Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.482
Filtrar
1.
Toxicol Lett ; 318: 1-11, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31618665

RESUMO

Triptolide (TP), a principal bioactive component extracted from traditional Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), has attracted wide attention of its therapeutic effects on inflammation and autoimmune diseases. However, the therapeutic application of TP is hindered by severe cardiomyocyte toxicity and narrow therapeutic window. We previously identified that the p53 was an indispensable contributor in TP-induced myocardial injury. p53 has an inhibitory effect on IKKß-NF-κB pathway that regulates glucose transporters (GLUT) expression. Based on these evidences, we speculate that p53 mediates TP-disturbed glucose uptake by blocking IKKß-NF-κB signaling. This study focused on the effect of TP on cardiac glucose uptake and the role of p53 in glucose metabolism in cardiomyocytes, and p53 -/- mice. TP treatment depressed glucose consumption and ATP production resulting in myocardial damage. Incubation with ATP (5 mM) remarkably decreased the cellular damage. Immunoblotting and immunofluorescence identified that TP suppressed glucose uptake by restricting IKKß-NF-κB signaling activation, GLUT1 and GLUT4 expression. p53 inhibition alleviated the cell damage and the compromise of glucose uptake. Mechanistically, p53 antagonist PFTα abolished TP-induced the inhibition of IKKß, IκBα phosphorylation, p65 nuclear translocation, and GLUT1, GLUT4 expression. Consistently, in acute heart injury models, p53 deficiency upregulated IKKß-NF-κB activation and GLUT1, GLUT4 protein levels which was also indicated as amelioration of heart histological injury after 1.2 mg kg-1 TP administration. The present findings indicate that TP-induced p53 overactivation suppresses glucose uptake by inhibiting IKKß-NF-κB pathway and downregulating NF-κB-dependent GLUT1 and GLUT4 expression.


Assuntos
Diterpenos/toxicidade , Glucose/metabolismo , Cardiopatias/induzido quimicamente , Quinase I-kappa B/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Fenantrenos/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cardiotoxicidade , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Compostos de Epóxi/toxicidade , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
2.
Food Chem ; 302: 125288, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31419774

RESUMO

The effects of benzothiadiazole (BTH) on Penicillium expansum development, mitochondria energy metabolism, and changes in the number and structure of mitochondria in apple fruit were investigated after the fruit were immersed in 100 mg L-1 BTH for 10 min and then stored at 22 °C. The results indicated that BTH treatment significantly decreased the lesion diameter of fruit challenged with P. expansum; further, treatment enhanced the activities of mitochondrial respiratory metabolism-related enzymes, such as succinate dehydrogenase, cytochrome oxidase, H+-ATPase and Ca2+-ATPase, along with high ATP level and energy status in apple fruit during storage. Moreover, transmission electron microscopy results indicated that BTH treatment was beneficial for maintaining the number and structure of mitochondria during storage. The results suggested that BTH treatment enhanced ATP levels via mitochondrial energy metabolism, which might contribute to the induced resistance in apple fruit during storage.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Armazenamento de Alimentos , Frutas/metabolismo , Malus/efeitos dos fármacos , Malus/metabolismo , Mitocôndrias/efeitos dos fármacos , Tiadiazóis/farmacologia , Frutas/microbiologia , Malus/microbiologia , Mitocôndrias/metabolismo , Penicillium/fisiologia
3.
Toxicol Lett ; 318: 30-43, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31647946

RESUMO

Lead (Pb), a widespread heavy metal, may induce serious diseases, particularly male reproductive injury. However, the mechanisms by which Pb induces testicular injury remain unclear. In this paper, we established a mouse model of Pb-induced testicular injury via an intraperitoneal injection of lead chloride at a concentration of 1.5 mg/kg body weight. We confirmed that Pb could induce a series of injuries, including a low litter size, smaller testes, more weak offspring, direct injury, and aberrant spermiogenesis. Our study demonstrated that Pb could inhibit lysine acetylation (Kac) and succinylation (Ksuc) via western blot (WB) and immunofluorescence (IF) analyses. We subsequently separated different germ cells that contained Pre-meiotic spermatogonia (SPG), meiotic spermatocyte (SPC), and round spermatid (RS) into the Pb-treated and control groups and verified that Pb inhibited Kac in SPC, RS, and particularly, during meiosis. Furthermore, our results regarding the inhibition of pyruvate kinase and mitochondrial electron transport chain complex I and II in the Pb-treated groups suggested that Pb may restrain key enzymes to block the TCA cycle and that the low TCA cycle activity could reduce the contents of two important metabolites, acetyl-CoA and succinyl-CoA, to inhibit Kac and Ksuc. Moreover, we examined the influences of the inhibition of Kac and Ksuc on spermiogenesis, which indicated that decreased Kac and Ksuc could impede the replacement of transition proteins in elongating sperm and disorder the distribution of germ cells in the seminiferous tubule. Our research provides novel insights into the mechanisms of Pb reproductive toxicity with respect to lysine acetylation and succinylation.


