Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.432
Filtrar
1.
Food Chem ; 398: 133905, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969991

RESUMO

Maillard reaction products (MRPs) play pivotal roles in gut health by affecting the microbiome-host interactions. This study aimed at investigating the effects of MRPs derived from bighead carp meat hydrolysates with galactose and galacto-oligosaccharides on intestinal microbial composition and metabolic profile by in vitro pig fecal fermentation. The pH decreased sharply in the first 12 h and the highest production of butyric acid was observed in GM (glycated BCH with galacto-oligosaccharide) treatment with 64.7 µmoL/10 mL (p < 0.05) at 48 h. Clostridium_sensu_stricto_1, Streptococcus, and Enterococcus were dominant in the GM treatment, while Escherichia-Shigella was predominant in LgM (glycated BCH with galactose) treatment at 12 h. The up-regulated metabolites indicated that GM and LgM might participate in the fatty acids synthesis and modulate lipid metabolism, respectively. Overall, GM will be more beneficial for gut health by promoting the production of butyric acid and fatty acids synthesis.


Assuntos
Carpas , Microbioma Gastrointestinal , Animais , Ácido Butírico , Carpas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fermentação , Galactose/análise , Produtos Finais de Glicação Avançada/análise , Carne , Metaboloma , Oligossacarídeos/química , Suínos
2.
Food Chem ; 399: 133948, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35994855

RESUMO

M. oleifera known as "miracle tree" is increasingly used in nutraceuticals for the reported health effects and nutritional value of its leaves. This study presents the first metabolome profiling of M. oleifera leaves of African origin using different solvent polarities via HR-UPLC/MS based molecular networking followed by multivariate data analyses for samples classification. 119 Chemicals were characterized in both positive and negative modes belonging to 8 classes viz. phenolic acids, flavonoids, peptides, fatty acids/amides, sulfolipids, glucosinolates and carotenoids. New metabolites i.e., polyphenolics, fatty acids, in addition to a new class of sulfolipids were annotated for the first time in Moringa leaves. In vitro anti-inflammatory and anti-aging bioassays of the leaf extracts were assessed and in correlation to their metabolite profile via multivariate data analyses. Kaempferol, quercetin and apigenin-O/C-glycosides, fatty acyl amides and carotenoids appeared crucial for biological activities and leaves origin discrimination.


Assuntos
Moringa oleifera , Amidas , Carotenoides/metabolismo , Quimiometria , Ácidos Graxos , Metaboloma , Moringa oleifera/química , Extratos Vegetais/química , Folhas de Planta/química
3.
Front Cell Infect Microbiol ; 12: 950983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093201

RESUMO

Current studies have shown that gut microbiota may be closely related to the severity of coronavirus disease 2019 (COVID-19) by regulating the host immune response. Qing-Fei-Pai-Du decoction (QFPDD) is the recommended drug for clinical treatment of patients with COVID-19 in China, but whether it exerts a therapeutic effect by modulating the immune response through gut microbiota remains unclear. In this study, we evaluated the therapeutic effects of QFPDD in pneumonia model mice and performed 16S rRNA sequencing and serum and lung tissue metabolomic analysis to explore the underlying mechanisms during the treatment. Then, Spearman correlation analysis was performed on gut microbiome, serum metabolome, and immune-inflammation-related indicators. Our results suggest that QFPDD can restore the richness and diversity of gut microbiota, and multiple gut microbiota (including Alistipes, Odoribacter, Staphylococcus, Lachnospiraceae_NK4A136_group Enterorhabdus, and unclassified_f_Lachnospiraceae) are significantly associated with immune-inflammation-related indicators. In addition, various types of lipid metabolism changes were observed in serum and lung tissue metabolome, especially glycerophospholipids and fatty acids. A total of 27 differential metabolites (DMs) were significantly correlated with immune-inflammation-related indicators, including 9 glycerophospholipids, 7 fatty acids, 3 linoleic acid, 2 eicosanoids, 2 amino acids, 2 bile acids, and 2 others. Interestingly, these DMs showed a good correlation with the gut microbiota affected by QFPDD. The above results suggest that QFPDD can improve the immune function and reduce inflammation in pneumonia model mice by remodeling gut microbiota and host metabolism.


Assuntos
COVID-19 , Microbiota , Animais , COVID-19/tratamento farmacológico , Ácidos Graxos , Glicerofosfolipídeos , Inflamação , Metaboloma , Camundongos , RNA Ribossômico 16S/genética
4.
BMC Bioinformatics ; 23(1): 379, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114458

RESUMO

Metabolomic time course analyses of biofluids are highly relevant for clinical diagnostics. However, many sampling methods suffer from unknown sample sizes, commonly known as size effects. This prevents absolute quantification of biomarkers. Recently, several mathematical post acquisition normalization methods have been developed to overcome these problems either by exploiting already known pharmacokinetic information or by statistical means. Here we present an improved normalization method, MIX, that combines the advantages of both approaches. It couples two normalization terms, one based on a pharmacokinetic model (PKM) and the other representing a popular statistical approach, probabilistic quotient normalization (PQN), in a single model. To test the performance of MIX, we generated synthetic data closely resembling real finger sweat metabolome measurements. We show that MIX normalization successfully tackles key weaknesses of the individual strategies: it (i) reduces the risk of overfitting with PKM, and (ii), contrary to PQN, it allows to compute sample volumes. Finally, we validate MIX by using real finger sweat as well as blood plasma metabolome data and demonstrate that MIX allows to better and more robustly correct for size effects. In conclusion, the MIX method improves the reliability and robustness of quantitative biomarker detection in finger sweat and other biofluids, paving the way for biomarker discovery and hypothesis generation from metabolomic time course data.


Assuntos
Metaboloma , Metabolômica , Biomarcadores/análise , Metabolômica/métodos , Reprodutibilidade dos Testes , Fatores de Tempo
5.
Front Endocrinol (Lausanne) ; 13: 898471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060961

RESUMO

Objective: In the last years, changes in dietary habits have contributed to the increasing prevalence of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). The differential burden of lipids and fructose on distinct organs needs to be unveiled. Herein, we hypothesized that high-fat and high-fructose diets differentially affect the metabolome of insulin-sensitive organs such as the liver, muscle, and different adipose tissue depots. Methods: We have studied the impact of 12 weeks of a control (11.50% calories from fat, 26.93% from protein, and 61.57% from carbohydrates), high-fat/sucrose (HFat), or high-fructose (HFruct) feeding on C57Bl/6J male mice. Besides glucose homeostasis, we analyzed the hepatic levels of glucose and lipid-metabolism-related genes and the metabolome of the liver, the muscle, and white (WAT) and brown adipose tissue (BAT) depots. Results: HFat diet led to a more profound impact on hepatic glucose and lipid metabolism than HFruct, with mice presenting glucose intolerance, increased saturated fatty acids, and no glycogen pool, yet both HFat and HFruct presented hepatic insulin resistance. HFat diet promoted a decrease in glucose and lactate pools in the muscle and an increase in glutamate levels. While HFat had alterations in BAT metabolites that indicate increased thermogenesis, HFruct led to an increase in betaine, a protective metabolite against fructose-induced inflammation. Conclusions: Our data illustrate that HFat and HFruct have a negative but distinct impact on the metabolome of the liver, muscle, WAT, and BAT.


Assuntos
Diabetes Mellitus Tipo 2 , Frutose , Tecido Adiposo Marrom/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Frutose/efeitos adversos , Glucose/metabolismo , Fígado/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Músculos
6.
Front Endocrinol (Lausanne) ; 13: 945609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060969

RESUMO

Objective: To observe the effect of metformin (MET) monotherapy versus MET plus liraglutide (LIRA) on gonadal and metabolic profiles in overweight patients with polycystic ovary syndrome (PCOS). Methods: Sixty overweight patients with PCOS were recruited from January 2021 to January 2022 in Shengjing Hospital of China Medical University and were randomly assigned to the MET or combination (COM) group to receive 12 weeks of MET monotherapy or MET plus LIRA therapy. Anthropometric measurements, menstrual cycle changes, gonadal profiles, and oral glucose tolerance tests (OGTT) were conducted at baseline and after the 12-week treatment. Results: Fifty-two subjects completed the trial while eight were lost during the follow-up. Both MET and COM improved menstrual cycles, anthropometric parameters, and glucose metabolism after the 12-week treatment; however, there was no statistical difference between the two groups. MET plus LIRA therapy improved hyperandrogenemia, including TT (total testosterone), SHBG (sex hormone binding globulin) and FAI (free androgen index), whereas MET monotherapy only improved SHBG and FAI when compared with baseline. Furthermore, both MET monotherapy and MET plus LIRA therapy improved E2 (estradiol) while only MET plus LIRA therapy improved LH (luteinizing hormone), FSH (follicle stimulating hormone) and Prog (progesterone) more effectively than baseline. Additionally, MET plus LIRA therapy may improve TT, SHBG, FAI, LH and Prog more effectively than MET monotherapy; however, there were no significant differences on E2, FSH and LH/FSH between the two groups. Conclusions: In overweight patients with PCOS, both MET monotherapy and MET plus LIRA therapy improved glucose metabolism and relieved insulin resistance (IR). Additionally, MET plus LIRA therapy was more effective than MET monotherapy in improving reproductive abnormalities and hyperandrogenemia, potentially by modulating the hypothalamic-pituitary-ovarian axis.


Assuntos
Metformina , Síndrome do Ovário Policístico , Feminino , Hormônio Foliculoestimulante/metabolismo , Glucose , Humanos , Liraglutida/uso terapêutico , Metaboloma , Metformina/uso terapêutico , Obesidade/metabolismo , Sobrepeso/complicações , Sobrepeso/tratamento farmacológico , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo
7.
Res Vet Sci ; 151: 189-195, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058168

RESUMO

Hypothyroidism is the most commonly diagnosed endocrine disorder in dogs. It produces a deficiency of thyroid hormones which impacts negatively the dog's quality of life. The objective of this study is to evaluate the possible changes in the salivary metabolic profile in dogs with hypothyroidism. For this purpose, targeted metabolomics analysis performed by LC/MS analysis was made in saliva samples from a group of dogs with hypothyroidism and a group of healthy dogs. Twenty-three metabolites showed a significant decrease between hypothyroid and healthy dogs, most of these associated with thyroid hormone synthesis, catecholamine synthesis, and tyrosine and phenylalanine metabolism. Based on the results, it can be stated that hypothyroidism produces changes in the metabolome of saliva and some of them can reflect the metabolic changes presented in the disease and could serve as a potential biomarker of this condition.


Assuntos
Doenças do Cão , Hipotireoidismo , Animais , Doenças do Cão/diagnóstico , Cães , Hipotireoidismo/veterinária , Metaboloma , Projetos Piloto , Qualidade de Vida , Hormônios Tireóideos , Tiroxina
8.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076993

RESUMO

Salinity is one of the most serious threats to agriculture worldwide. Sugar beet is an important sugar-yielding crop and has a certain tolerance to salt; however, the genome-wide dynamic response to salt stress remains largely unknown in sugar beet. In the present study, physiological and transcriptome analyses of sugar beet leaves and roots were compared under salt stress at five time points. The results showed that different salt stresses influenced phenotypic characteristics, leaf relative water content and root activity in sugar beet. The contents of chlorophyll, malondialdehyde (MDA), the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were also affected by different salt stresses. Compared with control plants, there were 7391 and 8729 differentially expressed genes (DEGs) in leaves and roots under salt stress, respectively. A total of 41 hub genes related to salt stress were identified by weighted gene co-expression network analysis (WGCNA) from DEGs, and a transcriptional regulatory network based on these genes was constructed. The expression pattern of hub genes under salt stress was confirmed by qRT-PCR. In addition, the metabolite of sugar beet was compared under salt stress for 24 h. A total of 157 and 157 differentially accumulated metabolites (DAMs) were identified in leaves and roots, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further indicated that DEGs and DAMs act on the starch and sucrose metabolism, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction pathway. In this study, RNA-seq, WGCNA analysis and untargeted metabolomics were combined to investigate the transcriptional and metabolic changes of sugar beet during salt stress. The results provided new insights into the molecular mechanism of sugar beet response to salt stress, and also provided candidate genes for sugar beet improvement.


Assuntos
Beta vulgaris , Beta vulgaris/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Açúcares/metabolismo , Transcriptoma
9.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077057

RESUMO

The gut microbiota plays a critical role in energy homeostasis and its dysbiosis is associated with obesity. Maternal high-fat diet (HFD) and ß-adrenergic stimuli alter the gut microbiota independently; however, their collective regulation is not clear. To investigate the combined effect of these factors on offspring microbiota, 20-week-old offspring from control diet (17% fat)- or HFD (45% fat)-fed dams received an injection of either vehicle or ß3-adrenergic agonist CL316,243 (CL) for 7 days and then cecal contents were collected for bacterial community profiling. In a follow-up study, a separate group of mice were exposed to either 8 °C or 30 °C temperature for 7 days and blood serum and cecal contents were used for metabolome profiling. Both maternal diet and CL modulated the gut bacterial community structure and predicted functional profiles. Particularly, maternal HFD and CL increased the Firmicutes/Bacteroidetes ratio. In mice exposed to different temperatures, the metabolome profiles clustered by treatment in both the cecum and serum. Identified metabolites were enriched in sphingolipid and amino acid metabolism in the cecum and in lipid and energy metabolism in the serum. In summary, maternal HFD altered offspring's response to CL and altered microbial composition and function. An independent experiment supported the effect of thermogenic challenge on the bacterial function through metabolome change.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica/efeitos adversos , Seguimentos , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL
10.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077135

RESUMO

Sugarcane (Saccharum spp. hybrid) is an important crop for sugar and biofuels, and often suffers from water shortages during growth. Currently, there is limited knowledge concerning the molecular mechanism involved in sugarcane response to drought stress (DS) and whether chitooligosaccharide could alleviate DS. Here, we carried out a combined transcriptome and metabolome of sugarcane in three different treatment groups: control group (CG), DS group, and DS + chitooligosaccharide group (COS). A total of 12,275 (6404 up-regulated and 5871 down-regulated) differentially expressed genes (DEGs) were identified when comparing the CG and DS transcriptomes (T_CG/DS), and 2525 (1261 up-regulated and 1264 down-regulated) DEGs were identified in comparing the DS and COS transcriptomes (T_DS/COS). GO and KEGG analysis showed that DEGs associated with photosynthesis were significantly enriched and had down-regulated expression. For T_DS/COS, photosynthesis DEGs were also significantly enriched but had up-regulated expression. Together, these results indicate that DS of sugarcane has a significantly negative influence on photosynthesis, and that COS can alleviate these negative effects. In metabolome analysis, lipids, others, amino acids and derivatives and alkaloids were the main significantly different metabolites (SDMs) observed in sugarcane response to DS, and COS treatment reduced the content of these metabolites. KEGG analysis of the metabolome showed that 2-oxocarboxylic acid metabolism, ABC transporters, biosynthesis of amino acids, glucosinolate biosynthesis and valine, leucine and isoleucine biosynthesis were the top-5 KEGG enriched pathways when comparing the CG and DS metabolome (M_CG/DS). Comparing DS with COS (M_DS/COS) showed that purine metabolism and phenylalanine metabolism were enriched. Combined transcriptome and metabolome analysis revealed that pyruvate and phenylalanine metabolism were KEGG-enriched pathways for CG/DS and DS/COS, respectively. For pyruvate metabolism, 87 DEGs (47 up-regulated and 40 down-regulated) and five SDMs (1 up-regulated and 4 down-regulated) were enriched. Pyruvate was closely related with 14 DEGs (|r| > 0.99) after Pearson's correlation analysis, and only 1 DEG (Sspon.02G0043670-1B) was positively correlated. For phenylalanine metabolism, 13 DEGs (7 up-regulated and 6 down-regulated) and 6 SDMs (1 up-regulated and 5 down-regulated) were identified. Five PAL genes were closely related with 6 SDMs through Pearson's correlation analysis, and the novel.31257 gene had significantly up-regulated expression. Collectively, our results showed that DS has significant adverse effects on the physiology, transcriptome, and metabolome of sugarcane, particularly genes involved in photosynthesis. We further show that COS treatment can alleviate these negative effects.


Assuntos
Saccharum , Transcriptoma , Aminoácidos/metabolismo , Quitosana , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Oligossacarídeos , Fenilalanina/metabolismo , Piruvatos/metabolismo , Saccharum/metabolismo
11.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077145

RESUMO

A way to maintain an adequate vitamin D status is through supplementation. Demonstration of blood-metabolome rhythmicity of vitamin D3 post-dosing effects is lacking in the pharmaco-metabonomics area. Thus, the overall aim of this study was to investigate the diurnal changes in the blood metabolome and how these are affected by vitamin D3 supplementation. The study was conducted as a crossover study, and the treatment included 200 µg (8000 IU) of vitamin D3 as compared with placebo with a washout period of at least 10 days. The participants were postmenopausal women aged 60-80 years (N = 29) with vitamin D insufficiency (serum 25-hydroxyvitamin D < 50 nmol/L) but otherwise healthy. During the intervention day, blood samples were taken at 0 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, and 24 h, and plasma was analysed by proton nuclear magnetic resonance (NMR) spectroscopy as a metabolomics approach. In general, diurnal effects were identified for the majority of the 20 quantified metabolites, and hierarchical cluster analysis revealed a change in the overall plasma metabolome around 12 AM (6 h after intervention), suggesting that the diurnal rhythm is reflected in two diurnal plasma metabolomes; a morning metabolome (8-12 AM) and an afternoon/evening metabolome (2-8 PM). Overall, the effect of vitamin D supplementation on the blood metabolome was minor, with no effect on the diurnal rhythm. However, a significant effect of the vitamin D supplementation on plasma acetone levels was identified. Collectively, our findings reveal an influence of diurnal rhythm on the plasma metabolome, while vitamin D supplementation appears to have minor influence on fluctuations in the plasma metabolome.


Assuntos
Pós-Menopausa , Deficiência de Vitamina D , Colecalciferol , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Humanos , Metaboloma , Vitamina D , Vitaminas
12.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077169

RESUMO

Enzymatic diagnostics have practical applications in diseases of the liver, heart, pancreas, muscles, blood, and neoplastic diseases. This study aimed to compare enzyme activity to describe dairy cows' metabolism during early lactation. Based on their general health symptoms, the cows were assigned to one of three groups: acidotic, healthy and ketotic. Samples of milk, blood and rumen fluid were collected at 12 ± 5 days postpartum. Ketotic cows were characterized by the highest malondialdehyde (MDA, 76.098 nM/mL), glutathione reductase (GluRed, 109.852 U/L), superoxide dismutase (SOD, 294.22 U/L) and gamma-glutamyltranspeptidase (GGTP, 71.175 U/L) activity. In comparing ketotic and acidotic cows, MDA, GluRed, SOD and GGTP activity were higher by a factor of almost: 1.85, 1.89, 0.79 and 2.50, respectively. Acidotic cows were characterized by the highest aspartate aminotransferase activity (AspAT, 125.914 U/L). In comparing acidotic and ketotic cows, AspAT activity was higher by a factor of almost 1.90. The use of enzymatic markers could limit the frequency of sampling for laboratory analyses and may result in a faster diagnosis of metabolic disorders. AspAT activity in blood serum seems to be a good indicator of acidosis; GGTP may participate in the pathogenesis of ketosis.


Assuntos
Acidose , Doenças dos Bovinos , Cetose , Ácido 3-Hidroxibutírico/metabolismo , Acidose/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Bovinos , Doenças dos Bovinos/metabolismo , Feminino , Cetose/diagnóstico , Cetose/veterinária , Lactação/metabolismo , Metaboloma , Leite/metabolismo , Superóxido Dismutase/metabolismo , gama-Glutamiltransferase/metabolismo
13.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077322

RESUMO

The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.


Assuntos
Capsicum , Piper nigrum , Animais , Capsicum/química , Capsicum/genética , Dieta , Drosophila melanogaster/genética , Metaboloma , Piper nigrum/genética , Transcriptoma
14.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36077519

RESUMO

Yellow catfish (Pelteobagrus fulvidraco) is an important aquaculture fish susceptible to Aeromonas veronii infection, which causes acute death resulting in huge economic losses. Understanding the molecular processes of host immune defense is indispensable to disease control. Here, we conducted the integrated and comparative analyses of the transcriptome and metabolome of yellow catfish in response to A. veronii infection at the invaded stage and recovering stage. The crosstalk between A. veronii-induced genes and metabolites uncovered the key biomarkers and pathways that strongest contribute to different response strategies used by yellow catfish at corresponding defense stages. We found that at the A. veronii invading stage, the immune defense was strengthened by synthesizing lipids with energy consumption to repair the skin defense line and accumulate lipid droplets promoting intracellular defense line; triggering an inflammatory response by elevating cytokine IL-6, IL-10 and IL-1ß following PAMP-elicited mitochondrial signaling, which was enhanced by ROS produced by impaired mitochondria; and activating apoptosis by up-regulating caspase 3, 7 and 8 and Prostaglandin F1α, meanwhile down-regulating FoxO3 and BCL6. Apoptosis was further potentiated via oxidative stress caused by mitochondrial dysfunction and exceeding inflammatory response. Additionally, cell cycle arrest was observed. At the fish recovering stage, survival strategies including sugar catabolism with D-mannose decreasing; energy generation through the TCA cycle and Oxidative phosphorylation pathways; antioxidant protection by enhancing Glutathione (oxidized), Anserine, and α-ketoglutarate; cell proliferation by inducing Cyclin G2 and CDKN1B; and autophagy initiated by FoxO3, ATG8 and ATP6V1A were highlighted. This study provides a comprehensive picture of yellow catfish coping with A. veronii infection, which adds new insights for deciphering molecular mechanisms underlying fish immunity and developing stage-specific disease control techniques in aquaculture.


Assuntos
Peixes-Gato , Doenças dos Peixes , Aeromonas veronii/genética , Animais , Peixes-Gato/metabolismo , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Metaboloma , Transcriptoma
15.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36077538

RESUMO

Upland cotton (Gossypium hirsutum L.) is one of the important fiber crops. Cotton flowers usually appear white (or cream-colored) without colored spots at the petal base, and turn pink on the next day after flowering. In this study, using a mutant showing pink petals with crimson spots at their base, we conducted comparative metabolome and transcriptome analyses to investigate the molecular mechanism of coloration in cotton flowers. Metabolic profiling showed that cyanidin-3-O-glucoside and glycosidic derivatives of pelargonidins and peonidins are the main pigments responsible for the coloration of the pink petals of the mutant. A total of 2443 genes differentially expressed (DEGs) between the white and pink petals were identified by RNA-sequencing. Many DEGs are structural genes and regulatory genes of the anthocyanin biosynthesis pathway. Among them, MYB21, UGT88F3, GSTF12, and VPS32.3 showed significant association with the accumulation of cyanidin-3-O-glucoside in the pink petals. Taken together, our study preliminarily revealed the metabolites responsible for the pink petals and the key genes regulating the biosynthesis and accumulation of anthocyanins in the pink petals. The results provide new insights into the biochemical and molecular mechanism underlying anthocyanin biosynthesis in upland cotton.


Assuntos
Antocianinas , Gossypium , Antocianinas/metabolismo , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Gossypium/genética , Gossypium/metabolismo , Metaboloma , Transcriptoma
16.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080331

RESUMO

Endophytes and their elicitors can all be utilized in regulating crop biochemical qualities. However, living endophytes and their derived elicitors are always applied separately; little is known about the similarities and differences of their effects. To increase the efficiency of this system when applied in practice, the present work profiled simultaneously the metabolomes in grape cells exposed to endophytic fungi (EF) and their corresponding fungal extracts (CFE). As expected, grape cells exposed separately to different fungi, or to different fungi derived extracts, each exhibited different modifications of metabolite patterns. The metabolic profiles of certain EF- and CFE-exposed grape cells were also differently influenced to certain degrees, owing to the presence of differentially responding metabolites (DRMs). However, the detected majority proportions of coordinately responding metabolites (CRMs) in both the EF- and the CFE-exposed grape cells, as well as the significantly influenced metabolites (SIMs) which are specific to certain fungal strains, clearly indicate coordinative changes in metabolites in grape cells exposed to EF and CFEs. The coordinative changes in metabolites in EF- and CFE-treated grape cells appeared to be fungal strain-dependent. Notably, several of those fungal strain-specific CRMs and DRMs are metabolites and belong to amino acids, lipids, organic acids, phenolic acids, flavonoids, and others, which are major contributors to the biochemistry and sensory qualities of grapes and wines. This research clarifies the detailed responses of metabolites in grape cells exposed to EF and CFEs. It also demonstrates how endophytes can be selectively used in the form of extracts to produce functions as CRMs of the living fungus with increased eco-safety, or separately applied to the living microbes or elicitors to emphasize those effects related to their specifically initiated SIMs and DRMs.


Assuntos
Vitis , Vinho , Endófitos/metabolismo , Fungos/metabolismo , Metaboloma , Vitis/metabolismo
17.
Sci Rep ; 12(1): 15018, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056162

RESUMO

The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Mamíferos , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL
18.
Anal Chim Acta ; 1226: 340255, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36068057

RESUMO

Chemical isotope labeling (CIL) LC-MS is a powerful tool for metabolome analysis with markedly improved metabolomic coverage and quantification accuracy over the conventional LC-MS technique. In addition, with differential isotope labeling, each labeled metabolite is detected as a peak pair in the mass spectra, offering the possibility of differentiating true metabolite peaks from the singlet noise or background peaks. In this study, we examined the effects of instrument type on the detectability of true metabolites with a focus on the comparison of quadrupole time-of-flight (QTOF) and Orbitrap mass spectrometers. Using the same ultra-high-performance liquid chromatography setup and optimized running conditions for QTOF and Orbitrap, we compared the total number of peak pairs detected and identified from the two instruments using human urine and serum as the test samples. Many common peak pairs were detected from the two instruments; however, there were a significant number of unique peak pairs detected in each type of instrument. By combining the datasets obtained using QTOF and Orbitrap, the total number of peak pairs detected could be significantly increased. We also examined the effect of mass resolving power on peak pair detection in Orbitrap (60,000 vs. 120,000 resolution). The observed differences in peak pair detectability were much less than those of QTOF vs. Orbitrap. However, the type of peak pairs detected using different resolutions could be somewhat different, offering the possibility of increasing the overall number of peak pairs by combining the two datasets obtained at two different resolutions. The results from this study clearly indicate that instrument type can have a profound effect on metabolite detection in CIL LC-MS. Therefore, comparison of metabolome data generated using different instruments needs to be carefully done. Moreover, future research (e.g., hardware modifications) is warranted to minimize the differences in order to generate more reproducible metabolome data from different types of instruments.


Assuntos
Fenofibrato , Cromatografia Líquida/métodos , Compostos de Dansil/química , Humanos , Marcação por Isótopo/métodos , Metaboloma , Metabolômica/métodos , Espectrometria de Massas em Tandem
19.
Metabolomics ; 18(10): 75, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36125563

RESUMO

INTRODUCTION: The effects of lipopolysaccharides (i.e., endotoxin; LPS) on metabolism are poorly defined in lactating dairy cattle experiencing hyperlipidemia. OBJECTIVES: Our objective was to explore the effects of acute intravenous LPS administration on metabolism in late-lactation Holstein cows experiencing hyperlipidemia induced by intravenous triglyceride infusion and feed restriction. METHODS: Ten non-pregnant lactating Holstein cows (273 ± 35 d in milk) were administered a single bolus of saline (3 mL of saline; n [Formula: see text] 5) or LPS (0.375 [Formula: see text]g of LPS/kg of body weight; n [Formula: see text] 5). Simultaneously, cows were intravenously infused a triglyceride emulsion and feed restricted for 16 h to induce hyperlipidemia in an attempt to model the periparturient period. Blood was sampled at routine intervals. Changes in circulating total fatty acid concentrations and inflammatory parameters were measured. Plasma samples were analyzed using untargeted lipidomics and metabolomics. RESULTS: Endotoxin increased circulating serum amyloid A, LPS-binding protein, and cortisol concentrations. Endotoxin administration decreased plasma lysophosphatidylcholine (LPC) concentrations and increased select plasma ceramide concentrations. These outcomes suggest modulation of the immune response and insulin action. Lipopolysaccharide decreased the ratio of phosphatidylcholine to phosphatidylethanomanine, which potentially indicate a decrease in the hepatic activation of phosphatidylethanolamine N-methyltransferase and triglyceride export. Endotoxin administration also increased plasma concentrations of pyruvic and lactic acids, and decreased plasma citric acid concentrations, which implicate the upregulation of glycolysis and downregulation of the citric acid cycle (i.e., the Warburg effect), potentially in leukocytes. CONCLUSION: Acute intravenous LPS administration decreased circulating LPC concentrations, modified ceramide and glycerophospholipid concentrations, and influenced intermediary metabolism in dairy cows experiencing hyperlipidemia.


Assuntos
Hiperlipidemias , Insulinas , Animais , Bovinos , Ceramidas , Ácido Cítrico , Emulsões/farmacologia , Endotoxinas/farmacologia , Ácidos Graxos , Feminino , Glicerofosfolipídeos , Hidrocortisona/farmacologia , Hiperlipidemias/induzido quimicamente , Insulinas/farmacologia , Lactação , Lipidômica , Lipopolissacarídeos/farmacologia , Lisofosfatidilcolinas/farmacologia , Metaboloma , Metabolômica , Fosfatidilcolinas , Fosfatidiletanolamina N-Metiltransferase/farmacologia , Proteína Amiloide A Sérica , Triglicerídeos
20.
JCI Insight ; 7(18)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36134656

RESUMO

Endothelial mitochondria play a pivotal role in maintaining endothelial cell (EC) homeostasis through constantly altering their size, shape, and intracellular localization. Studies show that the disruption of the basal mitochondrial network in EC, forming excess fragmented mitochondria, implicates cardiovascular disease. However, cellular consequences underlying the morphological changes in the endothelial mitochondria under distinctively different, but physiologically occurring, flow patterns (i.e., unidirectional flow [UF] versus disturbed flow [DF]) are largely unknown. The purpose of this study was to investigate the effect of different flow patterns on mitochondrial morphology and its implications in EC phenotypes. We show that mitochondrial fragmentation is increased at DF-exposed vessel regions, where elongated mitochondria are predominant in the endothelium of UF-exposed regions. DF increased dynamin-related protein 1 (Drp1), mitochondrial reactive oxygen species (mtROS), hypoxia-inducible factor 1, glycolysis, and EC activation. Inhibition of Drp1 significantly attenuated these phenotypes. Carotid artery ligation and microfluidics experiments further validate that the significant induction of mitochondrial fragmentation was associated with EC activation in a Drp1-dependent manner. Contrarily, UF in vitro or voluntary exercise in vivo significantly decreased mitochondrial fragmentation and enhanced fatty acid uptake and OXPHOS. Our data suggest that flow patterns profoundly change mitochondrial fusion/fission events, and this change contributes to the determination of proinflammatory and metabolic states of ECs.


Assuntos
Células Endoteliais , Dinâmica Mitocondrial , Dinaminas , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Metaboloma , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...