Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 876
Filtrar
1.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466443

RESUMO

Fruit cracking is a disorder of fruit development in response to internal or external cues, which causes a loss in the economic value of fruit. Therefore, exploring the mechanism underlying fruit cracking is of great significance to increase the economic yield of fruit trees. However, the molecular mechanism underlying fruit cracking is still poorly understood. Litchi, as an important tropical and subtropical fruit crop, contributes significantly to the gross agricultural product in Southeast Asia. One important agricultural concern in the litchi industry is that some famous varieties with high economic value such as 'Nuomici' are susceptible to fruit cracking. Here, the cracking-susceptible cultivar 'Nuomici' and cracking-resistant cultivar 'Huaizhi' were selected, and the samples including pericarp and aril during fruit development and cracking were collected for RNA-Seq analysis. Based on weighted gene co-expression network analysis (WGCNA) and the "ball-skin versus bladder effect" theory (fruit cracking occurs upon the aril expanding pressure exceeds the pericarp strength), it was found that seven co-expression modules genes (1733 candidate genes) were closely associated with fruit cracking in 'Nuomici'. Importantly, we propose that the low expression level of genes related to plant hormones (Auxin, Gibberellins, Ethylene), transcription factors, calcium transport and signaling, and lipid synthesis might decrease the mechanical strength of pericarp in 'Nuomici', while high expression level of genes associated with plant hormones (Auxin and abscisic acid), transcription factors, starch/sucrose metabolism, and sugar/water transport might increase the aril expanding pressure, thereby resulting in fruit cracking in 'Nuomici'. In conclusion, our results provide comprehensive molecular events involved in the "ball-skin versus bladder effect" on fruit cracking in litchi.


Assuntos
Frutas/genética , Litchi/genética , Doenças das Plantas/genética , Metabolismo dos Carboidratos/genética , Regulação da Expressão Gênica de Plantas/genética , Reguladores de Crescimento de Planta/genética , Proteínas de Plantas/genética , RNA-Seq/métodos , Transdução de Sinais/genética , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430235

RESUMO

The role of ketone bodies in the cerebral energy homeostasis of neurological diseases has begun to attract recent attention particularly in acute neurological diseases. In ketogenic therapies, ketosis is achieved by either a ketogenic diet or by the administration of exogenous ketone bodies. The oral ingestion of the ketone ester (KE), (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, is a new method to generate rapid and significant ketosis (i.e., above 6 mmol/L) in humans. KE is hydrolyzed into ß-hydroxybutyrate (ßHB) and its precursor 1,3-butanediol. Here, we investigate the effect of oral KE administration (3 mg KE/g of body weight) on brain metabolism of non-fasted mice using liquid chromatography in tandem with mass spectrometry. Ketosis (Cmax = 6.83 ± 0.19 mmol/L) was obtained at Tmax = 30 min after oral KE-gavage. We found that ßHB uptake into the brain strongly correlated with the plasma ßHB concentration and was preferentially distributed in the neocortex. We showed for the first time that oral KE led to an increase of acetyl-CoA and citric cycle intermediates in the brain of non-fasted mice. Furthermore, we found that the increased level of acetyl-CoA inhibited glycolysis by a feedback mechanism and thus competed with glucose under physiological conditions. The brain pharmacodynamics of this oral KE strongly suggest that this agent should be considered for acute neurological diseases.


Assuntos
Acetilcoenzima A/metabolismo , Encéfalo/metabolismo , Metabolismo dos Carboidratos/genética , Cetonas/metabolismo , Animais , Dieta Cetogênica/efeitos adversos , Ingestão de Alimentos , Ésteres/metabolismo , Glucose/metabolismo , Glicólise/genética , Humanos , Corpos Cetônicos/metabolismo , Cetose/metabolismo , Cetose/patologia , Camundongos
3.
Nat Metab ; 3(1): 43-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33432202

RESUMO

The mammalian liver is a central hub for systemic metabolic homeostasis. Liver tissue is spatially structured, with hepatocytes operating in repeating lobules, and sub-lobule zones performing distinct functions. The liver is also subject to extensive temporal regulation, orchestrated by the interplay of the circadian clock, systemic signals and feeding rhythms. However, liver zonation has previously been analysed as a static phenomenon, and liver chronobiology has been analysed at tissue-level resolution. Here, we use single-cell RNA-seq to investigate the interplay between gene regulation in space and time. Using mixed-effect models of messenger RNA expression and smFISH validations, we find that many genes in the liver are both zonated and rhythmic, and most of them show multiplicative space-time effects. Such dually regulated genes cover not only key hepatic functions such as lipid, carbohydrate and amino acid metabolism, but also previously unassociated processes involving protein chaperones. Our data also suggest that rhythmic and localized expression of Wnt targets could be explained by rhythmically expressed Wnt ligands from non-parenchymal cells near the central vein. Core circadian clock genes are expressed in a non-zonated manner, indicating that the liver clock is robust to zonation. Together, our scRNA-seq analysis reveals how liver function is compartmentalized spatio-temporally at the sub-lobular scale.