Assuntos
Chumbo/toxicidade , Lisina/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Acetilação , Animais , Metabolismo Energético/efeitos dos fármacos , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/patologia , Testículo/metabolismo , Testículo/patologia
4.
Cell Physiol Biochem ; 53(4): 701-712, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592599

RESUMO

BACKGROUND/AIMS: Cholinergic signalling mediated by the activation of muscarinic and nicotinic receptors has been described in the literature as a classic and important signalling pathway in the regulation of the inflammatory response. Recent research has investigated the role of acetylcholine, the physiological agonist of these receptors, in the control of energy homeostasis at the central level. Studies have shown that mice that do not express acetylcholine in brain regions regulating energy homeostasis present with excessive weight gain and hyperphagia. However, it has not yet been well-described in the literature which cholinergic receptor subunits are involved in this response; moreover, the signalling pathways responsible for the observed effects are not fully delineated. The hypothalamus is the regulating centre of energy homeostasis, and the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) is highly expressed in this region. When active, α7nAChR recruits proteins such as JAK2/STAT3 to mediate its signalling; the same intracellular components are required by leptin, an anorexigenic hormone. The aim of the present study was to evaluate the role of the hypothalamic α7nAChR in the control of energy homeostasis. METHODS: The work was performed on Swiss male mice. Initially, using immunofluorescent staining on brain sections, the presence of α7nAChR in hypothalamic cells regulating energy homeostasis was evaluated. Animals were submitted to stereotaxis in the lateral ventricle and intracerebroventricular stimulation (ICV) was used for the administration of an agonist (PNU) or antagonist (α-bungarotoxin) of α7nAChR. Metabolic parameters were evaluated and the expression of neuropeptides was evaluated in the hypothalamus by real-time PCR and western blot. The expression of hypothalamic neuropeptides was evaluated in mice treated with siRNA or inhibitors of JAK2/STAT3 (AG490 and STATTIC) proteins. We also evaluated food intake in α7nAChR knockout animals (α7KO). Additionally, in mouse hypothalamic cell culture (the mypHoA-POMC/GFP lineage), we evaluated the expression of neuropeptides and pSTAT3 after stimulation with PNU. RESULTS: Our results indicate co-localisation of α7nAChR with α-MSH, AgRP and NPY in hypothalamic cells. Pharmacological activation of α7nAChR reduced food intake and increased hypothalamic POMC expression and decreased NPY and AgRP mRNA levels and the protein content of pAMPK. Inhibition of α7nAChR with an antagonist increased the mRNA content of NPY and AgRP. Inhibition of α7nAChR with siRNA led to the suppression of POMC expression and an increase in AgRP mRNA levels. α7KO mice showed no changes in food intake. Inhibition of proteins involved in the JAK2/STAT3 signalling pathway reversed the effects observed after PNU stimulation. POMC-GFP cells, when treated with PNU, showed increased POMC expression and nuclear translocation of pSTAT3. CONCLUSION: Thus, selective activation of α7nAChR is able to modulate important markers of the response to food intake, suggesting that α7nAChR activation can suppress the expression of orexigenic markers and favour the expression of anorexics using the intracellular JAK2/STAT3 machinery.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Janus Quinase 2/metabolismo , Pró-Opiomelanocortina/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Bungarotoxinas/farmacologia , Linhagem Celular , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Pró-Opiomelanocortina/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/genética
5.
Toxicol Lett ; 317: 13-23, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562912

RESUMO

Combination antiretroviral therapy (cART) has been hugely successful in reducing the mortality associated with human immunodeficiency virus (HIV) infection, resulting in a growing population of people living with HIV (PLWH). Since PLWH now have a longer life expectancy, chronic comorbidities have become the focus of the clinical management of HIV. For example, cardiovascular complications are now one of the most prevalent causes of death in PLWH. Numerous epidemiological studies show that antiretroviral treatment increases cardiovascular disease (CVD) risk and early onset of CVD in PLWH. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of cART, and two NRTIs are typically used in combination with one drug from another drug class, e.g., a fusion inhibitor. NRTIs are known to induce mitochondrial dysfunction, contributing to toxicity in numerous tissues, such as myopathy, lipoatrophy, neuropathy, and nephropathy. In in vitro studies, short-term NRTI treatment induces an endothelial dysfunction with an increased reactive oxygen species (ROS) production; long-term NRTI treatment decreases cell replication capacity, while increasing mtROS production and senescent cell accumulation. These findings suggest that a mitochondrial oxidative stress is involved in the pathogenesis of NRTI-induced endothelial dysfunction and premature senescence. Mitochondrial dysfunction, defined by a compromised mitochondrial quality control via biogenesis and mitophagy, has a causal role in premature endothelial senescence and can potentially initiate early cardiovascular disease (CVD) development in PLWH. In this review, we explore the hypothesis and present literature supporting that long-term NRTI treatment induces vascular dysfunction by interfering with endothelial mitochondrial homeostasis and provoking mitochondrial genomic instability, resulting in premature endothelial senescence.


Assuntos
Fármacos Anti-HIV/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Senescência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Animais , Fármacos Anti-HIV/administração & dosagem , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Esquema de Medicação , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Metabolismo Energético/efeitos dos fármacos , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Medição de Risco , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
6.
An Acad Bras Cienc ; 91(3): e20181330, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508665

RESUMO

Type 1 diabetes (T1D) is the result of the selective destruction of the pancreatic ß-cells by T cells of the immune system. Although spleen is a secondary lymphoid organ, it is also involved in the T1D pathogenesis. However, the alterations in a variety of cellular processes of this disease need to be further understood. We aimed to analyze the benefits of resveratrol, and its complexed form on diabetic complications in the spleen of rats. To this end, we investigated important enzymes of phosphoryl transfer network, and Na+, K+-ATPase activity. Wistar rats were divided into non-diabetic groups: Control, Ethanol, Resveratrol, Hydroxypropyl-ß-cyclodextrin, Resveratrol-hydroxypropyl-ß-cyclodextrin, and diabetic groups with the same treatments. Diabetes was induced by a single dose of 60 mg/kg of streptozocin intraperitoneally, and treatments by intragastric gavage once daily for 60 days. Hyperglycemia reduced creatine kinase activity, which was reversed by the administration of resveratrol. Na+, K+-ATPase activity was greatly affected, but it was reversed by resveratrol and resveratrol-hydroxypropyl-ß-cyclodextrin. This suggest an energetic imbalance in the spleen of diabetic rats, and in case this also occurs in the diabetic patients, it is possible that resveratrol supplementation could be beneficial to the better functioning of the spleen in diabetic patients.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/metabolismo , Resveratrol/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Baço/metabolismo , Animais , Antioxidantes/metabolismo , Glicemia/análise , Peso Corporal , Creatina Quinase/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Metabolismo Energético/efeitos dos fármacos , Hiperglicemia/metabolismo , Masculino , Tamanho do Órgão , Ratos , Ratos Wistar , Estreptozocina
7.
Toxicol Lett ; 316: 136-146, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31520701

RESUMO

Prenatal dexamethasone exposure (PDE) induces developmental toxicities of multiple organs in offspring, but its serum metabolic profile changes before and after birth are unclear. Here, we employed a LC-MS-based metabolomic approach to detect serum metabolites of PDE offspring rats in utero and adulthood, and explore its change characteristics and toxicological significances. Meanwhile, the bodyweight, serum index related to hepatic and renal function were detected. As compared to healthy control rats, PDE reduced offspring birthweight but caused postnatal catch-up growth accompanied by adult liver and kidney function injury. In utero, the differential metabolites in response to PDE were mainly manifested as enhanced glycolysis, increased protein breakdown and disordered lipid metabolism, and multiple metabolic pathways were changed, which displayed gender differences. In adulthood, PDE offspring showed fewer and inconsistent types of differential metabolites compared to those in utero, which exhibited significant gender differences. The main differential metabolites induced by PDE included lactic acid, carnitine, cortexolone, bile acid, phosphatidylcholine, uric acid and platelet activating factor, which may participate in dexamethasone multi-organ toxicities and multi-disease susceptibility. In conclusion, PDE could induce a gender-difference and sustainable multi-organ damage in the offspring rats via serum metabolic profile analysis, which will enhance offspring susceptibility to multiple adult diseases.


Assuntos
Dexametasona/toxicidade , Metabolismo Energético/efeitos dos fármacos , Glucocorticoides/toxicidade , Metabolômica/métodos , Efeitos Tardios da Exposição Pré-Natal , Fatores Etários , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Peso ao Nascer/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Dexametasona/administração & dosagem , Feminino , Glucocorticoides/administração & dosagem , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Gravidez , Ratos Wistar , Medição de Risco , Fatores Sexuais , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Fatores de Tempo
8.
Toxicol Lett ; 316: 154-170, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31521832

RESUMO

The present study investigates the genotoxic and cytotoxic effects of long term exposure to low doses of a mixture consisting of methomyl, triadimefon, dimethoate, glyphosate, carbaryl, methyl parathion, aspartame, sodium benzoate, EDTA, ethylparaben, buthylparaben, bisphenol A and acacia gum in rats. Four groups of ten Sprangue Dawley rats (5 males and 5 females per group) were exposed for 18 months to the mixture in doses of 0xNOAEL, 0.0025xNOAEL, 0.01xNOAEL and 0.05xNOAEL (mg/kg bw/day). After 18 months of exposure, the rats were sacrificed and their organs were harvested. Micronuclei frequency was evaluated in bone marrow erythrocytes whereas the organs were cytopathologically examined by the touch preparation technique. The exposure to the mixture caused a genotoxic effect identified only in females. Cytopathological examination showed specific alterations of tissue organization in a tissue-type dependent manner. The observed effects were dose-dependent and correlated to various tissue parameters. Specifically, testes samples revealed degenerative and cellularity disorders, liver hepatocytes exhibited decreased glycogen deposition whereas degenerative changes were present in gastric cells. Lung tissue presented increased inflammatory cells infiltration and alveolar macrophages with enhanced phagocytic activity, whereas brain tissue exhibited changes in glial and astrocyte cells' numbers. In conclusion, exposure to very low doses of the tested mixture for 18 months induces genotoxic effects as well as monotonic cytotoxic effects in a tissue-dependent manner.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Testes de Toxicidade Crônica , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino , Nível de Efeito Adverso não Observado , Ratos Sprague-Dawley , Medição de Risco , Fatores Sexuais , Fatores de Tempo
9.
J Agric Food Chem ; 67(38): 10595-10603, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31475817

