Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.493
Filtrar
1.
Mol Cell ; 81(18): 3760-3774, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547237

RESUMO

The growing field of tumor metabolism has greatly expanded our knowledge of metabolic reprogramming in cancer. Apart from their established roles, various metabolic enzymes and metabolites harbor non-canonical ("moonlighting") functions to support malignant transformation. In this article, we intend to review the current understanding of moonlighting functions of metabolic enzymes and related metabolites broadly existing in cancer cells by dissecting each major metabolic pathway and its regulation of cellular behaviors. Understanding these non-canonical functions may broaden the horizon of the cancer metabolism field and uncover novel therapeutic vulnerabilities in cancer.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/enzimologia , Neoplasias/metabolismo , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Redes e Vias Metabólicas , Metabolômica/métodos , Neoplasias/patologia , Nitrogênio/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais
2.
J Exp Biol ; 224(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34374410

RESUMO

In rainbow trout, dietary carbohydrates are poorly metabolized compared with other macronutrients. One prevalent hypothesis suggests that high dietary amino acid levels could contribute to the poor utilization of carbohydrates in trout. In mammals, alanine is considered an important gluconeogenic precursor, but has recently been found to stimulate AMP-activated protein kinase (AMPK) to reduce glucose levels. In trout, the effect of alanine on glucose flux is unknown. The goal of this study was to determine the effects of 4 h exogenous alanine infusion on glucose metabolism in rainbow trout. Glucose flux, and the rate of glucose appearance (Ra) and disposal (Rd) were measured in vivo. Key glycolytic and gluconeogenic enzyme expression and activity, and cell signaling molecules relevant to glucose metabolism were assessed in the liver and muscle. The results show that alanine inhibits glucose Ra (from 13.2±2.5 to 7.3±1.6 µmol kg-1 min-1) and Rd (from 13.2±2.5 to 7.4±1.5 µmol kg-1 min-1) and the slight mismatch between Ra and Rd caused a reduction in glycemia, similar to the effects of insulin in trout. The reduction in glucose Rd can be partially explained by a reduction in glut4b expression in red muscle. In contrast to mammals, trout alanine-dependent glucose-lowering effects did not involve hepatic AMPK activation, suggesting a different mechanistic basis. Interestingly, protein kinase B (AKT) activation increased only in muscle, similar to effects observed in insulin-infused trout. We speculate that alanine-dependent effects were probably mediated through stimulation of insulin secretion, which could indirectly promote alanine oxidation to provide the needed energy.


Assuntos
Oncorhynchus mykiss , Alanina/metabolismo , Animais , Glicemia/metabolismo , Metabolismo dos Carboidratos , Gluconeogênese , Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Transdução de Sinais
3.
Mol Biol Evol ; 38(9): 3864-3883, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426843

RESUMO

Dietary adaptation is a major feature of phenotypic and ecological diversification, yet the genetic basis of dietary shifts is poorly understood. Among mammals, Neotropical leaf-nosed bats (family Phyllostomidae) show unmatched diversity in diet; from a putative insectivorous ancestor, phyllostomids have radiated to specialize on diverse food sources including blood, nectar, and fruit. To assess whether dietary diversification in this group was accompanied by molecular adaptations for changing metabolic demands, we sequenced 89 transcriptomes across 58 species and combined these with published data to compare ∼13,000 protein coding genes across 66 species. We tested for positive selection on focal lineages, including those inferred to have undergone dietary shifts. Unexpectedly, we found a broad signature of positive selection in the ancestral phyllostomid branch, spanning genes implicated in the metabolism of all major macronutrients, yet few positively selected genes at the inferred switch to plantivory. Branches corresponding to blood- and nectar-based diets showed selection in loci underpinning nitrogenous waste excretion and glycolysis, respectively. Intriguingly, patterns of selection in metabolism genes were mirrored by those in loci implicated in craniofacial remodeling, a trait previously linked to phyllostomid dietary specialization. Finally, we show that the null model of the widely-used branch-site test is likely to be misspecified, with the implication that the test is too conservative and probably under-reports true cases of positive selection. Our findings point to a complex picture of adaptive radiation, in which the evolution of new dietary specializations has been facilitated by early adaptations combined with the generation of new genetic variation.


Assuntos
Metabolismo dos Carboidratos/genética , Quirópteros/genética , Dieta , Evolução Molecular , Seleção Genética , Adaptação Biológica/genética , Animais , Quirópteros/metabolismo , Comportamento Alimentar
4.
J Microbiol ; 59(9): 827-839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34382149

RESUMO

Probiotics effectively prevent and improve metabolic diseases such as diabetes by regulating the intestinal microenvironment and gut microbiota. However, the effects of probiotics in gestational diabetes mellitus are not clear. Here, we showed that probiotic supplements significantly improved fasting blood glucose in a gestational diabetes mellitus rat model. To further understand the mechanisms of probiotics in gestational diabetes mellitus, the gut microbiota were analyzed via 16S rRNA sequencing. We found that compared with the normal pregnant group, the gestational diabetes mellitus rats had decreased diversity of gut microbiota. Moreover, probiotic supplementation restored the diversity of the gut microbiota in gestational diabetes mellitus rats, and the gut microbiota structure tended to be similar to that of normal pregnant rats. In particular, compared with gestational diabetes mellitus rats, the abundance of Firmicutes and Actinobacteria was higher after probiotic supplementation. Furthermore, activating carbohydrate metabolism and membrane transport pathways may be involved in the potential mechanisms by which probiotic supplements alleviate gestational diabetes mellitus. Overall, our results suggested that probiotic supplementation might be a novel approach to restore the gut microbiota of gestational diabetes mellitus rats and provided an experimental evidence for the use of probiotic supplements to treat gestational diabetes mellitus.


Assuntos
Diabetes Gestacional/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Metabolismo dos Carboidratos , Carboidratos , Diabetes Gestacional/metabolismo , Diabetes Gestacional/microbiologia , Suplementos Nutricionais/análise , Feminino , Masculino , Gravidez , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley
5.
Food Res Int ; 147: 110530, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399508

RESUMO

This study aimed to evaluate the possibility that Spirulina platensis crude polysaccharides may ameliorate the lipid and carbohydrate metabolism disorder, including obesity, hyperlipidemia, hyperglycemia, hepatic steatosis, and gut dysbiosis. The results showed Spirulina platensis crude polysaccharides could improve body weight, serum/liver lipid and carbohydrate indexes, and liver antioxidant parameters in high-sucrose and high-fat diet (HFD)-fed rats, which were accompanied by regulated liver mRNA expressions involved in lipid and carbohydrate metabolism disorder. In addition, SPLP intervention significantly decreased cecal level of propionic acid in HFD-fed rats. Notably, the SPLP could alter the relative abundance of Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria at phylum levels. Based on Spearman's rank correlation coefficient, serum/liver lipid and carbohydrate profiles were found significantly positively correlated with genera Romboutsia, Allobaculum, Blautia, Phascolarctobacterium, Bifidobacterium, Coprococcus, Turicibacter, Erysipelotrichaceae_unclassified, Olsenella, Escherichia/Shigella, Coprobacillus, Lachnospiracea incertae, and Lactobacillus, but strongly negatively correlated with genera Atopostipes, Flavonifractor, Porphyromonadaceae_unclassified, Barnesiella, Oscillibacter, Paraprevotella, Jeotgalicoccus, Corynebacterium, Alloprevotella and Bacteroides. It was concluded that oral administration of SPLP could remarkably ameliorate the lipid and carbohydrate metabolism disorder and significantly modulate the intestinal microbiota in HFD-fed rats.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Metabolismo dos Carboidratos , Metabolismo dos Lipídeos , Lipídeos , Polissacarídeos , Ratos , Spirulina , Sacarose
6.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445166

RESUMO

Fucosylated carbohydrates and glycoproteins from human breast milk are essential for the development of the gut microbiota in early life because they are selectively metabolized by bifidobacteria. In this regard, α-L-fucosidases play a key role in this successful bifidobacterial colonization allowing the utilization of these substrates. Although a considerable number of α-L-fucosidases from bifidobacteria have been identified by computational analysis, only a few of them have been characterized. Hitherto, α-L-fucosidases are classified into three families: GH29, GH95, and GH151, based on their catalytic structure. However, bifidobacterial α-L-fucosidases belonging to a particular family show significant differences in their sequence. Because this fact could underlie distinct phylogenetic evolution, here extensive similarity searches and comparative analyses of the bifidobacterial α-L-fucosidases identified were carried out with the assistance of previous physicochemical studies available. This work reveals four and two paralogue bifidobacterial fucosidase groups within GH29 and GH95 families, respectively. Moreover, Bifidobacterium longum subsp. infantis species exhibited the greatest number of phylogenetic lineages in their fucosidases clustered in every family: GH29, GH95, and GH151. Since α-L-fucosidases phylogenetically descended from other glycosyl hydrolase families, we hypothesized that they could exhibit additional glycosidase activities other than fucosidase, raising the possibility of their application to transfucosylate substrates other than lactose in order to synthesis novel prebiotics.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium/metabolismo , Fucose/metabolismo , alfa-L-Fucosidase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bifidobacterium/química , Bifidobacterium/genética , Metabolismo dos Carboidratos , Microbioma Gastrointestinal , Glicosilação , Humanos , Leite Humano/metabolismo , Filogenia , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética
7.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445676

RESUMO

Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review outlines the understanding of starch metabolism with a particular focus on peas and highlights the knowledge of pea starch granule structure and its relationship with functional properties, and industrial applications. Using the currently available pea genetics and genomics knowledge and breakthroughs in omics technologies, we discuss the perspectives and possible avenues to advance our understanding of starch metabolism in peas at an unprecedented level, to ultimately enable the molecular design of multi-functional native pea starch and to create value-added utilization.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Ervilhas/metabolismo , Amido/metabolismo , Ervilhas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Amido/isolamento & purificação
8.
Ecotoxicol Environ Saf ; 223: 112615, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34385064

RESUMO

Tralopyril (TP), an antifouling biocide, is widely used to prevent heavy biofouling, and can have potential risks to aquatic organisms. However, there is little information available on the toxicity of tralopyril to aquatic organisms. In this study, the effect of TP on carbohydrate and lipid metabolism, and related mechanisms were evaluated in zebrafish (Danio rerio) larvae. Adverse modifications in carbohydrate metabolism were observed in larvae: hexokinase (HK) activity, succinate dehydrogenase (SDH) activity, and adenosine triphosphate (ATP) content were significantly decreased; and transcript expression of genes (GK, HK1, and PCK1) was also significantly changed. Changes of TG content, FAS activity and transcript expression of genes (ACO, ehhadh, and fas) indicate that TP disrupt lipid metabolism in zebrafish larvae. The change in expression of genes (ndufs4, Sdhα, and uqcrc2) involved in the mitochondrial respiratory complexes, and genes (polg1 and tk2) involved in the mitochondrial DNA replication and transcription indicates that these adverse effects on carbohydrate and lipid metabolism are caused by mitochondrial dysfunction.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Metabolismo dos Carboidratos , Larva , Metabolismo dos Lipídeos , Mitocôndrias , Pirróis , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
9.
Zoolog Sci ; 38(4): 332-342, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34342954

RESUMO

Animals survive nutrient deficiency by controlling their physiology, such as sugar metabolism and energy-consuming developmental events. Although research on the insect neural mechanisms of the starvation-induced modulation has progressed, the mechanisms have not been fully understood due to their complexity. Myoinhibitory peptides are known to be neuropeptides involved in various physiological activities, development, and behavior. Here, we analyzed the responsiveness of Plautia stali myoinhibitory peptides (Plast-MIPs) to starvation and their physiological role in the brown-winged green bug, P. stali. First, we performed immunohistochemical analyses to investigate the response of Plast-MIP neurons in the cephalic ganglion to fasting under long day conditions. Fasting significantly enhanced the immunoreactivity to Plast-MIPs in the pars intercerebralis (PI), which is known to be a brain region related to various endocrine regulations. Next, to analyze the physiological role of Plast-MIPs, we performed RNA interference-mediated knockdown of Plast-Mip and injection of synthetic Plast-MIP in normally fed and fasted females. The knockdown of Plast-Mip did not have significant effects on the body weight or proportions of ovarian development in each feeding condition. On the other hand, the knockdown of Plast-Mip increased the gonadosomatic index of normally fed females whereas it did not have a significant effect on food intake. Notably, the knockdown of Plast-Mip diminished the fasting-induced reduction of hemolymph reducing sugar levels. Additionally, injection of synthetic Plast-MIP acutely decreased the hemolymph reducing sugar level. Our results suggested responsiveness of Plast-MIPs in the PI to fasting and their functional role in reduction of the hemolymph reducing sugar level.


Assuntos
Carboidratos/química , Hemolinfa/química , Heterópteros/fisiologia , Proteínas de Insetos/metabolismo , Animais , Metabolismo dos Carboidratos , Feminino , Hemolinfa/metabolismo , Proteínas de Insetos/genética , Interferência de RNA
10.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360556

RESUMO

In grapevines, as in other plants, sucrose and its constituents glucose and fructose are fundamentally important and carry out a multitude of roles. The aims of this review are three-fold. First, to provide a summary of the metabolism and transport of sucrose in grapevines, together with new insights and interpretations. Second, to stress the importance of considering the compartmentation of metabolism. Third, to outline the key role of acid invertase in osmoregulation associated with sucrose metabolism and transport in plants.


Assuntos
Metabolismo dos Carboidratos , Frutas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Vitis/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Vitis/crescimento & desenvolvimento
11.
BMC Plant Biol ; 21(1): 361, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364372

RESUMO

BACKGROUND: Priming of seed prior chilling is regarded as one of the methods to promote seeds germination, whole plant growth, and yield components. The application of biostimulants was reported as beneficial for protecting many plants from biotic or abiotic stresses. Their value was as important to be involved in improving the growth parameters of plants. Also, they were practiced in the regulation of various metabolic pathways to enhance acclimation and tolerance in coriander against chilling stress. To our knowledge, little is deciphered about the molecular mechanisms underpinning the ameliorative impact of biostimulants in the context of understanding the link and overlap between improved morphological characters, induced metabolic processes, and upregulated gene expression. In this study, the ameliorative effect(s) of potassium silicate, HA, and gamma radiation on acclimation of coriander to tolerate chilling stress was evaluated by integrating the data of growth, yield, physiological and molecular aspects. RESULTS: Plant growth, yield components, and metabolic activities were generally diminished in chilling-stressed coriander plants. On the other hand, levels of ABA and soluble sugars were increased. Alleviation treatment by humic acid, followed by silicate and gamma irradiation, has notably promoted plant growth parameters and yield components in chilling-stressed coriander plants. This improvement was concomitant with a significant increase in phytohormones, photosynthetic pigments, carbohydrate contents, antioxidants defense system, and induction of large subunit of RuBisCO enzyme production. The assembly of Toc complex subunits was maintained, and even their expression was stimulated (especially Toc75 and Toc 34) upon alleviation of the chilling stress by applied biostimulators. Collectively, humic acid was the best the element to alleviate the adverse effects of chilling stress on growth and productivity of coriander. CONCLUSIONS: It could be suggested that the inducing effect of the pretreatments on hormonal balance triggered an increase in IAA + GA3/ABA hormonal ratio. This ratio could be linked and engaged with the protection of cellular metabolic activities from chilling injury against the whole plant life cycle. Therefore, it was speculated that seed priming in humic acid is a powerful technique that can benefit the chilled along with non-chilled plants and sustain the economic importance of coriander plant productivity.


Assuntos
Resposta ao Choque Frio/fisiologia , Coriandrum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Sementes/crescimento & desenvolvimento , Aclimatação , Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Carboidratos/análise , Proteínas de Cloroplastos/metabolismo , Resposta ao Choque Frio/efeitos dos fármacos , Resposta ao Choque Frio/efeitos da radiação , Coriandrum/efeitos dos fármacos , Coriandrum/efeitos da radiação , Enzimas/metabolismo , Raios gama , Substâncias Húmicas , Peroxidação de Lipídeos , Pigmentos Biológicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Compostos de Potássio/química , Compostos de Potássio/farmacologia , Sementes/efeitos dos fármacos , Sementes/efeitos da radiação
12.
Klin Lab Diagn ; 66(8): 465-471, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388316

RESUMO

A great deal of research was being done in studying of the age-related characteristics of carbohydrate metabolism and the provision of vitamins B1, B2 among the population of the Subarctic (SR) and Arctic (AR) regions, differing in the extreme natural and climatic-geographic living conditions. The surveyed population was divided into five age groups: 16-21, 22-35, 36-45, 46-60 and 61-74 years old. The parameters of carbohydrate metabolism (glucose, lactate, pyruvate) were determined in the blood serum, the content of thiamine (thiamin diphosphate effect) and riboflavin - in hemolysates, and the values of the lactate/pyruvate ratio (Lac/Pyr) were calculated. Statistical data processing was performed by nonparametric methods. An increase in glucose levels was found in persons of older age groups. Age-related fluctuations of metabolites of carbohydrate metabolism were manifested by a lower content of lactate and the value of the Lac/Pyr ratio in persons aged 16-21 years. Regardless of the age and region of the survey, there were revealed high lactate concentrations, Lac/Pyr values and reduced pyruvate levels, as well as low glucose levels in group aged 16-21 year in AR. For vitamins B1, B2, no pronounced age-related changes were observed, while the content of riboflavin was higher in persons of SR. Moderate hypovitaminosis of thiamin was detected in 13-20,1% and 6,1-22,7% of cases in SR and AR, pronounced - 8,3-11,6% and 4,6-23,5%, respectively, vitamin B2 deficiency was noted in 19,4-23,9% of persons in the AR and in 33,8-42,9% of persons in the AR. Vitamins in both regions at different age periods contributed to the formation of levels of indicators of carbohydrate metabolism: glucose and pyruvate in SR, lactate in AR.


Assuntos
Riboflavina , Tiamina , Adolescente , Adulto , Idoso , Metabolismo dos Carboidratos , Humanos , Ácido Pirúvico , Vitaminas , Adulto Jovem
13.
BMC Genomics ; 22(1): 617, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388974

RESUMO

BACKGROUND: Chestnut seeds are important kinds of edible nuts rich in starch and protein. The characteristics and nutrient contents of chestnut have been found to show obvious metaxenia effects in previous studies. To improve the understanding of the effect of metaxenia on chestnut starch and sucrose metabolism, this study used three varieties of chestnut, 'Yongfeng 1', 'YongRen Zao' and 'Yimen 1', as male parents to pollinate the female parent, 'Yongfeng 1', and investigated the mechanisms of starch and sucrose metabolism in three starch accumulation stages (70 (S1), 82 (S2), and 94 (S3) days after pollination, DAP) in chestnut seed kernels. RESULT: Most carbohydrate metabolism genes were highly expressed in YFF (self-pollinated 'Yongfeng 1') in stage S2 and in YFR ('Yongfeng 1' × 'Yongren Zao') and YFM ('Yongfeng 1' × 'Yimen 1') in stage S3. In stage S3, hub genes encoding HSF_DNA-binding, ACT, Pkinase, and LIM proteins and four transcription factors were highly expressed, with YFF showing the highest expression, followed by YFR and YFM. In addition, transcriptome analysis of the kernels at 70, 82 and 94 DAP showed that the starch granule-bound starch synthase (EC 2.4.1.242) and ADP-glucose pyrophosphorylase (EC 2.7 .7.27) genes were actively expressed at 94 DAF. Chestnut seeds regulate the accumulation of soluble sugars, reducing sugars and starch by controlling glycosyl transferase and hydrolysis activity during development. CONCLUSION: These results and resources have important guiding significance for further research on starch and sucrose metabolism and other types of metabolism related to chestnut metaxenia.


Assuntos
Amido , Transcriptoma , Metabolismo dos Carboidratos , China , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Masculino , Amido/metabolismo
14.
Physiol Plant ; 173(3): 1090-1104, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34287931

RESUMO

In recent years, sweet potato has been cultivated not only in marginal lands but also in fertile plains in northern China. The fertile nitrogen (N)-rich soil may inhibit storage root formation. Cultivars with different N tolerances and split application of reduced N rates should be considered. To investigate the effects of N on the N utilization, root differentiation, and storage root formation of cultivars with different N tolerances, the cultivars Jishu26 (J26) and Xushu32 (X32) were treated with three N levels supplied by urea: 0 (N0), 200 (N1) and 400 mg kg-1 (N2). With increasing N rates, "X32" absorbed less N in plants and distributed more N to developing storage roots than "J26." The storage root development of "J26" was sensitive to both N1 and N2, while that of "X32" was only sensitive to N2. High N nutrition upregulated the expression of certain genes during storage root formation, such as PAL, CHI, F3H, C4 H, 4CL, CAD, α-amylase, and ß-amylase. Under N1 and N2, "X32" led to an increased sugar supply in sink organs and downregulated the expression of genes related to lignin and flavonoid synthesis, which promoted the C flux toward starch metabolism, thus reducing lignification and promoting starch accumulation during storage root formation. These results provide evidence for the effects of N on the C distribution in different metabolic pathways by regulating the expression of related key genes. N-tolerant cultivars are suitable in fertile plain areas because of the earlier formation of storage roots under high N conditions.


Assuntos
Ipomoea batatas , Metabolismo dos Carboidratos , Ipomoea batatas/metabolismo , Nitrogênio , Raízes de Plantas/metabolismo , Amido/metabolismo
15.
Elife ; 102021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34251339

RESUMO

The E2F transcription factors play a critical role in controlling cell fate. In Drosophila, the inactivation of E2F in either muscle or fat body results in lethality, suggesting an essential function for E2F in these tissues. However, the cellular and organismal consequences of inactivating E2F in these tissues are not fully understood. Here, we show that the E2F loss exerts both tissue-intrinsic and systemic effects. The proteomic profiling of E2F-deficient muscle and fat body revealed that E2F regulates carbohydrate metabolism, a conclusion further supported by metabolomic profiling. Intriguingly, animals with E2F-deficient fat body had a lower level of circulating trehalose and reduced storage of fat. Strikingly, a sugar supplement was sufficient to restore both trehalose and fat levels, and subsequently rescued animal lethality. Collectively, our data highlight the unexpected complexity of E2F mutant phenotype, which is a result of combining both tissue-specific and systemic changes that contribute to animal development.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Transcrição E2F/metabolismo , Corpo Adiposo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Metabolismo dos Carboidratos , Ciclo Celular , Drosophila , Proteínas de Drosophila/genética , Fatores de Transcrição E2F/genética , Regulação da Expressão Gênica no Desenvolvimento , Metabolômica/métodos , Músculos/metabolismo , Fenótipo , Proteômica/métodos , Fatores de Transcrição/genética , Transcrição Genética , Trealose/metabolismo
16.
ACS Infect Dis ; 7(8): 2402-2412, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34242010

RESUMO

Antimicrobial resistance is a global challenge that is compounded by the limited number of available targets. Glycocins are antimicrobial glycopeptides that are believed to have novel targets. Previous studies have shown that the mechanism of action of the glycocin sublancin 168 involves the glucose uptake system. The phosphoenolpyruvate:sugar phosphotransferase system (PTS) phosphorylates the C6 hydroxyl group on glucose during import. Since sublancin carries a glucose on a Cys on an exposed loop, we investigated whether phosphorylation of this glucose might be involved in its mechanism of action by replacement with xylose. Surprisingly, the xylose analog was more active than wild-type sublancin and still required the glucose PTS for activity. Overexpression of the individual components of the PTS rendered cells more sensitive to sublancin, and their resistance frequency was considerably decreased. These observations suggest that sublancin is activated in some form by the glucose PTS or that sublancin imparts a deleterious gain-of-function on the PTS. Superresolution microscopy studies with fluorescent sublancin and fluorescently labeled PTS proteins revealed localization of both at the poles of cells. Resistant mutants raised under conditions that would minimize mutation of the PTS revealed mutations in FliQ, a protein involved in the flagellar protein export process. Overexpression of FliQ lead to decreased sensitivity of cells to sublancin. Collectively, these findings enforce a model in which the PTS is required for sublancin activity, either by inducing a deleterious gain-of-function or by activating or transporting sublancin.


Assuntos
Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Transporte Biológico , Metabolismo dos Carboidratos , Glucose , Fosfoenolpiruvato , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo
17.
Molecules ; 26(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299508

RESUMO

Although the hypoglycemic potential of brewer's yeast extract has been reported, there is limited information pertaining to the hypoglycemic ingredients of Saccharomyces pastorianus extract and their mechanisms of action available. This study aimed to investigate the in vivo and in vitro hypoglycemic effect of S. pastorianus extract and to elucidate its molecular mechanisms. S. pastorianus extract was mainly composed of proteins followed by carbohydrates. In diabetic rats, oral administration of S. pastorianus extract significantly reduced the levels of plasma glucose and enhanced the activity of hepatic glucose-6-phosphatase dehydrogenase. Treatment with S. pastorianus extract increased the localization of type 4 glucose transporter (GLUT4), PTP, and insulin receptor at 3T3-L1 cell membranes and raised the levels of P38 MAPK, PI3K, and AKT in the cytosol. In agreement with these results, pretreatment of 3T3-L1 cells with inhibitors of PTP, PI3K, Akt/PKB, and p38 MAPK inhibited glucose uptake induced by application of S. pastorianus extract. Most importantly, a 54 kDa protein with hypoglycemic activity was identified and suggested as the major ingredient contributing to the hypoglycemic activity of S. pastorianus extract. In summary, these results clearly confirm the hypoglycemic activity of S. pastorianus extract and provide critical insights into the underlying molecular mechanisms.


Assuntos
Hipoglicemiantes/farmacologia , Saccharomyces/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Proteínas de Transporte de Monossacarídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
New Phytol ; 232(2): 567-578, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34235751

RESUMO

Leaf habit is a major axis of plant diversity that has consequences for carbon balance since the leaf is the primary site of photosynthesis. Nonstructural carbohydrates (NSCs) produced by photosynthesis can be allocated to storage and serve as a resiliency mechanism to future abiotic and biotic stress. However, how leaf habit affects NSC storage in an evolutionary context has not been shown. Using a comparative physiological framework and an analysis of evolutionary model fitting, we examined if variation in NSC storage is explained by leaf habit. We measured sugar and starch concentrations in 51 oak species (Quercus spp.) growing in a common garden and representing multiple evolutions of three different leaf habits (deciduous, brevideciduous and evergreen). The best fitting evolutionary models indicated that deciduous oak species are evolving towards higher NSC concentrations than their brevideciduous and evergreen relatives. Notably, this was observed for starch (the primary storage molecule) in the stem (a long-term C storage organ). Overall, our work provides insight into the evolutionary drivers of NSC storage and suggests that a deciduous strategy may confer an advantage against stress associated with a changing world. Future work should examine additional clades to further corroborate this idea.


Assuntos
Quercus , Metabolismo dos Carboidratos , Carboidratos , Folhas de Planta , Árvores
19.
Chemosphere ; 284: 131275, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34323810

RESUMO

Exploration of value-added products from wastewater treatment plants (WWTPs) was promising for its sustainable development. This study simultaneously addressed the possibility of volatile fatty acids (VFAs) production boost and cellulosic components recovery from fine-sieving fractions (FSF) under initial alkaline conditions. The step utilization of FSF was relatively untapped in similar literatures. The effect of different initial pH values with 8.5, 9.5 and 10.5 (defined as F-8.5, F-9.5 and F-10.5) on fermentation performance were investigated. Then, the fermentation residues were collected to evaluate the changes in chemical structure and thermodynamic properties by fourier transform infrared spectroscopy (FTIR) and thermo-gravimetric (TG) analysis. Furthermore, analysis of the changes in microbial community structure and the interaction between functional genus and performance parameters were undertaken by high throughput sequencing and canonical correspondence analysis (CCA). Results showed that F-10.5 obtained the highest VFAs yields of 234 mg/g VSS, due to efficient polysaccharides release and inhibited methane production. However, high alkaline intensity caused proteins denaturation. Acidogenesis kinetics suggested that the fermentation rate was chemical-dominated. Although crystalline structure was more disordered with increasing alkalinity, the weight loss was lower than 2.5%, making it possible to recover cellulose from fermented residues. Interaction between functional genus and performance parameters revealed the microbial mechanism during the alkaline fermentation. Consequently, the initial-alkaline motivated fermentation was proved to be a promising technology in value-added products recovery to be cost economic, energy positive and environmental friendly.


Assuntos
Esgotos , Purificação da Água , Reatores Biológicos , Metabolismo dos Carboidratos , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio
20.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206151

RESUMO

The saccharification of sweetpotato storage roots is a common phenomenon in the cooking process, which determines the edible quality of table use sweetpotato. In the present study, two high saccharified sweetpotato cultivars (Y25, Z13) and one low saccharified cultivar (X27) in two growth periods (S1, S2) were selected as materials to reveal the molecular mechanism of sweetpotato saccharification treated at high temperature by transcriptome sequencing and non-targeted metabolome determination. The results showed that the comprehensive taste score, sweetness, maltose content and starch change of X27 after steaming were significantly lower than those of Y25 and Z13. Through transcriptome sequencing analysis, 1918 and 1520 differentially expressed genes were obtained in the two periods of S1 and S2, respectively. Some saccharification-related transcription factors including MYB families, WRKY families, bHLH families and inhibitors were screened. Metabolic analysis showed that 162 differentially abundant metabolites related to carbohydrate metabolism were significantly enriched in starch and sucrose capitalization pathways. The correlation analysis between transcriptome and metabolome confirmed that the starch and sucrose metabolic pathways were significantly co-annotated, indicating that it is a vitally important metabolic pathway in the process of sweetpotato saccharification. The data obtained in this study can provide valuable resources for follow-up research on sweetpotato saccharification and will provide new insights and theoretical basis for table use sweetpotato breeding in the future.


Assuntos
Metabolismo dos Carboidratos , Temperatura Alta , Ipomoea batatas/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma , Manipulação de Alimentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolômica , Amido/metabolismo , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...