Assuntos
Relógios Circadianos/genética , Expressão Gênica/fisiologia , Fígado/metabolismo , Periodicidade , Algoritmos , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Proteínas Circadianas Period/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Via de Sinalização Wnt/genética
4.
J Dairy Sci ; 104(2): 2087-2105, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33358156

RESUMO

The high-grain diets fed to ruminants generally alters the structure and function of rumen microbiota, resulting in variations of rumen fermentation patterns and the occurrence of subacute rumen acidosis (SARA). To clarify the microbial mechanism for carbohydrate metabolism during SARA, 8 ruminally cannulated Holstein cows in mid lactation were selected for a 3-wk experiment. The cows were randomly divided into 2 groups, fed either a conventional diet (CON; 40% concentrate; dry matter basis) or a high-grain diet (HG; 60% concentrate; dry matter basis). Compared with the CON diet, the HG diet reduced average daily pH (5.71 vs. 6.13), acetate concentration (72.56 vs. 78.44 mM), acetate ratio (54.81 vs. 65.24%), and the ratio of the concentrations of acetate to propionate (1.87 vs. 3.21) but increased the concentrations of total volatile fatty acids (133.03 vs. 120.22 mM), propionate (41.32 vs. 24.71 mM), and valerate (2.46 vs. 1.68 mM) and the propionate ratio (30.51 vs. 20.47%). Taxonomic analysis indicated that the HG cows had a higher relative abundance of Ruminococcus, Eubacterium, Selenomonas, Ruminobacter, Succinimonas, Methanomicrobium, and Methanocaldococcus accompanied by a lower relative abundance of unclassified Firmicutes, unclassified Bacteroidetes, Bacteroides, Fibrobacter, Alistipes, Candidatus Methanoplasma, Methanomassiliicoccus, and Methanolobus. Carbohydrate-active enzyme annotation suggested that there was enriched abundance of glycosyltransferases (GT) 2, glycoside hydrolase (GH) 13, GH24, carbohydrate-binding module (CBM) 26, GH73, GH25, CBM12, GH23, GT8, CBM50, and GT9 and reduced abundance of GH78, GH31, S-layer homology, GH109, carbohydrate esterase 1, GH3, carbohydrate esterase 10, and GH43 in the HG group. Functional profiling revealed that the HG feeding mainly downregulated the pentose phosphate pathway of carbohydrate catabolism, acetate metabolism, propionate metabolism (succinate pathway), and methane metabolism, whereas it upregulated the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways of glycolysis and the citrate cycle. Additionally, the HG feeding promoted the abundance of various antibiotic resistance genes and antimicrobial resistance gene families. These results elucidated the structure and function adjustment of rumen microbiota for carbohydrate metabolism and summarized the enrichment of rumen antibiotic resistance genes under the HG feeding, which expands our understanding of the mechanism underlying the response of rumen microbiota to SARA in dairy cattle.


Assuntos
Acidose/veterinária , Ração Animal , Metabolismo dos Carboidratos/genética , Doenças dos Bovinos/genética , Resistência Microbiana a Medicamentos/genética , Grão Comestível , Microbioma Gastrointestinal/genética , Rúmen/microbiologia , Acidose/dietoterapia , Acidose/etiologia , Animais , Antibacterianos/farmacologia , Bovinos , Doenças dos Bovinos/metabolismo , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Feminino , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Lactação , Leite , Rúmen/metabolismo
5.
Food Chem ; 339: 127884, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858387

RESUMO

The differences in Dictyophora indusiata fruiting bodies between peach-shaped and mature stage during the postharvest were systematically investigated through quantitative proteomic and metabolomic analyses. A total of 951 differentially expressed proteins were identified, 571 upregulated and 380 downregulated in the mature fruiting body; additionally, 173 upregulated and 165 downregulated differential abundance metabolites were screened. Integrated proteome and metabolome analyses showed that, during the maturation of D. indusiata fruiting bodies, glycerophospholipids were hydrolyzed and drastically decreased, the degradation of glucan was upregulated, the degradation and synthesis of chitin were simultaneously enhanced, and proteins were dominated via catabolism. Along with vigorous material metabolism, energy production was enhanced through the upregulated TCA-cycles and oxidative phosphorylation. In addition, the synthesis of antioxidant substances and the decomposition of peroxides were enhanced in mature fruiting bodies. These omics analyses of D. indusiata provide high-throughput data and reveal the changes in the post-harvest morphological development.