RESUMO

While ß-cryptoxanthin is hypothesized to have a preventive effect on lifestyle-related diseases, its underlying mechanisms are unknown. We investigated the effect of ß-cryptoxanthin on energy metabolism in adipose tissues and its underlying mechanism. C57BL/6J mice were fed a high-fat diet (60% kcal fat) containing 0 or 0.05% ß-cryptoxanthin for 12 weeks. ß-cryptoxanthin treatment was found to reduce body fat gain and plasma glucose level, while increasing energy expenditure. The expression of uncoupling protein (UCP) 1 was elevated in adipose tissues in the treatment group. Furthermore, the in vivo assays showed that the Ucp1 mRNA expression was higher in the ß-cryptoxanthin treatment group, an effect that disappeared upon cotreatment with a retinoic acid receptor (RAR) antagonist. In conclusion, we report that ß-cryptoxanthin reduces body fat and body weight gain and that ß-cryptoxanthin increases the expression of UCP1 via the RAR pathway.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , beta-Criptoxantina/administração & dosagem , Obesidade/tratamento farmacológico , Receptores do Ácido Retinoico/metabolismo , Proteína Desacopladora 1/genética , Animais , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Receptores do Ácido Retinoico/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
10.
Dokl Biochem Biophys ; 487(1): 277-281, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31559597

RESUMO

The effect of pinacidil was studied on calcium-loaded rat heart mitochondria (RHM) in the presence of succinate and rotenone. In experiments with pinacidil, the swelling of these mitochondria increased in media with NH4NO3 or K-acetate, but the inner membrane potential (ΔΨmito) and the respiration in 3 or 2,4-dinitrophenol-stimulated states of these organelles decreased due to the opening of the mitochondrial permeability transition pore (MPTP) in their inner membrane. These effects were inhibited by cyclosporin A and ADP. It was concluded that the protective effect of pinacidil in the cardiac muscle under ischemia/reperfusion may be associated with both the stimulation of mitochondrial swelling and a decrease in RHM calcium overload resulted in ΔΨmito fall due to mild uncoupling effect of pinacidil.


Assuntos
Cálcio/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Pinacidil/farmacologia , Rotenona/farmacologia , Ácido Succínico/farmacologia , Animais , Interações de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos
11.
Aquat Toxicol ; 215: 105270, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401473

RESUMO

The study aimed to compare differences in oxidative stress and energy metabolism between the left and right lobe of hepatopancreas in large yellow croaker Larimichthys crocea exposed to 0 (control), 20, and 100 µM Zn for 96 h. Tipical biomarkers were examined including the proportion of white hepatopancreas, lipid content, malondialdehyde (MDA) level, glutathione (GSH) content, activity levels of enzymes (Cu/Zn-superoxide dismutase, Cu/Zn-SOD; catalase, CAT; glutathione peroxidase, GPx; glutathione reductase, GR; mitochondrial ATP synthase, F-ATPase; malate dehydrogenase, MDH; succinate dehydrogenase, SDH; hepatic lipase, HTGL; lipoprotein lipase, LPL), mRNA levels of genes encoding these enzymes (sod1, cat, gpx1a, gr, atp5b, mdh, sdh, htgl, and lpl), and gene expression of signaling molecules the NF-E2-related nuclear factor 2 (nrf2) and Kelch-like ECH-associated protein 1 (keap1). A whitish color in the left lobe of hepatopancreas was observed in the control and Zn-exposed fish. Contrarily, the right lobe of hepatopancreas tended towards red with increasing Zn levels. The phenomenon was further confirmed by that lipid content was reduced in the right lobe and was not significantly affected in the left lobe by Zn. The right lobe showed higher energy consumption than the left lobe as reflected by the up-regulation of activity levels of HTGL, LPL, F-ATPase, MDH, and SDH. Lipid peroxidation declined by 20 µM Zn and was unchanged by 100 µM Zn in both lobes, which could be explained by increased activity levels of Cu/Zn-SOD and GPx. However, the magnitude of increase in Cu/Zn-SOD activity was greater in the right lobe than that in the left one. The difference in enzyme activity between two lobes may be involved in changes in mRNA levels of sod1, gr, atp5b, sdh, htgl, lpl, and nrf2, which was further confirmed by positive relationships between enzyme activity and gene expression. Our data also showed positive correlations between nrf2 expression and mRNA levels of its target genes, suggesting that Nrf2 was required for the protracted induction of these genes. Our results demonstrated the potential molecular mechanism of Zn-induced differences between lobes of hepatopancreas, suggesting that the sampling part of hepatopancreas should be considered with caution when assessing metal contamination.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Hepatopâncreas/metabolismo , Hepatopâncreas/patologia , Estresse Oxidativo/efeitos dos fármacos , Perciformes/metabolismo , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Antioxidantes/metabolismo , Metabolismo Energético/genética , Glutationa/metabolismo , Hepatopâncreas/efeitos dos fármacos , Malondialdeído/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
J Agric Food Chem ; 67(36): 10048-10058, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31422666

RESUMO

Ginseng, the roots and rhizomes of Panax ginseng C. A. Meyer, is used not only as a herbal medicine but also as a functional food to support body functions. Ginsenoside Rg3 (GRg3) is a major bioactive component in ginseng. In this study, the beneficial effects of GRg3 on rats with Alzheimer's disease (AD) were evaluated via the behavioral experiment and antioxidant capacity. Moreover, metabolomic analysis based on UPLC-QTOF-MS/MS and apoptosis analysis was used to obtain the change between AD and GRg3-administrated rats to assess the underlying mechanisms on improving mitochondrial dysfunction. Results showed that GRg3 could prevent the cognitive impairment of AD rats by improving the mitochondrial dysfunction. The potential mechanisms were related to regulate the abnormality of energy metabolism, electron transport chain, amino acid metabolism, purine metabolism, and antiapoptosis. These findings support the exploitation of GRg3 as an effective complementary and functional food to prevent and delay AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/psicologia , Medicamentos de Ervas Chinesas/administração & dosagem , Ginsenosídeos/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Doença de Alzheimer/fisiopatologia , Aminoácidos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cognição/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Humanos , Masculino , Mitocôndrias/metabolismo , Panax/química , Ratos , Ratos Wistar
13.
Sci Total Environ ; 687: 839-848, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412487

RESUMO

The adverse effects of air pollution have been long studied in the lung and respiratory systems, but the molecular changes that this causes at the central nervous system level have yet to be fully investigated and understood. To explore the evolution with time of protein expression levels in the brain of rats exposed to particulate matter of different sizes, we carried out two-dimensional gel electrophoresis followed by determination of dysregulated proteins through Coomassie blue staining-based densities (SameSpots software) and subsequent protein identification using MALDI-based mass spectrometry. Expression differences in dysregulated proteins were found to be statistically significant with p-value <0.05. A systems biology-based approach was utilized to determine critical biochemical pathways involved in the rats' brain response. Our results suggest that rats' brains have a particulate matter size dependent-response, being the mitochondrial activity and the astrocyte function severely affected. Our proteomic study confirms the dysregulation of different biochemical pathways involving energy metabolism, mitochondrial activity, and oxidative pathways as some of the main effects of PM exposure on the rat brain. SIGNIFICANCE: Rat brains exposed to particulate matter with origin in car engines are affected in two main areas: mitochondrial activity, by the dysregulation of many pathways linked to the respiratory chain, and neuronal and astrocytic function, which stimulates brain changes triggering tumorigenesis and neurodegeneration.


Assuntos
Poluentes Atmosféricos/toxicidade , Encéfalo/metabolismo , Material Particulado/toxicidade , Proteoma/metabolismo , Poluição do Ar/estatística & dados numéricos , Animais , Metabolismo Energético/efeitos dos fármacos , Masculino , Estresse Oxidativo/fisiologia , Proteômica , Ratos
14.
J Food Sci ; 84(8): 2101-2111, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31369153

RESUMO

Several studies indicated that ginger (Zingiber officinale Roscoe) enhances thermogenesis and/or energy expenditure with which to interpret the beneficial effects of ginger on metabolic disorders. It is well known that mitochondrial activity plays an essential role in these processes. Thus, this study aimed to investigate the effect of ginger extract (GE) and its major components, 6-gingerol and 6-shogaol, on mitochondrial biogenesis and the underlying molecular mechanisms. Our results showed that GE at dose of 2 g/kg promoted oxygen consumption and intrascapular temperature in mice. The mitochondrial DNA (mtDNA) copy number in muscle and liver increased. Expression levels of oxidative phosphorylation (OXPHOS) related proteins and AMP-activated protein kinase ɑ/proliferator-activated receptor gamma coactivator 1 ɑ (AMPK/PGC1ɑ) signaling related proteins in the muscle, liver, and brown adipose tissue (BAT) increased as well. In HepG2 cells, GE at concentration of 2.5 and 5 mg/mL increased mitochondrial mass and mtDNA copy number. GE promoted ATP production, the activities of mitochondrial respiratory chain complex I and IV, and expression levels of OXPHOS complex related proteins and AMPK/PGC1ɑ signaling related proteins. The antagonist of AMPK eliminated partly the effect of GE on mitochondrial biogenesis. 6-Gingerol increased mitochondrial mass, mtDNA copy number and ATP production, and the activities of mitochondrial respiratory chain complexes in HepG2 cells as well. However, both 6-gingerol at high concentration of 200 µM and 6-shogaol at 10 to 200 µM inhibited cell viability. In conclusion, GE promoted mitochondrial biogenesis and improved mitochondrial functions via activation of AMPK-PGC1ɑ signaling pathway, and 6-gingerol other than 6-shogaol, may be the main active component. PRACTICAL APPLICATION: Ginger (Zingiber officinale Roscoe) is a food seasoning and also used as a medical plant in alternative medicine throughout the world. Here, we demonstrated that ginger extract (GE) promoted mitochondrial biogenesis and mitochondrial function via activation of AMPK-PGC1ɑ signaling pathway both in mice and in HepG2 cells, and 6-gingerol may be its main active component. Ginger, with anticipated safety, is expected to be a long-term used dietary supplement and be developed into a new remedy for mitochondrial dysfunctional disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Gengibre/química , Mitocôndrias/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Catecóis/análise , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Álcoois Graxos/análise , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ratos , Transdução de Sinais/efeitos dos fármacos
15.
Chemosphere ; 235: 885-899, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31284137

RESUMO

Harmful effects of triclosan (TCS) have been reported on several organisms; however, effects on early life stages of marine vertebrates are limited. Therefore, the objective of this work was to assess the effects of TCS during early development of the flatfish Solea senegalensis after initial characterization of cholinesterases (ChEs) and determination of selected biochemical markers baseline levels. Characterization of ChEs and determination of biochemical markers baseline levels of cholinergic activity, energy metabolism and oxidative stress were analysed in sole at 3 days after hatching (dah) and at the onset and end of metamorphosis. To assess TCS effects, fish were exposed during 96h to 30-500 µg L-1 TCS until 3 dah. Fish at 13 dah were exposed during 48h to 200-1,500 µg L-1 TCS and maintained until complete metamorphosis. Effects on survival, malformations, length, metamorphosis progression and biochemical markers were evaluated. The main ChE active form present in sole early life stages is acetylcholinesterase and baseline levels of oxidative stress and energy metabolism biomarkers changed according to fish developmental stage. Triclosan induced malformations (EC50 = 180 µg L-1 at 3 dah), decreased growth (95 µg L-1 at 3 dah; 548 µg L-1 at 24 dah) and affected metamorphosis progression (391 µg L-1 at 17 dah). Impairment of antioxidant system was observed, with TCS affecting catalase at the end of metamorphosis test, however, no oxidative damage on lipids was detected. Glutathione S-transferase was the most sensitive endpoint during early larval test (LOEC = 30 µg L-1). Exposure to TCS affected S. senegalensis at individual and sub-individual levels, both at early larval stage and during the critical period of metamorphosis.


Assuntos
Linguados/embriologia , Larva/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Triclosan/toxicidade , Acetilcolinesterase/metabolismo , Animais , Catalase/metabolismo , Colinesterases/metabolismo , Metabolismo Energético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Triclosan/metabolismo
16.
Ecotoxicol Environ Saf ; 182: 109446, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31323523

RESUMO

Increased use of sugarcane pesticides and their destination to non-target environments in Brazil has generated concerns related to the conservation of more vulnerable groups, such as amphibians. Besides the high skin permeability, tadpoles are constantly restricted to small and ephemeral ponds, where exposure to high concentrations of pesticides in agricultural areas is inevitable. This study evaluated chronic effects caused by sub-lethal concentrations of 2,4-dichlorophenoxyacetic acid herbicide on energy storage, development, respiration rates, swimming performance and avoidance behavior of bullfrog tadpoles (Lithobates catesbeianus). Firstly, we conducted acute toxicity test (96 h) to estipulate sub-lethal concentrations of 2,4-D and evaluate the sensitivity of three tadpoles' species to this herbicide. Results showed that Leptodactylus fuscus presented the lowest LC50 96 h, 28.81 mg/L, followed by Physalaemus nattereri (143.08 mg/L) and L. catesbeianus (574.52 mg/L). Chronic exposure to 2,4-D (125, 250 and 500 µg/L) delayed metamorphosis and inhibited the growth of tadpoles at concentrations of 125 µg/L. Effects on biochemical reserves showed that 2,4-D increased total hepatic lipids in tadpoles, although some individual lipid classes (e.g. free fatty acids and triglycerides) were reduced. Protein and carbohydrates contents were also impaired by 2,4-D, suggesting a disruption on energy metabolism of amphibians by the herbicide. In addition to biochemical changes, respiration rates and swimming speed were also decreased after chronic exposure to 2,4-D, and these responses appeared to be correlated with the changes detected in the basic energy content. Avoidance test indicated that tadpoles of L. catesbeinus avoided the presence of 2,4-D, however they were unable to detect increasing gradients of the contaminant. Our data showed that chronic exposure to 2,4-D impaired biochemical, physiological and behavioral aspects of tadpoles, which may compromise their health and make them more vulnerable to environmental stressors in natural systems.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Aprendizagem da Esquiva/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Herbicidas/toxicidade , Larva/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Brasil , Relação Dose-Resposta a Droga , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Rana catesbeiana , Natação , Testes de Toxicidade Aguda
17.
J Dairy Sci ; 102(9): 8127-8133, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31326165

RESUMO

The synthesis of protein requires the availability of specific AA and a large supply of energy in bovine mammary epithelial cells (BMEC). Whether an interaction exists between Lys/Met ratio and glucose level on milk protein synthesis and its potential regulatory mechanism is unclear. We investigated the effects of different Lys/Met ratios and glucose levels on casein synthesis-related gene expression in BMEC to elucidate the underlying molecular mechanisms. Primary BMEC were subjected to 4 treatments for 36 h, arranged in a 2 × 2 factorial design with Lys/Met ratios of 3:1 (1.2:0.4 mM, LM3.0; total AA = 8.24 mM) and 2.3:1 (1.4:0.6 mM, LM2.3; total AA = 8.64 mM) and glucose levels of 17.5 mM (high glucose level) and 2.5 mM (low glucose level). No interactions between Lys/Met ratio and glucose level on cell viability, cell cycle progression, mRNA, or protein expression levels were found. High glucose level increased cell proliferation and promoted cell cycle transition from intermediate phase (G1 phase) to synthesis (S phase) by approximately 50%, whereas Lys/Met ratio had no effect. Both mRNA and protein abundance of αS1-casein and ß-casein were positively affected by LM3.0, whereas a high glucose level increased protein abundance of αS1-casein and ß-casein and increased gene expression of CSN1S1 but not of CSN2. Furthermore, high glucose increased the mRNA abundance of ELF5 and decreased that of GLUT8, enhanced protein expression of total and phosphorylated mechanistic target of rapamycin (mTOR), and decreased phosphorylated AMP-activated protein kinase (AMPK) levels. Treatment LM3.0 had a stimulatory effect on total and phosphorylated mTOR but did not affect AMPK phosphorylation. The mRNA levels of JAK2, ELF5, and RPS6KB1 were upregulated and mRNA levels of EIF4EBP1 were downregulated with LM3.0 compared with LM2.3. Our results indicate that casein synthesis was regulated by Lys/Met ratio via JAK2/ELF5, mTOR, and its downstream RPS6KB1 and EIF4EBP1 signaling. In contrast, glucose regulated casein synthesis through promoting cell proliferation, accelerating cell cycle progression, and activating the ELF5 and AMPK/mTOR signaling pathways. Within the range of substrate levels in the present study, a change in Lys/Met ratio had a stronger effect on abundance of αS1-casein and ß-casein than a change in glucose level.


Assuntos
Caseínas/biossíntese , Bovinos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Lisina/administração & dosagem , Metionina/administração & dosagem , Animais , Caseínas/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Glucose/análise , Glândulas Mamárias Animais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/efeitos dos fármacos
18.
Life Sci ; 233: 116689, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31348949

RESUMO

BACKGROUND: Maternal metabolic syndrome during gestation and lactation leads to several Se-status-related metabolic changes in offspring. MS leads to hepatomegaly, liver oxidation, resistance to insulin challenges and selenoptroteins expression upregulation, producing an energy imbalance in hepatocytes. As Se is necessary for correct heart function, Se deposits are depleted and selenoproteins expression downregulated in heart; this depletion being related to cardiovascular damage. Recently, selenoproteins have been directly implicated in the central endocrine regulation of appetite and energy homeostasis. METHODS: To obtain information about how Se is involved in regulating endocrine peripheral energy balance during MS process, two experimental groups of dam rats were used: control (Se: 0.1 ppm) and MS (Fructose 65% and Se: 0.1 ppm). At the end of lactation (21d old), the pups' appetite profile, tissular Se deposits and peptides from gastrointestinal tract (including pancreas), leptin, skeletal growth markers and cytokines in serum were measured. RESULTS: MS-exposed pups present changes in Se homeostasis, appetite profile and endocrine energy balance signals related to impaired insulin secretion and high leptin serum values. This profoundly affects the pups' growth profile since muscle and bones are in catabolic process and brown adipose tissue (BAT) mass decreases. CONCLUSION: These results indicate that the pups are suffering a process similar to diabetes type 1 which appeared when dams received low Se dietary supply and they point to Se as an important marker and key treatment for these disorders during gestation and lactation that affect future adult health.


Assuntos
Doenças do Sistema Endócrino/etiologia , Metabolismo Energético/efeitos dos fármacos , Desenvolvimento Fetal/efeitos dos fármacos , Síndrome Metabólica/complicações , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Selênio/administração & dosagem , Animais , Biomarcadores/sangue , Doenças do Sistema Endócrino/patologia , Feminino , Homeostase , Resistência à Insulina , Leptina/sangue , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Síndrome Metabólica/tratamento farmacológico , Estresse Oxidativo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Wistar , Selênio/efeitos adversos , Selênio/sangue
19.
Poult Sci ; 98(9): 3523-3532, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31329991

RESUMO

The objective of the present study was to investigate the effect of dietary graded raw potato starch (RPS) levels on growth performance, plasma cytokines concentration, ileal barrier function, and cecal short-chain fatty acids (SCFA) concentration in meat ducks from 1 to 35 D of age. This study included 2 experiments. In experiment (Exp.) 1, sixteen 35-day-old meat ducks were used to evaluate the AME of RPS by orogastric administration. Results showed the AME value of RPS on ducks is 2.76 kcal/g. In Exp. 2, a total of 600 one-day-old ducklings were randomly assigned to 5 isonitrogenous and isoenergetic dietary treatments that included 0 (control), 6, 12, 18, and 24% RPS, respectively. Samples were collected at both of 14 and 35 D. Neither growth performance nor ileal parameters (length, weight, and pH) at both of 14 and 35 D was affected by dietary RPS. However, the mucosal thickness (14 D), villus height (except for 18% RPS at 14 D), and the villus height: crypt depth ratio (14 and 35 D) of the ileum were increased in the 12 and 18% RPS diets when compared to 0% RPS diet. Meanwhile, proinflammatory factors such as plasma interleukin (IL)-1ß and IL-6 (14 D) reduced in 12% RPS diet and tumor necrosis factor α decreased in 12% (except for 14 D) and 18% RPS groups. When compared with the control group, diets with 18% RPS significantly increased mucin 2 gene expression at 14 D, and 12% RPS elevated the mRNA expression of tight junction proteins including Zonula occludens-1 and Claudin 1 (except for 14 D) in the ileal mucosa of birds. Furthermore, ducks fed 12% RPS diet had higher concentrations of acetate, propionate, and butyrate in cecal digesta than other groups. These findings indicated that diets with 12 and/or 18% RPS increased the cecal SCFA concentration, which subsequently enhanced the barrier function and improved intestinal health in the ileum for 14 and 35-day-old meat ducks.


Assuntos
Patos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Expressão Gênica/efeitos dos fármacos , Amido/metabolismo , Ração Animal/análise , Animais , Ceco/química , Citocinas/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Patos/sangue , Patos/genética , Patos/crescimento & desenvolvimento , Intestinos/fisiologia , Distribuição Aleatória , Solanum tuberosum/química , Amido/administração & dosagem
20.
J Dairy Sci ; 102(9): 8305-8318, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31301838

RESUMO

Although choline requirements are unknown, enhanced postruminal supply may decrease liver triacylglycerol (TAG) storage and increase flux through the methionine cycle, helping cows during a negative energy balance (NEB). The objective was to investigate effects of postruminal choline supply during NEB on hepatic activity of betaine-homocysteine methyltransferase (BHMT), methionine synthase (MTR), methionine adenosyltransferase, transcription of enzymes, and metabolite concentrations in the methionine cycle. Ten primiparous rumen-cannulated Holstein cows (158 ± 24 d postpartum) were used in a replicated 5 × 5 Latin square design with 4-d treatment periods and 10 d of recovery (14 d/period). Treatments were unrestricted intake with abomasal infusion of water (A0), restricted intake (R; 60% of net energy for lactation requirements to induce NEB) with abomasal infusion of water (R0) or R plus abomasal infusion of 6.25, 12.5, or 25 g/d of choline ion. Liver tissue was collected on d 5 after the infusions ended, blood on d 1 to 5, and milk on d 1 to 4. Statistical contrasts were A0 versus R0 (CONT1) and tests of linear (L), quadratic (Q), and cubic (C) effects of choline dose. Plasma choline increased with R (CONT1) and choline (L). Although R decreased milk yield (CONT1), choline increased milk yield and liver phosphatidylcholine (PC), but decreased TAG (L). No differences were observed in plasma PC or very-low-density lipoprotein concentrations with R or choline. Activity and mRNA abundance of BHMT were greater with R (CONT1) and increased with choline (L). Although activity of MTR was lower with R (CONT1), it tended to increase with choline (L). No effect of R was detected for activity of methionine adenosyltransferase, but it changed cubically across dose of choline. Those responses were associated with linear increases in the concentrations of liver tissue (+13%) and plasma methionine concentrations. The mRNA abundance of CPT1A, SLC22A5, APOA5, and APOB, genes associated with fatty acid oxidation and lipoprotein metabolism, was upregulated by choline (Q). Overall, enhanced supply of choline during NEB increases hepatic activity of BHMT and MTR to regenerate methionine and PC, partly to help clear TAG. The relevance of these effects during the periparturient period merits further research.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Betaína-Homocisteína S-Metiltransferase/metabolismo , Bovinos/metabolismo , Colina/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Fígado/metabolismo , Metionina/metabolismo , Abomaso/efeitos dos fármacos , Animais , Betaína-Homocisteína S-Metiltransferase/genética , Colina/sangue , Ácidos Graxos/metabolismo , Feminino , Lactação/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Metionina/sangue , Oxirredução , Parto/metabolismo , Gravidez , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA