinal epithelial cells. P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) are two important efflux transporters in the intestine functioning to prevent toxic materials from entering systemic circulation. However, due to its broad substrate specificity, P-gp limits the absorption of many therapeutics, including chemotherapeutics and antibacterial agents. Methods to inhibit P-gp with competitive inhibitors have not been clinically successful. Here, we show that micron scale devices (microdevices) made from a commonly used biomaterial, polyethylene glycol (PEG), inhibit P-gp through a biosimilar mucus in Caco-2 cells and that transporter function is restored when the microdevices are removed. Microdevices were shown to inhibit P-gp mediated transport of calcein AM, doxorubicin, and rhodamine 123 (R123) and BCRP mediated transport of BODIPY-FL-prazosin. When in contact with Caco-2 cells, microdevices decrease the cell surface amount of P-gp without affecting the passive transport. Moreover, there was an increase in mucosal to serosal transport of R123 with microdevices in an ex-vivo mouse model and increased absorption in vivo. This biomaterial-based approach to inhibit efflux transporters can be applied to a range of drug delivery systems and allows for a nonpharmacologic method to increase intestinal drug absorption while limiting toxic effects.


Assuntos
Transporte Biológico/efeitos dos fármacos , Hidrogéis/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Disponibilidade Biológica , Compostos de Boro/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoglicóis/química , Prazosina/análogos & derivados , Prazosina/metabolismo , Rodamina 123/metabolismo , Solubilidade/efeitos dos fármacos
9.
Eur J Pharm Biopharm ; 145: 85-95, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639418

RESUMO

The RPMI 2650 cell line has been a subject of evaluation as a physiological and pharmacological model of the nasal epithelial barrier. However, its suitability for drug permeability assays has not yet been established on a sufficiently large set of model drugs. We investigated two RPMI 2650 cell models (air-liquid and liquid-liquid) for nasal drug permeability determination by adopting the most recent regulatory guidelines on showing suitability of in vitro permeability methods for drug permeability classification. The permeability of 23 model drugs and several zero permeability markers across the cell models was assessed. The functional expression of two efflux transporters P-glycoprotein (P-gp) and Breast Cancer Resistant Protein (BCRP) was shown to be negligible by bidirectional transport studies using appropriate transporter substrates and inhibitors. The model drug permeability determined in the two RPMI 2650 cell models was correlated with the fully differentiated nasal epithelial model (MucilAir™). Additionally, correlations between the drug permeability in the investigated cell models and the ones determined in the Caco-2 cells and isolated rat jejunum were established. In conclusion, the air-liquid RPMI 2650 cell model is a promising pharmacological model of the nasal epithelial barrier and is much more suitable than the liquid-liquid model for nasal drug permeability prediction.


Assuntos
Técnicas de Cultura de Células/métodos , Mucosa Nasal/metabolismo , Preparações Farmacêuticas/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Permeabilidade , Ratos
10.
Clin Drug Investig ; 39(12): 1223-1232, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31552642

RESUMO

BACKGROUND: Macitentan is a clinically approved endothelin receptor antagonist for the treatment of pulmonary arterial hypertension (PAH). Increasing use of combination drug therapy in PAH means that it is important to recognize potential drug-drug interactions (DDIs) that could affect the efficacy and safety of macitentan in patients with PAH. OBJECTIVE: Two Phase 1 studies were conducted to investigate the effect of macitentan at steady-state on the pharmacokinetics of the breast cancer resistance protein (BCRP) substrates, rosuvastatin and riociguat in healthy male subjects. Another objective was to determine the safety and tolerability of concomitant administration of rosuvastatin or riociguat with macitentan. METHODS: Healthy male subjects received a single oral dose of rosuvastatin 10 mg (n = 20) or riociguat 1 mg (n = 20) on Day 1 (reference treatment). A loading oral dose of macitentan 30 mg was administered on Day 5 followed by macitentan 10 mg once-daily from Day 6 to Day 15 (riociguat study) or Day 6 to Day 16 (rosuvastatin study). A concomitant oral dose of rosuvastatin 10 mg or riociguat 1 mg was administered on Day 10 (test treatment). Pharmacokinetics were evaluated for 96 h after treatment on Day 1 and for 144 h (riociguat study) or 168 h (rosuvastatin study) after treatment on Day 10. To compare the reference and test treatments, the geometric mean ratio was calculated for the maximum plasma concentration (Cmax), the area under the plasma concentration-time curve (AUC) from zero (pre-dose) to time of the last measured concentration above the limit of quantification (AUC0-t), the AUC from zero to infinity (AUC0-∞) and the terminal elimination half-life (t½) of rosuvastatin, riociguat and riociguat's metabolite, M1. The difference in the time to reach maximum plasma concentration (tmax) was determined by the Wilcoxon test. Trough levels of macitentan and its metabolite, ACT-132577, were measured and safety was monitored throughout. RESULTS: Ninety percent confidence intervals of the geometric mean ratios were within the bioequivalence criteria of 0.80-1.25. There was no significant difference between test and reference tmax. Rosuvastatin or riociguat did not affect the steady-state concentrations of macitentan and ACT-132577. The adverse event profile was consistent with the known safety profiles of the drugs. CONCLUSIONS: Macitentan 10 mg did not affect the pharmacokinetics of BCRP substrates, rosuvastatin or riociguat in healthy male subjects. EudraCT numbers: 2017-003095-31 and 2017-003502-41.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Pirazóis/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/farmacocinética , Rosuvastatina Cálcica/farmacocinética , Sulfonamidas/farmacologia , Adolescente , Adulto , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
Food Funct ; 10(9): 6000-6008, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31482168