Assuntos
Basidiomycota/metabolismo , Metabolômica/métodos , Proteômica/métodos , Antioxidantes/metabolismo , Basidiomycota/química , Metabolismo dos Carboidratos/genética , Análise por Conglomerados , Regulação para Baixo , Metabolismo Energético/genética , Carpóforos/metabolismo , Proteínas Fúngicas/metabolismo , Metaboloma , Regulação para Cima
6.
Sci Rep ; 10(1): 22315, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339897

RESUMO

In experimental studies, pancreatic islet microvasculature is essential for islet endocrine function and mass, and islet vascular morphology is altered in diabetic subjects. Even so, almost no information is available concerning human islet microvascular endothelial cell (MVEC) physiology and gene expression. In this study, islets and exocrine pancreatic tissue were acquired from organ donors with normoglycemia or impaired glucose metabolism (IGM) immediately after islet isolation. Following single-cell dissociation, primary islet- and exocrine MVECs were obtained through fluorescence-activated cell sorting (FACS) and transcriptional profiles were generated using AmpliSeq. Multiple gene sets involved in general vascular development and extracellular matrix remodeling were enriched in islet MVEC. In exocrine MVEC samples, multiple enriched gene sets that relate to biosynthesis and biomolecule catabolism were found. No statistically significant enrichment was found in gene sets related to autophagy or endoplasmic reticulum (ER) stress. Although ample differences were found between islet- and exocrine tissue endothelial cells, no differences could be observed between normoglycemic donors and donors with IGM at gene or gene set level. Our data is consistent with active angiogenesis and vascular remodeling in human islets and support the notion of ongoing endocrine pancreas tissue repair and regeneration even in the adult human.


Assuntos
Diabetes Mellitus/genética , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas Exócrino/metabolismo , Adulto , Idoso , Autofagia/genética , Metabolismo dos Carboidratos/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica/genética , Humanos , Ilhotas Pancreáticas/patologia , Masculino , Microvasos/metabolismo , Pessoa de Meia-Idade , Pâncreas Exócrino/patologia , Análise de Célula Única , Transcriptoma/genética
7.
PLoS One ; 15(10): e0239230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057394

RESUMO

Trichosanthes kirilowii Maxim. (TK) is a dioecious plant in the Cucurbitaceae for which different sexes have separate medicinal uses. In order to study the genes related to sex determination, transcriptome sequencing was performed on flower buds of male and female plants using the high-throughput sequencing technology. A total of 145,975 unigenes and 7110 DEGs were obtained. There were 6776 DEGs annotated to 1234 GO terms and enriched to 18 functional groups, including five biological processes related to sugar metabolism. KEGG pathway analysis indicated genes involved in hormone transduction, hormone synthesis and carbohydrate metabolism. Many DEGs of TK are involved in reproductive organ formation, hormone signal transduction and regulatory networks. Combining the results of GO, KEGG and qRT-PCR, 11 sex determining candidate genes of TK were selected, including MYB80, MYB108, CER1, CBL9, ABCB19, SERK1, HSP81-3, ACS9, SEP3, AUX1 and YUC6. The results provide a foundation for the study of sex differentiation in TK.


Assuntos
Proteínas de Plantas/genética , Transcriptoma , Trichosanthes/genética , Metabolismo dos Carboidratos/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Reguladores de Crescimento de Planta/genética , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Transdução de Sinais/genética , Trichosanthes/crescimento & desenvolvimento
8.
PLoS One ; 15(8): e0237457, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780764

RESUMO

Onion (Allium cepa L.) is an important vegetable crop widely grown for diverse culinary and nutraceutical properties. Being a shallow-rooted plant, it is prone to drought. In the present study, transcriptome sequencing of drought-tolerant (1656) and drought-sensitive (1627) onion genotypes was performed to elucidate the molecular basis of differential response to drought stress. A total of 123206 and 139252 transcripts (average transcript length: 690 bases) were generated after assembly for 1656 and 1627, respectively. Differential gene expression analyses revealed upregulation and downregulation of 1189 and 1180 genes, respectively, in 1656, whereas in 1627, upregulation and downregulation of 872 and 1292 genes, respectively, was observed. Genes encoding transcription factors, cytochrome P450, membrane transporters, and flavonoids, and those related to carbohydrate metabolism were found to exhibit a differential expression behavior in the tolerant and susceptible genotypes. The information generated can facilitate a better understanding of molecular mechanisms underlying drought response in onion.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Cebolas/genética , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica/métodos , Genótipo , Proteínas de Membrana Transportadoras/genética , RNA de Plantas/química , RNA de Plantas/metabolismo , Fatores de Transcrição/genética
9.
PLoS One ; 15(7): e0236424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730292

RESUMO

Grapevines, although adapted to occasional drought or salt stress, are relatively sensitive to growth- and yield-limiting salinity stress. To understand the molecular mechanisms of salt tolerance and endoplasmic reticulum (ER) stress and identify genes commonly regulated by both stresses in grapevine, we investigated transcript profiles in leaves of the salt-tolerant grapevine rootstock 1616C under salt- and ER-stress. Among 1643 differentially expressed transcripts at 6 h post-treatment in leaves, 29 were unique to ER stress, 378 were unique to salt stress, and 16 were common to both stresses. At 24 h post-treatment, 243 transcripts were unique to ER stress, 1150 were unique to salt stress, and 168 were common to both stresses. GO term analysis identified genes in categories including 'oxidative stress', 'protein folding', 'transmembrane transport', 'protein phosphorylation', 'lipid transport', 'proteolysis', 'photosynthesis', and 'regulation of transcription'. The expression of genes encoding transporters, transcription factors, and proteins involved in hormone biosynthesis increased in response to both ER and salt stresses. KEGG pathway analysis of differentially expressed genes for both ER and salt stress were divided into four main categories including; carbohydrate metabolism, amino acid metabolism, signal transduction and lipid metabolism. Differential expression of several genes was confirmed by qRT-PCR analysis, which validated our microarray results. We identified transcripts for genes that might be involved in salt tolerance and also many genes differentially expressed under both ER and salt stresses. Our results could provide new insights into the mechanisms of salt tolerance and ER stress in plants and should be useful for genetic improvement of salt tolerance in grapevine.


Assuntos
Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Raízes de Plantas/genética , Estresse Salino/genética , Vitis/genética , Metabolismo dos Carboidratos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Análise de Sequência com Séries de Oligonucleotídeos , Osmose , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Estresse Salino/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Fatores de Transcrição/metabolismo , Tunicamicina/farmacologia
10.
Ecotoxicol Environ Saf ; 203: 110943, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678750

RESUMO

High temperature damage impairs the growth of tall fescue by inhibiting secondary metabolites. Little is known about the regulation pattern of the fatty acids and carbohydrate metabolism at the whole-transcriptome level in tall fescue under high temperature stress. Here, two tall fescue genotypes, heat tolerant PI578718 and heat sensitive PI234881 were subjected to high temperature stress for 36 h. PI 578718 showed higher SPAD chloroplast value, lower EL and leaf injury than PI 234881 during the first 36 h high-temperature stress. Furthermore, by transcriptomic analysis, 121 genes were found to be induced during the second energy production phase in tall fescue exposed to high-temperature conditions, indicating that there may be one energy-sensing system in cool-season turfgrass to adapt high-temperature conditions. PI 578718 showed higher differentially expressed unigenes involved in fatty acids and carbohydrate metabolism compared with PI 234881 for 36 h heat stress. Interestingly, a metabolomic analysis using GC-MS uncovered that the sugars and sugar alcohol accounted for more than 65.06% of the total 41 metabolites content and high-temperature elevated the rate to 82.89-91.16% in PI 578718. High-temperature damage decreased the rate of fatty acid in the total 41 metabolites content and PI 578718 showed lower content than in PI 234881, which might be attributed to the down-regulated genes in fatty acid biosynthesis pathway in tall fescue. The integration of deep transcriptome and metabolome analyses provides systems-wide datasets to facilitate the identification of crucial regulation factors in cool-season turfgrass in response to high-temperature damage.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Festuca , Resposta ao Choque Térmico , Temperatura Alta , Metabolismo dos Carboidratos/genética , Ácidos Graxos/genética , Festuca/genética , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Metabolômica , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
11.
Nat Commun ; 11(1): 3120, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561727

RESUMO

Hyaluronan is widely used in cosmetics and pharmaceutics. Development of robust and safe cell factories and cultivation approaches to efficiently produce hyaluronan is of many interests. Here, we describe the metabolic engineering of Corynebacterium glutamicum and application of a fermentation strategy to manufacture hyaluronan with different molecular weights. C. glutamicum is engineered by combinatorial overexpression of type I hyaluronan synthase, enzymes of intermediate metabolic pathways and attenuation of extracellular polysaccharide biosynthesis. The engineered strain produces 34.2 g L-1 hyaluronan in fed-batch cultures. We find secreted hyaluronan encapsulates C. glutamicum, changes its cell morphology and inhibits metabolism. Disruption of the encapsulation with leech hyaluronidase restores metabolism and leads to hyper hyaluronan productions of 74.1 g L-1. Meanwhile, the molecular weight of hyaluronan is also highly tunable. These results demonstrate combinatorial optimization of cell factories and the extracellular environment is efficacious and likely applicable for the production of other biopolymers.


Assuntos
Corynebacterium glutamicum/enzimologia , Glucose/metabolismo , Ácido Hialurônico/biossíntese , Engenharia Metabólica/métodos , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Metabolismo dos Carboidratos/genética , Corynebacterium glutamicum/genética , Meios de Cultura/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Hialuronoglucosaminidase/metabolismo , Redes e Vias Metabólicas/genética , Polissacarídeos Bacterianos/biossíntese
12.
PLoS Genet ; 16(5): e1008586, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463816

RESUMO

The strength of bone depends on bone quantity and quality. Osteocalcin (Ocn) is the most abundant noncollagenous protein in bone and is produced by osteoblasts. It has been previously claimed that Ocn inhibits bone formation and also functions as a hormone to regulate insulin secretion in the pancreas, testosterone synthesis in the testes, and muscle mass. We generated Ocn-deficient (Ocn-/-) mice by deleting Bglap and Bglap2. Analysis of Ocn-/-mice revealed that Ocn is not involved in the regulation of bone quantity, glucose metabolism, testosterone synthesis, or muscle mass. The orientation degree of collagen fibrils and size of biological apatite (BAp) crystallites in the c-axis were normal in the Ocn-/-bone. However, the crystallographic orientation of the BAp c-axis, which is normally parallel to collagen fibrils, was severely disrupted, resulting in reduced bone strength. These results demonstrate that Ocn is required for bone quality and strength by adjusting the alignment of BAp crystallites parallel to collagen fibrils; but it does not function as a hormone.


Assuntos
Apatitas/metabolismo , Calcificação Fisiológica/genética , Metabolismo dos Carboidratos/genética , Glucose/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Osteocalcina/fisiologia , Testosterona/biossíntese , Animais , Apatitas/química , Osso e Ossos/metabolismo , Colágeno/metabolismo , Cristalização , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Tamanho do Órgão/genética , Osteoblastos/metabolismo , Osteocalcina/genética , Osteogênese/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
13.
PLoS One ; 15(4): e0231650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315370

RESUMO

Exposure to ionizing radiation contributing to negative health outcomes is a widespread concern. However, the impact of low dose and sub-lethal dose radiation (SLDR) exposures remain contentious, particularly in pregnant women who represent a vulnerable group. The fetal programming hypothesis states that an adverse in utero environment or stress during development of an embryo or fetus can result in permanent physiologic changes often resulting in progressive metabolic dysfunction with age. To assess changes in gene expression profiles of glucose/insulin signaling and lipid metabolism caused by radiation exposure in utero, pregnant C57Bl/6J mice were irradiated using a dose response ranging from low dose to SLDR and compared to a Sham-irradiated group. mRNA expression analysis in 16 week old offspring (n = 84) revealed that genes involved in metabolic function including glucose metabolism, insulin signaling and lipid metabolism were unaffected by prenatal radiation exposures up to 300 mGy. However, female offspring of dams exposed to 1000 mGy had upregulated expression of genes contributing to insulin resistance and gluconeogenesis. In a second cohort of mice, the effects of SLDR on fetal programming of hepatic SOCS3 and PEPCK protein expression were assessed. 4 month old female offspring of dams irradiated at 1000 mGy had: 1) increased liver weights, 2) increased hepatic expression of proteins involved in glucose metabolism and 3) increased 18F-fluorodeoxyglucose (FDG) uptake in interscapular brown adipose tissue (IBAT) measured by positron emission tomography (PET) (n = 25). The results of this study indicate that prenatal radiation exposure does not affect metabolic function up to 300 mGy and 1000 mGy may be a threshold dose for sex-specific alterations in glucose uptake and hepatic gene and protein expression of SOCS3, PEPCK, PPARGC1A and PPARGC1B. These findings suggest that SLDR doses alter glucose uptake in IBAT and hepatic gene and protein expression of offspring and these changes may progress with age.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , Desenvolvimento Fetal/genética , Resistência à Insulina/genética , Fígado/metabolismo , Tecido Adiposo Marrom/efeitos da radiação , Animais , Glicemia/metabolismo , Metabolismo dos Carboidratos/genética , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Feminino , Desenvolvimento Fetal/efeitos da radiação , Feto , Glucose/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos da radiação , Fígado/patologia , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Radiação
14.
Funct Plant Biol ; 47(6): 537-543, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32336321

RESUMO

SnRK2 is a plant-specific protein kinase family implicated in environmental stress tolerance. Individual SnRK2 genes have acquired distinct regulatory properties in response to various environmental stresses. In this study, NtSnRK2.2, a SnRK2 subclass II member in Nicotiana tabacum L., was cloned and characterised. Sequence alignment analysis showed that SnRK2.2 exhibits widespread sequence differences across Nicotiana species. The tissue expression pattern of NtSnRK2.2 showed a root-predominant expression. To investigate its biological function, NtSnRK2.2 was overexpressed in tobacco, which subsequently resulted in increased soluble sugars and more lateral roots under a normal condition. A salt-stress tolerance assay showed that NtSnRK2.2-overexpressing plants exhibited enhanced salt tolerance, which was further confirmed based on its better root architecture and increase in soluble sugars, thereby implying that NtSnRK2.2 is a multifunctional regulatory factor in plants. Together, our results indicated the possible role played by NtSnRK2.2 in maintaining metabolic homeostasis via the regulation of carbohydrate metabolism in response to environmental stress.


Assuntos
Tolerância ao Sal , Tabaco , Metabolismo dos Carboidratos/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Tabaco/genética
15.
Gen Comp Endocrinol ; 293: 113478, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32243957

RESUMO

This study identified an insulin-like peptide (ILP) in Macrobrachium rosenbergii termed Mr-ILP and further investigated its function through glucose injection and RNAi. With the analysis of five other glucose metabolism related genes, this study shed light on the molecular mechanism of carbohydrate metabolism in crustaceans. Mr-ILP shared the typical skeleton with six conserved cysteine and mainly expressed in neuroendocrine system. In M. rosenbergii, the elevated hemolymph glucose concentration after glucose injection returned to basal levels in short time, implying an efficient regulatory system in carbohydrate metabolism. Hyperglycemic related genes answered the elevated hemolymph glucose concentration quickly with significant decreased expression level, while Mr-ILP showed delayed response. Instead, glycolysis increased after glucose injection, which indicated glycolysis might play an important role in lowering the abnormally high glucose level. In vivo silencing of Mr-ILP, by injecting the prawns with double-stranded RNA (dsRNA) for 21 days reduced its expression by approximately 75%. Accordingly, glycogen synthase decreased and the trehalose and glycogen level in the hepatopancreas were significantly reduced, indicating the function of Mr-ILP in oligosaccharide and polysaccharide accumulation. When Mr-ILP was silenced, the expression of hyperglycemic related genes were enhanced, but the hemolymph glucose level was not elevated significantly, which might attribute to the increased glycolysis to keep a balanced glucose level in hemolymph.


Assuntos
Metabolismo dos Carboidratos , Insulina/metabolismo , Palaemonidae/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Metabolismo dos Carboidratos/genética , DNA Complementar/genética , Feminino , Regulação da Expressão Gênica , Glucose/administração & dosagem , Hemolinfa/metabolismo , Insulina/química , Insulina/genética , Masculino , Palaemonidae/genética , Filogenia
16.
Int J Mol Sci ; 21(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121434

RESUMO

Knowledge of how the biochemical composition of the bovine oviduct is altered due to the oviduct anatomy or the presence of an embryo is lacking. Thus, the aim of this study was to assess the effect of (І) oviduct anatomy and (ІІ) embryo presence on oviductal fluid (OF) protein, amino acid, and carbohydrate composition. Cross-bred beef heifers (n = 19) were synchronized and those in standing estrus were randomly allocated to a cyclic (non-bred) or pregnant (artificially inseminated) group. All heifers were slaughtered on Day 3 after estrus. The oviducts ipsilateral to the corpus luteum from each animal were isolated, straightened and cut, separating ampulla and isthmus. Each portion was flushed with 500 µl of PBS enabling recovery of the oocyte/embryo. Recovered unfertilized oocytes (cyclic group) and embryos (8-cell embryos; pregnant group) were located in the isthmus of the oviduct. Samples of flushing medium from the isthmus and ampulla were used for proteomic (n = 2 per group), amino acid (n = 5), and carbohydrate (n = 5) analysis. For proteomic analysis, total protein from cyclic and pregnant samples were labelled with different cyanine fluorescent probes and separated according to the isoelectric point using immobilized pH gradient strips (pH 3-10, 17 cm, Protean® IEF cell system, Bio Rad). Second dimension was performed in a polyacrylamide gel (12%) in the presence of SDS using a Protean II XL system (Bio Rad). Images were obtained with a Typhoon 9410 scanner and analyzed with Progenesis SameSpots software v 4.0. Amino acid content in the OF was determined by high performance liquid chromatography (HPLC). Glucose, lactate, and pyruvate were quantified using microfluorometric enzyme-linked assays. For the proteomic assessment, the results of the image analysis were compared by ANOVA. For both amino acid and carbohydrate analyses, statistical analysis was carried out by 2-way ANOVA with the Holm-Sidak nonparametric post hoc analysis. On Day 3 post-estrus, OF composition varied based on (І) anatomical region, where isthmic metabolites were present in lower (i.e., lactate, glycine, and alanine) or higher (i.e., arginine) concentrations compared to the ampulla; and (ІІ) embryo presence, which was correlated with greater, arginine, phosphoglycerate kinase 1, serum albumin, α-1-antiproteinase and IGL@ protein concentrations. In conclusion, data indicate that the composition of bovine OF is anatomically dynamic and influenced by the presence of an early embryo.


Assuntos
Aminoácidos/genética , Metabolismo dos Carboidratos/genética , Proteínas/genética , Proteômica , Aminoácidos/metabolismo , Animais , Bovinos , Embrião de Mamíferos , Tubas Uterinas/metabolismo , Feminino , Oócitos/metabolismo , Oviductos/metabolismo , Gravidez , Proteínas/metabolismo
17.
Biochim Biophys Acta Gen Subj ; 1864(7): 129601, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32179131

RESUMO

BACKGROUND: Escherichia coli cells contain a homolog of presumed 5-keto-4-deoxyuronate isomerase (KduI) from pectin-degrading soil bacteria, but the catalytic activity of the E. coli protein (o-KduI) was never demonstrated. METHODS: The known three-dimensional structure of E. coli o-KduI was compared with the available structures of sugar-converting enzymes. Based on the results of this analysis, sugar isomerization activity of recombinant o-KduI was tested against a panel of D-sugars and their derivatives. RESULTS: The three-dimensional structure of o-KduI exhibits a close similarity with Pyrococcus furiosus cupin-type phosphoglucose isomerase. In accordance with this similarity, o-KduI was found to catalyze interconversion of glucose-6-phosphate and fructose-6-phosphate and, less efficiently, conversion of glucuronate to fructuronate. o-KduI was hexameric in crystals but represented a mixture of inactive hexamers and active dimers in solution and contained a tightly bound Zn2+ ion. Dilution, substrate binding and Zn2+ removal shifted the hexamer ⇆ dimer equilibrium to the dimers. CONCLUSIONS: Our findings identify o-KduI as a novel phosphosugar isomerase in E. coli, whose activity may be regulated by changes in oligomeric structure. GENERAL SIGNIFICANCE: More than 5700 protein sequences are annotated as KduI, but their enzymatic activity has not been directly demonstrated. E. coli o-KduI is the first characterized member of this group, and its enzymatic activity was found to be different from the predicted activity.


Assuntos
Aldose-Cetose Isomerases/genética , Glucose-6-Fosfato Isomerase/genética , Conformação Proteica , Aldose-Cetose Isomerases/ultraestrutura , Sequência de Aminoácidos/genética , Metabolismo dos Carboidratos/genética , Catálise , Cristalografia por Raios X , Escherichia coli/enzimologia , Frutosefosfatos/genética , Glucose-6-Fosfato/genética , Glucose-6-Fosfato Isomerase/ultraestrutura , Pyrococcus furiosus/enzimologia
18.
Gene ; 742: 144584, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173541

RESUMO

Sugars are considered as an essential signaling molecule for fruit growth and development, which plays a key role in fruit quality. Up to now, the mechanism controlling sugar metabolism and transport in apricot is unclear. Therefore, in the present study, we measured sugar contents at six different stages of fruit development and ripening, and significant variations were observed throughout these stages. The concentration of glucose and fructose first decreased then increased, sucrose concentration first increased then decreased, while the concentration of sorbitol gradually decreased from growth to maturity. Furthermore, thirty sugar transporter genes related to sucrose synthesis and transport were identified and categorized into different subfamilies based on the phylogenetic analysis. The result of cis-regulatory components showed that under different plant hormones, biotic and abiotic stresses, few elements could be regulated. The correlation analysis showed a higher relationship between ParSuSy5, ParSuSy6, ParSuSy7, and ParFK1 genes and sugar contents, indicating that these genes might have a key role in sugar accumulation and fruit quality. In general, these findings will provide a deep understanding of genomic information and expression profiles of sugar transporter genes, which will contribute toward improvement in fruit quality of apricot.


Assuntos
Frutas/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Prunus armeniaca/fisiologia , Açúcares/metabolismo , Metabolismo dos Carboidratos/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Horticultura/organização & administração , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Melhoria de Qualidade
19.
Plant Sci ; 293: 110413, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081262

RESUMO

Protein N-glycosylation plays key roles in protein folding, stability, solubility, biogenesis, and enzyme activity. Tomato (Solanum lycopersicum L.) is an important vegetable crop with abundant nutritional value, and the formation of tomato fruit qualities primarily occurs in the fruit ripening process. However, a large number of N-glycosylation-mediated mechanisms in regulating tomato fruit ripening have not been elucidated to date. In this study, western blot assays showed that the extents of mature N-glycoproteins were differentially expressed in mature green fruits (fruit start ripening) and ripe fruits (fruit stop ripening). Next, through performing a comparative N-glycoproteome analysis strategy, a total of 553 N-glycosites from 363 N-glycoproteins were identified in mature green fruits compared with ripe fruits. Among them, 252 N-glycosites from 191 N-glycoproteins were differentially expressed in mature green fruits compared with ripe fruits. The differentially expressed N-glycoproteins were mainly located in the chloroplast (30 %) and cytoplasm (16 %). Gene Ontology (GO) analysis showed that these N-glycoproteins were involved in various biological processes, cellular components and molecular functions. These N-glycoproteins participate in biological processes, such as metabolic processes, cellular processes and single-organism processes. These N-glycoproteins are also cellular components in biological process cells, membranes and organelles and have different molecular functions, such as catalytic activity and binding. Notably, these N-glycoproteins were enriched in starch and sucrose metabolism and galactose metabolism by KEGG pathway analysis. This community resource regarding N-glycoproteins is the first large-scale N-glycoproteome during plant fruit ripening. This study will contribute to understanding the function of N-glycosylation in regulating plant fruit ripening.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Frutas/metabolismo , Lycopersicon esculentum/metabolismo , Proteoma , Metabolismo dos Carboidratos/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glicosilação , Lycopersicon esculentum/genética , Reguladores de Crescimento de Planta/genética , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
20.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075118

RESUMO

Cultivating rice in wet or water direct seeding systems is simple and time and labor efficient. Rice (Oryza sativa) seeds are a unique cereal that can germinate not only when submerged, but also in anoxic conditions. Many complicated hormone signals interact in submerged seed germination. Ethylene is involved in rice coleoptile elongation, but little is known regarding the role of auxin signaling under submergence. This study demonstrated that the coleoptile is shorter and curlier when submerged with 2,3,5-triiodobenzoic acid (TIBA). In transcriptomic analysis, 3448 of the 31,860 genes were upregulated, and 4360 genes were downregulated with submergence and TIBA treatment. The Gene Ontology function classification results demonstrated that upregulated differentially expressed genes (DEGs) were mainly involved in redox, stress, and signal transduction, whereas the down-regulated DEGs were mainly involved in RNA transcription, stress, and development. Furthermore, auxin signaling involved in the carbohydrate metabolism pathway was demonstrated while using transcriptomic analysis and confirmed in a quantitative real-time polymerase chain reaction. In addition, the transcript levels of development-related genes and mitochondria-electron- transport-related genes were regulated by auxin signaling under submergence. Auxin signaling was not only involved in regulating rice coleoptile elongation and development, but also regulated secondary metabolism, carbohydrate metabolism, and mitochondria electron transport under submergence. Our results presented that auxin signaling plays an important role during rice coleoptile elongation upon the submergence condition and improving the advance of research of direct rice seeding system.


Assuntos
Perfilação da Expressão Gênica/métodos , Ácidos Indolacéticos/metabolismo , Oryza/genética , Metabolismo dos Carboidratos/genética , Cotilédone/efeitos dos fármacos , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Regulação para Baixo/efeitos dos fármacos , Transporte de Elétrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácidos Tri-Iodobenzoicos/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...