RESUMO

Lemon is a healthy fruit with high medicinal value. This study found that lemon water soluble extract (LET) can reduce uric acid levels in mice with potassium oxonate induced hyperuricemia. Histopathological analysis suggested that LET caused little damage to the kidneys of mice. It affected mABCG2 and mGLUT9 mRNA expression only in hyperuricemic mice, but not in healthy mice. Our further results show that potassium citrate, rather than citric acid, is the main ingredient in LET with a hypouricemic effect. This study also indicates that lemon does have unique medicinal value for the treatment of hyperuricemia, and that potassium citrate has the potential to be developed as a drug for hyperuricemia. Lowering uric acid through LET and potassium citrate may directly promote the degradation of excessive uric acid in patients with hyperuricemia.


Assuntos
Citrus/química , Hiperuricemia/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Modelos Animais de Doenças , Frutas/química , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Hiperuricemia/metabolismo , Masculino , Camundongos , Extratos Vegetais/análise , Citrato de Potássio/administração & dosagem , Citrato de Potássio/análise , Ácido Úrico/metabolismo
12.
Chem Biol Interact ; 314: 108825, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553897

RESUMO

The World Health Organization (WHO) and other worldwide health agencies have recently taken initiatives to encourage the use of traditional medicine and/or complementary/alternative medicine in order to promote well-being and public health. In this way, one of the WHO's concerns is the safe use of these therapies. Phytotherapy is a strategy consisting of the use of medicinal plants (MP) and/or herbal medicinal products (HMP) for medicinal purposes. The use of phytotherapy concomitantly with drugs may cause interactions compromising the expected pharmacological action or generating toxic effects. These interactions are complex processes that may occur with multiple medications targeting different metabolic pathways, and involving different compounds present in MP and HMP. Thus, the aim of this review was to summarize the main MP- and HMP-drug interactions that involve specific transporters (P-glycoprotein and BCRP) and CYP450 enzymes (CYP3A4 and CYP2D6), which play relevant roles in the mechanisms of interactions. Firstly, multiple databases were used to search studies describing in vitro or in vivo MP and HMP-drug interactions and, after that, a systematic note-taking and appraisal of the literature was conducted. It was observed that several MP and HMP, metabolic pathways and transcription factors are involved in the transporters and enzymes expression or in the modulation of their activity having the potential to provide such interactions. Thus, the knowledge of MP- and HMP-drug interaction mechanisms could contribute to prevent harmful interactions and can ensure the safe use of these products to help the establishment of the therapeutic planning in order to certify the best treatment strategy to be used.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Animais , Interações Ervas-Drogas , Humanos , Plantas Medicinais/química , Plantas Medicinais/metabolismo
13.
J Pharm Pharmacol ; 71(11): 1655-1662, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31456253

RESUMO

INTRODUCTION: Hepatocellular carcinoma is the most common liver malignancy and the third leading cause of cancer death worldwide. One crucial limitation in the pharmacotherapy for this tumour is its chemotherapy-resistant nature produced by the overexpression of several members of the ATP-binding cassette protein family that efflux drugs out of cells, as observed with the breast cancer resistant protein (BCRP). OBJECTIVES: This study aimed to assess the ability of Pluronic® F127 to reverse the multidrug resistance phenotype in two human hepatocellular cell lines. METHODS: PLC/PRF/5 and SKHep1 cells were exposed to Pluronic® F127 at several concentrations. The effect of F127 on BCRP expression (mRNA and protein), mitochondrial transmembrane potential and cell hypodiploidy was assessed. Finally, the effect of this copolymer on cytotoxicity of doxorubicin in both hepatoma cell lines was investigated, as expressed by its reverse resistance index. KEY FINDINGS: It was demonstrated that F127 in both cell lines contributes to chemosensitization, as shown by BCRP down-regulation, an altered mitochondrial transmembrane potential and hypodiploidy and reverse resistance index values. A remarkable dependence of these effects significantly correlated with the copolymer concentration. CONCLUSIONS: These findings further uncover the potential usefulness of this copolymer as multidrug resistance reversal agent, increasing the efficacy of cancer therapies.


Assuntos
Doxorrubicina/sangue , Doxorrubicina/farmacologia , Poloxâmero/química , Polietilenos/química , Polipropilenos/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos
14.
Chem Biol Interact ; 311: 108761, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348918

RESUMO

Water contamination by cyanobacterial blooms is a worldwide health hazard to humans as well as livestock. Exposure to Microcystins (MCs), toxins produced by various cyanobacterial or blue green algae found in poorly treated drinking water or contaminated seafood such as fish or prawns are associated with hepatotoxicity, nephropathy and neurotoxicity and in extreme cases, death in humans. MC congeners, currently >240 known, differ dramatically in their uptake kinetics, i.e. their uptake via OATP1B1 and OATP1B3, in OATP overexpressing human HEK293 cells and primary human hepatocytes. It is thus likely that MC congeners will also differ with respect to the cellular efflux of the parent and conjugated congeners, e.g. via MRPs, MDRs, BCRP or BSEP. Consequently, the role and kinetics of different human efflux transporters - MRP, MDR, BCRP and BSEP in MC efflux was studied using insect membrane vesicles overexpressing the human transporters of interest. Of the efflux transporters investigated, MRP2 displayed MC transport. Michaelis-Menten kinetics displayed mild co-operativity and thus allosteric behavior of MRP2. MC transport by MRP2 was MC congener-specific, whereby MC-LF was transported more rapidly than MC-LR and -RR. Other human transporters (BCRP, BSEP, MRP1,3,5, MDR1) tested in this study did not exhibit interaction with MC. Although MRP2 showed specific MC transport, the MC-LR-GSH conjugate, was not transported suggesting the involvement of other transporters than MRP2 for the conjugate efflux.


Assuntos
Glutationa/química , Microcistinas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Benzobromarona/química , Benzobromarona/metabolismo , Cromatografia Líquida de Alta Pressão , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Microcistinas/análise , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Espectrometria de Massas em Tandem
15.
Cells ; 8(7)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315286

RESUMO

Diabetic foot ulcers (DFUs) are lesions that involve loss of epithelium and dermis, sometimes involving deep structures, compartments, and bones. The aim of this work is to investigate the innate regenerative properties of dermal tissue around ulcers by the identification and analysis of resident dermal stem cells (DSCs). Dermal samples were taken at the edge of DFUs, and genes related to the wound healing process were analyzed by the real-time PCR array. The DSCs were isolated and analyzed by immunofluorescence, flow cytometry, and real-time PCR array to define their stemness properties. The gene expression profile of dermal tissue showed a dysregulation in growth factors, metalloproteinases, collagens, and integrins involved in the wound healing process. In the basal condition, diabetic DSCs adhered on the culture plate with spindle-shaped fibroblast-like morphology. They were positive to the mesenchymal stem cells markers CD44, CD73, CD90, and CD105, but negative for the hematopoietic markers CD14, CD34, CD45, and HLA-DR. In diabetic DSCs, the transcription of genes related to self-renewal and cell division were equivalent to that in normal DSCs. However, the expression of CCNA2, CCND2, CDK1, ALDH1A1, and ABCG2 was downregulated compared with that of normal DSCs. These genes are also related to cell cycle progression and stem cell maintenance. Further investigation will improve the understanding of the molecular mechanisms by which these genes together govern cell proliferation, revealing new strategies useful for future treatment of DFUs.


Assuntos
Células-Tronco Adultas/metabolismo , Derme/citologia , Pé Diabético/patologia , Transcriptoma , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células-Tronco Adultas/citologia , /metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Diferenciação Celular , Células Cultivadas , Ciclina A2/genética , Ciclina A2/metabolismo , Ciclina D2/genética , Ciclina D2/metabolismo , Derme/patologia , Regulação para Baixo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo
16.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269743

RESUMO

To characterize effects of type 2 diabetes (T2D) on mRNA expression levels for 10 Cytochromes P450 (CYP450s), two carboxylesterases, and three drug transporters (ABCB1, ABCG2, SLCO2B1) in human duodenal biopsies. To compare drug metabolizing enzyme activities of four CYP450 isoenzymes in duodenal biopsies from patients with or without T2D. mRNA levels were quantified (RT-qPCR) in human duodenal biopsies obtained from patients with (n = 20) or without (n = 16) T2D undergoing a scheduled gastro-intestinal endoscopy. CYP450 activities were determined following incubation of biopsy homogenates with probe substrates for CYP2B6 (bupropion), CYP2C9 (tolbutamide), CYP2J2 (ebastine), and CYP3A4/5 (midazolam). Covariables related to inflammation, T2D, demographic, and genetics were investigated. T2D had no major effects on mRNA levels of all enzymes and transporters assessed. Formation rates of metabolites (pmoles mg protein-1 min-1) determined by LC-MS/MS for CYP2C9 (0.48 ± 0.26 vs. 0.41 ± 0.12), CYP2J2 (2.16 ± 1.70 vs. 1.69 ± 0.93), and CYP3A (5.25 ± 3.72 vs. 5.02 ± 4.76) were not different between biopsies obtained from individuals with or without T2D (p > 0.05). No CYP2B6 specific activity was measured. TNF-α levels were higher in T2D patients but did not correlate with any changes in mRNA expression levels for drug metabolizing enzymes or transporters in the duodenum. T2D did not modulate expression or activity of tested drug metabolizing enzymes and transporters in the human duodenum. Previously reported changes in drug oral clearances in patients with T2D could be due to a tissue-specific disease modulation occurring in the liver and/or in other parts of the intestines.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Hidrolases de Éster Carboxílico/genética , Sistema Enzimático do Citocromo P-450/genética , Diabetes Mellitus Tipo 2/genética , Duodeno/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Idoso , Hidrolases de Éster Carboxílico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Projetos Piloto , RNA Mensageiro/genética
17.
Regul Toxicol Pharmacol ; 108: 104433, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31362032

RESUMO

PF614, a novel trypsin activated abuse protection (TAAP) prodrug of oxycodone, is being studied as chronic pain analgesic with extended release and abuse resistant properties. A series of nonclinical safety studies were conducted to support PF614 introduction to clinical trials. Ames assays (PF614 and its metabolites), comet assay (PF614 ≤ 50 mg/kg/day oral gavage in rats) and micronucleus assay (PF614 ≤ 175 mg/kg/day oral gavage in rats) were negative. hERG assay IC50 for PF614 was ≥300 µM. PF614 (0.1 and 10 µM) showed a low permeability in Caco-2 cells (≤1.17 x 10-6 cm/s) and was not a P-gp or BCRP substrate or inhibitor. The mean percent unbound PF614 among all concentrations in plasma ranged from 91.2 to 98.4, 79.4 to 100, and 52.9-79.9% in rat, dog, and human, respectively. Also, PF614 was metabolically stable in rat, dog, and human hepatocytes with no metabolites identified. Safety pharmacology study in dog indicated moderately lower heart rate at ≥ 2 mg/kg oral gavage doses. Toxicity studies of PF614 in rat and dog with daily oral doses of 25 and 18 mg/kg, respectively, for 14 Days were well tolerated with favorable safety profile supporting its further clinical evaluation.


Assuntos
Formulações de Dissuasão de Abuso , Analgésicos Opioides/toxicidade , Oxicodona/toxicidade , Pró-Fármacos/toxicidade , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células CACO-2 , Cães , Eletrocardiografia/efeitos dos fármacos , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Testes de Mutagenicidade , Proteínas de Neoplasias/metabolismo , Ratos , Regulador Transcricional ERG/metabolismo , Tripsina
18.
Cells ; 8(7)2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340525

RESUMO

The ATP-binding cassette transporter ABCG2 is expressed in various organs, such as the small intestine, liver, and kidney, and influences the pharmacokinetics of drugs that are its substrates. ABCG2 is also expressed by cancer cells and mediates resistance to anticancer agents by promoting the efflux of these drugs. In the present study, we investigated the interactions between epidermal growth factor receptor tyrosine kinase inhibitors and ABCG2 by MTT assay, intracellular drug accumulation assay, and FACS. This study showed that four epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) (gefitinib, erlotinib, lapatinib, and afatinib) were transported from tumor cells as substrates of ABCG2. Q141K is a common single-nucleotide polymorphism of ABCG2 in Asians. We demonstrated that the extracellular efflux of gefitinib, erlotinib, and lapatinib was reduced by Q141K, whereas afatinib transport was not affected. In addition, all four EGFR TKIs inhibited the transport of other substrates by both wild-type and variant ABCG2 at 0.1 µM concentrations. Accordingly, epidermal growth factor receptor tyrosine kinase inhibitors may induce interactions with other drugs that are substrates of ABCG2, and single-nucleotide polymorphisms of ABCG2 may influence both the pharmacokinetics and efficacy of these anticancer agents.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos/farmacologia , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Polimorfismo de Nucleotídeo Único
19.
Eur J Med Chem ; 179: 849-862, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31302589

RESUMO

Ko143, a potent ABCG2 inhibitor that reverses multidrug resistance in cancer, cannot be used clinically due to its unsuitable metabolic stability. We identified benzoyl indoles as reversal agents that reversed ABCG2-mediated multidrug resistance (MDR), with synthetic tractability and enhanced metabolic stability compared to Ko143. Bisbenzoyl indole 2 and monobenzoyl indole 8 significantly increased the accumulation of mitoxantrone (MX) in ABCG2-overexpressing NCI-H460/MX20 cells, and sensitized NCI-H460/MX20 cells to mitoxantrone. Mechanistic studies were conducted by [3H]-MX accumulation assay, Western blot analysis, immunofluorescence analysis and ABCG2 ATPase assay. The results revealed that the reversal efficacies of compounds 2 and 8 were not due to an alteration in the expression level or localization of ABCG2 in ABCG2-overexpressing cell lines. Instead, compounds 2 and 8 significantly stimulated the ATP hydrolysis of ABCG2 transporter, suggesting that these compounds could be competitive substrates of ABCG2 transporter. Overall, the results of our study indicated that compounds 2 and 8 significantly reversed ABCG2-mediated MDR by blocking the efflux of anticancer drugs.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Dicetopiperazinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Humanos , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
Int J Biol Macromol ; 136: 266-274, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201909

RESUMO

Paclitaxel, an effective chemotherapeutic drug, is insoluble in aqueous solvents and is usually administered with excipients which have side effects. The use of this drug is also limited due to multi-drug resistance. In this study polysaccharide nanoparticles are used in the delivery of chemotherapeutic drug while minimizing side-effects, solubility issues and drug resistance. The use of biopolymers like galactoxyloglucan to synthesize nanoparticle makes it more biocompatible. This study involves the synthesis of PST-PTX nanoparticles using tamarind seed polysaccharide and Paclitaxel by epichlorohydrin crosslinking. The particles were further characterized by Dynamic Light Scattering (DLS), High-resolution transmission electron microscopy (HR-TEM) Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible spectroscopy. The cytotoxicity of PST-PTX nanoparticles in cancer cell lines and resistant cancer cell lines were determined by MTT assay. The quantitative analysis of cell death was determined by Annexin V dead cell assay, Caspase 3/7 assay and expression of pro-apoptotic protein Bax. The ability of the nanoparticle to overcome multi-drug resistance was evaluated by the expression of multidrug-resistant proteins P-glycoprotein (P-gp) and Breast cancer resistant protein (BCRP) in lung adenocarcinoma resistant cells (A549R). The present study provides evidence for the ability of PST-PTX nanoparticle to overcome multi-drug resistance and cause apoptotic cell death. The particle was found to be more effective than Paclitaxel in causing cell death in resistant cancer cells. Moreover, the particles were found to downregulate the expression of multi-drug resistant proteins P-gp and BCRP in resistant cell lines suggesting the ability of PST-PTX nanoparticles to overcome multi-drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Galactose/química , Glucanos/química , Neoplasias Pulmonares/patologia , Nanopartículas/química , Paclitaxel/química , Paclitaxel/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Transporte Biológico , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Paclitaxel/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA