Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.057
Filtrar
1.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361731

RESUMO

Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets. Indeed, the use of SLs as agrochemicals can favor sustainable agriculture via multiple mechanisms, including shaping root architecture, promoting ideal branching, stimulating nutrient assimilation, controlling parasitic weeds, mitigating drought and enhancing mycorrhization. Moreover, over the last few years, a number of studies have shed light onto the effects exerted by SLs on human cells and on their possible applications in medicine. For example, SLs have been demonstrated to play a key role in the control of pathways related to apoptosis and inflammation. The elucidation of the molecular mechanisms behind their action has inspired further investigations into their effects on human cells and their possible uses as anti-cancer and antimicrobial agents.


Assuntos
Antineoplásicos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Lactonas/farmacologia , Micorrizas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Sesquiterpenos/farmacologia , Adaptação Fisiológica , Agricultura/métodos , Agroquímicos/isolamento & purificação , Agroquímicos/metabolismo , Agroquímicos/farmacologia , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/isolamento & purificação , Compostos Heterocíclicos com 3 Anéis/metabolismo , Humanos , Inflamação/prevenção & controle , Lactonas/isolamento & purificação , Lactonas/metabolismo , Micorrizas/química , Neoplasias/tratamento farmacológico , Patentes como Assunto , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/isolamento & purificação , Plantas/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/metabolismo , Estresse Fisiológico , Controle de Plantas Daninhas/métodos
2.
PLoS One ; 16(7): e0253878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34283857

RESUMO

Chromium toxicity is a major problem in agricultural soils that negatively affects a plant's metabolic activities. It reduces biochemical and antioxidant defence system's activities. In search of the solution to this problem a two-year pot experiment (completely randomized design with three replications), in three genetically different varieties of sorghum (SSG 59-3, HJ 513 and HJ 541) under Cr toxicity (2 and 4 ppm) was conducted to determine the effect of glycine betaine (50 and 100mM) and Arbuscular mycorrhizal fungi (AMF) on the antioxidant system (enzymes viz. superoxide dismutase, ascorbate peroxidase, catalase, glutathione reductase, peroxidase and metabolites viz. glutathione, ascorbate, proline, ß-carotene) along with Cr accumulation and indices of oxidative stress parameters (polyphenol oxidase, hydrogen peroxide and malondialdehyde) at two growth stages (vegetative and grain filling). According to results; Cr stress (2 & 4 ppm) increased its accumulation and indices of oxidative stresses significantly (p≤0.05) in all varieties of sorghum at both growth stages. However, soil application of glycine betaine (GB) and AMF decreased Cr accumulation and indices of oxidative stress by increasing antioxidant enzymes and metabolites activities at both growth stages in all varieties. The combination of 100mM GB with AMF was observed most significant (p≤0.05) in decreasing oxidative stress and improved the antioxidant system's activities. The SSG 59-3 cultivar showed the lowest Cr accumulation (1.60 and 8.61 ppm), indices of oxidative stress and highest antioxidant system's activity among these three cultivars at both growth stages. Thus, SSG 59-3 was found most tolerant cultivars followed by HJ 513 and then HJ 541. These findings suggest that both GB and AMF, either individually or combined can play a positive role to reduce oxidative stress and increased antioxidant attributes under Cr toxicity in sorghum.


Assuntos
Antioxidantes/farmacologia , Cromo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Betaína/farmacologia , Micorrizas/efeitos dos fármacos , Micorrizas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Sorghum/crescimento & desenvolvimento , Sorghum/microbiologia
3.
Nat Commun ; 12(1): 4431, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290234

RESUMO

Experiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss.


Assuntos
Agricultura/métodos , Biodiversidade , Pradaria , Fósforo/metabolismo , Agricultura/economia , Biomassa , Fertilizantes/economia , Análise de Classes Latentes , Micorrizas/classificação , Micorrizas/metabolismo , Fósforo/análise , Fósforo/economia , Plantas/classificação , Plantas/metabolismo , Plantas/microbiologia , Solo/química , Microbiologia do Solo
4.
Planta ; 254(2): 38, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34312721

RESUMO

MAIN CONCLUSION: Transcriptional activation of subfamily II PHT1 members in roots is associated with the enhanced phosphorus use efficiency and growth promotion of barley seedlings inoculated with Glomus species. The arbuscular mycorrhizal (AM) fungi symbiotic associations in cereal crops are known to regulate growth in cultivar-specific manner and induce phosphate (Pi) transporters (PHT1) in roots. In the present study, we observed that both AM colonization of roots by Glomus species and phosphate starvation enhanced phosphorus use efficiency (PUE) in barley seedlings. Our search for the full complement of PHT1 members in the recently sequenced barley genome identified six additional genes, totaling their number to 17. Both AM colonization and Pi starvation triggered activation of common as well as different PHT1s. Pi starvation led to the robust upregulation of HvPHT1;6.2/6.3 at 7d and weak activation of HvPHT1;1 in shoots at 3d time-point. In roots, only HvPHT1;1, HvPHT1;6.2/6.3, HvPHT1;7, HvPHT1;8, HvPHT1;11.2 and HvPHT12 were induced at least one of the time-points. AM colonization specifically upregulated HvPHT1;11, HvPHT1;11.2, HvPHT1;12 and HvPHT1;13.1/13.2, members belonging to subfamily II, in roots. Sucrose availability seems to be obligatory for the robust activation of HvPHT1;1 as unavailability of this metabolite generally weakened its upregulation under Pi starvation. Intriguingly, lack of sucrose supply also led to induction of HvPHT1;5, HvPHT1;8, and HvPHT1;11.2 in either roots or shoot or both. The mRNA levels of HvPHT1;5 and HvPHT1;11.2 were not severely affected under combined deficiency of Pi and sucrose. Taken together, this study not only identify additional PHT1 members in barley, but also ascertain their AM, Pi and sucrose-specific transcript accumulation. The beneficial role of AM fungi in the promotion of PUE and barley seedlings' growth is also demonstrated.


Assuntos
Hordeum , Micorrizas , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo
5.
BMC Plant Biol ; 21(1): 336, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261429

RESUMO

BACKGROUND: Chromium is the most toxic pollutant that negatively affects a plant's metabolic activities and yield. It reduces plant growth by influencing the antioxidant defence system's activities. In the present study, a completely randomized block design experiment with three plants/pot in three replication was conducted on three varieties of sorghum viz. SSG 59-3, HJ 513 (multi-cut) and HJ 541 (single-cut) for amelioration of chromium toxicity (2 & 4 ppm) by exogenous application of GB (50 & 100 mM) with and without AMF in soil. The ameliorative effects were tested at two growth stages viz. vegetative (35 DAS) and grain filling (95 DAS), in terms of Cr uptake, grain yield, antioxidative defence system parameters (viz. enzymes - SOD, APX, CAT, GR, POX and metabolites - proline, glutathione, ascorbate, ß-carotene) and indices of oxidative stress parameters (viz. PPO, H2O2, and MDA). RESULTS: The results delineated that Cr uptake and indices of oxidative stress were increased with increasing concentration of Cr stress in all the varieties (HJ 541, HJ513 & SSG 59-3) at both the growth stages (35 & 95 DAS). At higher concentration (4 ppm), Cr stress decreased the grain yield (45-50%) as compared with controls. Polyphenoloxidase activity, MDA and H2O2 content increased at both growth stages in all the varieties. However, antioxidative enzymes and metabolite activities increased due to Cr stress but this increase was not sufficient to counteract with ROS generated under Cr stress which was enhanced on the application of AMF and GB either individually or in combination (spiked in soil). It decreased the indices of oxidative stress and ameliorated the Cr toxicity and increased grain yield (65-70%) in all the varieties. CONCLUSIONS: Both GB and AMF improved the antioxidative activities and stress tolerance capacity of the plant. Glycine betaine at both 50 and 100 mM level, significantly ameliorated Cr toxicity. However, AMF concomitantly with GB further boosts up the amelioration behaviour of the plant against Cr toxicity, at both growth stages in all the varieties. The combination of 100 mM GB with 10 g AMF was observed most effective among all the treatments. Among the varieties, SSG 59-3 had the lowest chromium uptake, indices of oxidative stress, and highest antioxidative system's activity as compared to HJ 513 followed by HJ 541 variety. Thus AMF and GB either individually or in combination may be used to maintain plant yield attributes under Cr toxicity.


Assuntos
Betaína/farmacologia , Cromo/metabolismo , Micorrizas/metabolismo , Sorghum/metabolismo , Catecol Oxidase/metabolismo , Cromo/toxicidade , Recuperação e Remediação Ambiental , Estresse Oxidativo , Solo/química , Sorghum/genética , Sorghum/microbiologia
6.
PLoS Biol ; 19(7): e3001326, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260583

RESUMO

Arbuscular mycorrhiza (AM) are mutualistic interactions formed between soil fungi and plant roots. AM symbiosis is a fundamental and widespread trait in plants with the potential to sustainably enhance future crop yields. However, improving AM fungal association in crop species requires a fundamental understanding of host colonisation dynamics across varying agronomic and ecological contexts. To this end, we demonstrate the use of betalain pigments as in vivo visual markers for the occurrence and distribution of AM fungal colonisation by Rhizophagus irregularis in Medicago truncatula and Nicotiana benthamiana roots. Using established and novel AM-responsive promoters, we assembled multigene reporter constructs that enable the AM-controlled expression of the core betalain synthesis genes. We show that betalain colouration is specifically induced in root tissues and cells where fungal colonisation has occurred. In a rhizotron setup, we also demonstrate that betalain staining allows for the noninvasive tracing of fungal colonisation along the root system over time. We present MycoRed, a useful innovative method that will expand and complement currently used fungal visualisation techniques to advance knowledge in the field of AM symbiosis.


Assuntos
Betalaínas/metabolismo , Micorrizas/crescimento & desenvolvimento , Genes Fúngicos , Marcadores Genéticos , Medicago truncatula/microbiologia , Micorrizas/genética , Micorrizas/metabolismo , Raízes de Plantas/microbiologia , Regiões Promotoras Genéticas , Simbiose/genética , Tabaco/genética , Tabaco/microbiologia
7.
Sci Rep ; 11(1): 11424, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075075

RESUMO

Intercropping of legumes and cereals is an important management method for improving yield stability, especially in organic farming systems. However, knowledge is restricted on the relevance of different nutrient transfer pathways. The objective of the study was to quantify nitrogen (N) and carbon (C) transfer from peas to triticale by (1) direct root contact (= R), (2) arbuscular mycorrhizal fungi (AMF; = A), and (3) diffusion (= D). Pea (Pisum sativum cv. Frisson and P2) and triticale (Triticum × Secale cv. Benetto) plants as intercrop were grown for 105 days. Treatment ADR enabled all transfer paths between the two crops. Treatment AD with root exclusion enabled AMF and diffusion transfer between peas and triticale. Treatment A with a diffusion gap barrier only allowed AMF transfer. Pea plants were labelled every 14 days with a 13C glucose and 15N urea solution, using the cotton wick technique. Direct root contact resulted in the highest pea rhizodeposition and thus the largest absolute amounts of N and C transfer to triticale. Root exclusion generally changed composition of rhizodeposits from fine root residues towards root exudates. Pea plant-N consisted of 17% N derived from rhizodeposition (NdfR) in treatment ADR but only 8% in the treatments AD and A, independently of pea variety, whereas pea plant-C consisted of 13% C derived from rhizodeposition (CdfR), without pea variety and transfer path treatment effects. Averaging all transfer path treatments, 6.7% of NdfR and 2.7% of CdfR was transferred from Frisson and P2 to triticale plants. Approximately 90% of this NdfR was transferred by direct root contact from Frisson to triticale and only 10% by AMF, whereas only 55% of CdfR was transferred to triticale by direct root contact, 40% by AMF and 5% by diffusion. Similar percentages were transferred from mutant P2 to triticale. Root exclusion generally changed RD composition from fine root residues towards root exudates.


Assuntos
Carbono/metabolismo , Grão Comestível/metabolismo , Fabaceae/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo
8.
Sci Rep ; 11(1): 11287, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050223

RESUMO

Epiphytic orchids exhibit varying degrees of phorophyte tree specificity. We performed a pilot study to investigate why epiphytic orchids prefer or avoid certain trees. We selected two orchid species, Panisea uniflora and Bulbophyllum odoratissimum co-occurring in a forest habitat in southern China, where they showed a specific association with Quercus yiwuensis and Pistacia weinmannifolia trees, respectively. We analysed a number of environmental factors potentially influencing the relationship between orchids and trees. Difference in bark features, such as water holding capacity and pH were recorded between Q. yiwuensis and P. weinmannifolia, which could influence both orchid seed germination and fungal diversity on the two phorophytes. Morphological and molecular culture-based methods, combined with metabarcoding analyses, were used to assess fungal communities associated with studied orchids and trees. A total of 162 fungal species in 74 genera were isolated from bark samples. Only two genera, Acremonium and Verticillium, were shared by the two phorophyte species. Metabarcoding analysis confirmed the presence of significantly different fungal communities on the investigated tree and orchid species, with considerable similarity between each orchid species and its host tree, suggesting that the orchid-host tree association is influenced by the fungal communities of the host tree bark.


Assuntos
Micorrizas/classificação , Orchidaceae/microbiologia , Casca de Planta/microbiologia , China , Ecossistema , Fungos/genética , Fungos/patogenicidade , Micobioma , Micorrizas/metabolismo , Projetos Piloto , Simbiose , Árvores
9.
Science ; 372(6544): 864-868, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34016782

RESUMO

Symbiosis with arbuscular mycorrhizal fungi (AMF) improves plant nutrition in most land plants, and its contribution to the colonization of land by plants has been hypothesized. Here, we identify a conserved transcriptomic response to AMF among land plants, including the activation of lipid metabolism. Using gain of function, we show the transfer of lipids from the liverwort Marchantia paleacea to AMF and its direct regulation by the transcription factor WRINKLED (WRI). Arbuscules, the nutrient-exchange structures, were not formed in loss-of-function wri mutants in M. paleacea, leading to aborted mutualism. Our results show the orthology of the symbiotic transfer of lipids across land plants and demonstrate that mutualism with arbuscular mycorrhizal fungi was present in the most recent ancestor of land plants 450 million years ago.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Marchantia/genética , Marchantia/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/metabolismo , Simbiose , Fatores de Transcrição/metabolismo , Transporte Biológico , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marchantia/microbiologia , Mutação , Proteínas de Plantas/genética , Fatores de Transcrição/genética
10.
Microbiol Res ; 249: 126774, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33962316

RESUMO

In agroecosystems, drought stress severely threatens crops development. Although potassium (K) is required in amounts by crops under drought stress, the mobilization and availablity of K are limited by the soil water status. Arbuscular mycorrhizal (AM) fungi can form mutualistic associations with most crops and play direct or indirect roles in the host drought resistance. Considering that the glomalin generated by living AM fungal hyphae can sequester multiple minerals, however, the function of mineral-sequestering glomalin in the crop drought resistance remains unclear. In this study, peanuts cultivated in the sterilized soil with a history of AM fungi inoculation showed significantly enhanced leaf K accumulation, drought resistance and pod yield under drought stress. Through the collection of different types of mineral-sequestering glomalin from living AM fungal hyphae, the peanut drought resistance was improved only when K-sequestering glomalin was added. Moreover, we found that peanut root exudates could prime the dissociation of glomalin-bound K and further satisfy the K requirement of crops. Our study is the first report that K-sequestering glomalin could improve drought performance and peanut pod yield, and it helps us to understand the ecological importance of improving AM symbiosis to face agricultural challenges.


Assuntos
Arachis/microbiologia , Arachis/fisiologia , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicoproteínas/metabolismo , Micorrizas/metabolismo , Potássio/metabolismo , Arachis/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Secas , Hifas/metabolismo , Folhas de Planta/metabolismo , Potássio/farmacologia , Microbiologia do Solo , Estresse Fisiológico , Simbiose
11.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919023

RESUMO

The commonly observed increased heavy metal tolerance of ectomycorrhized plants is usually linked with the protective role of the fungal hyphae covering colonized plant root tips. However, the molecular tolerance mechanisms in heavy metal stressed low-colonized ectormyocrrhizal plants characterized by an ectomycorrhiza-triggered increases in growth are unknown. Here, we examined Populus × canescens microcuttings inoculated with the Paxillus involutus isolate, which triggered an increase in poplar growth despite successful colonization of only 1.9% ± 0.8 of root tips. The analyzed plants, lacking a mantle-a protective fungal biofilter-were grown for 6 weeks in agar medium enriched with 0.75 mM Pb(NO3)2. In minimally colonized 'bare' roots, the proteome response to Pb was similar to that in noninoculated plants (e.g., higher abundances of PM- and V-type H+ ATPases and lower abundance of ribosomal proteins). However, the more intensive activation of molecular processes leading to Pb sequestration or redirection of the root metabolic flux into amino acid and Pb chelate (phenolics and citrate) biosynthesis coexisted with lower Pb uptake compared to that in controls. The molecular Pb response of inoculated roots was more intense and effective than that of noninoculated roots in poplars.


Assuntos
Basidiomycota/fisiologia , Chumbo/farmacologia , Doenças das Plantas/imunologia , Raízes de Plantas/metabolismo , Populus/metabolismo , Proteoma/metabolismo , Estresse Fisiológico , Micorrizas/efeitos dos fármacos , Micorrizas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Populus/efeitos dos fármacos , Populus/microbiologia , Proteoma/análise
12.
mBio ; 12(2)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879589

RESUMO

Soil bacteria and fungi are known to form niche-specific communities that differ between actively growing and decaying roots. Yet almost nothing is known about the cross-kingdom interactions that frame these communities and the environmental filtering that defines these potentially friendly or competing neighbors. We explored the temporal and spatial patterns of soil fungal (mycorrhizal and nonmycorrhizal) and bacterial cooccurrence near roots of wild oat grass, Avena fatua, growing in its naturalized soil in a greenhouse experiment. Amplicon sequences of the fungal internal transcribed spacer (ITS) and bacterial 16S rRNA genes from rhizosphere and bulk soils collected at multiple plant growth stages were used to construct covariation-based networks as a step toward identifying fungal-bacterial associations. Corresponding stable-isotope-enabled metagenome-assembled genomes (MAGs) of bacteria identified in cooccurrence networks were used to inform potential mechanisms underlying the observed links. Bacterial-fungal networks were significantly different in rhizosphere versus bulk soils and between arbuscular mycorrhizal fungi (AMF) and nonmycorrhizal fungi. Over 12 weeks of plant growth, nonmycorrhizal fungi formed increasingly complex networks with bacteria in rhizosphere soils, while AMF more frequently formed networks with bacteria in bulk soils. Analysis of network-associated bacterial MAGs suggests that some of the fungal-bacterial links that we identified are potential indicators of bacterial breakdown and consumption of fungal biomass, while others intimate shared ecological niches.IMPORTANCE Soils near living and decomposing roots form distinct niches that promote microorganisms with distinctive environmental preferences and interactions. Yet few studies have assessed the community-level cooccurrence of bacteria and fungi in these soil niches as plant roots grow and senesce. With plant growth, we observed increasingly complex cooccurrence networks between nonmycorrhizal fungi and bacteria in the rhizosphere, while mycorrhizal fungal (AMF) and bacterial cooccurrence was more pronounced in soil further from roots, in the presence of decaying root litter. This rarely documented phenomenon suggests niche sharing of nonmycorrhizal fungi and bacteria, versus niche partitioning between AMF and bacteria; both patterns are likely driven by C substrate availability and quality. Although the implications of species cooccurrence are fiercely debated, MAGs matching the bacterial nodes in our networks possess the functional potential to interact with the fungi that they are linked to, suggesting an ecological significance of fungal-bacterial cooccurrence patterns.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Interações Microbianas , Microbiota , Micorrizas/metabolismo , Microbiologia do Solo , Bactérias/genética , Biomassa , Fungos/genética , Micorrizas/genética , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Solo/química
13.
Mol Plant Microbe Interact ; 34(8): 939-951, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33779265

RESUMO

Several ATP-binding cassette (ABC) transporters involved in the arbuscular mycorrhizal symbiosis and nodulation have been identified. We describe three previously unreported ABC subfamily B transporters, named AMN1, AMN2, and AMN3 (ABCB for mycorrhization and nodulation), that are expressed early during infection by rhizobia and arbuscular mycorrhizal fungi. These ABCB transporters are strongly expressed in symbiotically infected tissues, including in root-hair cells with rhizobial infection threads and arbusculated cells. During nodulation, the expression of these genes is highly induced by rhizobia and purified Nod factors and is dependent on DMI3 but is not dependent on other known major regulators of infection, such as NIN, NSP1, or NSP2. During mycorrhization their expression is dependent on DMI3 and RAM1 but not on NSP1 and NSP2. Therefore, they may be commonly regulated through a distinct branch of the common symbiotic pathway. Mutants with exonic Tnt1-transposon insertions were isolated for all three genes. None of the single or double mutants showed any differences in colonization by either rhizobia or mycorrhizal fungi, but the triple amn1 amn2 amn3 mutant showed an increase in nodule number. Further studies are needed to identify potential substrates of these transporters and understand their roles in these beneficial symbioses.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Medicago truncatula , Micorrizas , Transportadores de Cassetes de Ligação de ATP/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Simbiose
14.
Ecotoxicol Environ Saf ; 214: 112072, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33691243

RESUMO

The Green Revolution faced a great cost to meet ever-increasing demands for food, where indiscriminate use of agrochemicals resulted in non-friendly habitats. Therefore, the development of a sustainable approach to better crop production of onion seeds (Allium cepa L.) is very crucial. It is time to use organic waste as a replacement for agrochemicals by using arbuscular mycorrhizal fungi (AMF) and Trichoderma. Fish waste as representative of food waste acts as a leading cause of contamination of the environment. The interaction of AMF and Trichoderma viride on biomass, total soluble protein, mycorrhizal colonization, amino acids, phosphatases and phosphorus and nitrogen contents of onion plants grown in fish waste amended soil was studied. Fish waste has caused a slight increase in onions biomass, total free amino acids, and soluble protein content while with AMF and T. viride dual inoculation more increments were recorded; such increases were related to an increase in mycorrhizal colonization. T. viride application significantly increased the mycorrhizal colonization levels, but these were significantly reduced with waste addition. Analysis of amino acids in plants showed that their concentrations had changed as a result of waste addition combined with AMF and/or T. viride. The effectiveness of fish waste combined with low cost and health/environmental safety leads to a prediction that the introduction of fish waste coupled with fungi will become a more popular feature of agriculture in the future.


Assuntos
Micorrizas/fisiologia , Cebolas/fisiologia , Trichoderma/fisiologia , Agricultura , Aminoácidos/metabolismo , Biomassa , Alimentos , Fungos/metabolismo , Hypocreales , Micorrizas/metabolismo , Nitrogênio/metabolismo , Cebolas/química , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Eliminação de Resíduos , Solo , Trichoderma/metabolismo
15.
Plant Physiol Biochem ; 162: 27-35, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33662869

RESUMO

Aquaporins (AQPs) involved in water and small molecule transport respond to environmental stress, while it is not clear how arbuscular mycorrhizal fungi (AMF) regulate AQP expression. Here, we investigated the change in leaf water potential and expression level of four tonoplast intrinsic proteins (TIPs), six plasma membrane intrinsic proteins (PIPs), and four nodin-26 like intrinsic proteins (NIPs) genes in trifoliate orange (Poncirus trifoliata) inoculated with Funneliformis mosseae under well-watered (WW), salt stress (SS), and waterlogging stress (WS). Root AMF colonization and soil hyphal length collectively were reduced by SS and WS. Under WW, inoculation with AMF gave diverse responses of AQPs: six AQPs up-regulated, three AQPs down-regulated, and five AQPs did not change. Such up-regulation of more AQPs under mycorrhization and WW partly accelerated water absorption, thereby, maintaining higher leaf water potential. However, under SS, all the fourteen AQPs were dramatically induced by AMF inoculation, which improved water permeability of membranes and stimulated water transport of the host. Under WS, AMF colonization almost did not induce or even down-regulated these AQPs expressions with three exceptions (PtTIP2;2, PtPIP1;1, and PtNIP1;2), thus, no change in leaf water potential. As a result, mycorrhizal plants under flooding may have an escape mechanism to reduce water absorption. It is concluded that AMF had different strategies in response to environmental stresses (e.g. SS and WS) by regulating leaf AQP expression in the host (e.g. trifoliate orange).


Assuntos
Aquaporinas , Micorrizas , Poncirus , Fungos , Micorrizas/metabolismo , Folhas de Planta/metabolismo , Poncirus/metabolismo , Estresse Salino , Água/metabolismo
16.
Sci Rep ; 11(1): 6501, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753844

RESUMO

In this work, the effects of co-inoculation between an arbuscular mycorrhizal fungus (AMF) and a phosphate solubilizing bacteria (PSB) to promote the growth and production of sunchoke under field condition were investigated during 2016 and 2017. Four treatments were set up as follows: plants without inoculation, with AMF inoculation, with PSB inoculation and with co-inoculation of PSB and AMF. The results showed the presence of PSB and AMF colonization at the harvest stage in both years. This suggested the survival of PSB and successful AMF colonization throughout the experiments. According to correlation analysis, PSB positively affected AMF spore density and colonization rate. Also, both AMF and PSB positively correlated with growth and production of sunchoke. Co-inoculation could enhance various plant parameters. However, better results in 2016 were found in co-inoculation treatment, while AMF inoculation performed the best in 2017. All of these results suggested that our AMF and PSB could effectively promote growth and production of sunchoke under field conditions. Such effects were varied due to different environmental conditions each year. Note that this is the first study showing successful co-inoculation of AMF and PSB for promoting growth and yield of sunchoke in the real cultivation fields.


Assuntos
Produção Agrícola/métodos , Helianthus/microbiologia , Micorrizas/patogenicidade , Rizosfera , Fungos/metabolismo , Fungos/patogenicidade , Helianthus/crescimento & desenvolvimento , Micorrizas/metabolismo , Fosfatos/metabolismo
17.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445801

RESUMO

This study focused on the interactions of pea (Pisum sativum L.) plants with phytopathogenic and beneficial fungi. Here, we examined whether the lysin-motif (LysM) receptor-like kinase PsLYK9 is directly involved in the perception of long- and short-chain chitooligosaccharides (COs) released after hydrolysis of the cell walls of phytopathogenic fungi and identified in arbuscular mycorrhizal (AM) fungal exudates. The identification and analysis of pea mutants impaired in the lyk9 gene confirmed the involvement of PsLYK9 in symbiosis development with AM fungi. Additionally, PsLYK9 regulated the immune response and resistance to phytopathogenic fungi, suggesting its bifunctional role. The existence of co-receptors may provide explanations for the potential dual role of PsLYK9 in the regulation of interactions with pathogenic and AM fungi. Co-immunoprecipitation assay revealed that PsLYK9 and two proposed co-receptors, PsLYR4 and PsLYR3, can form complexes. Analysis of binding capacity showed that PsLYK9 and PsLYR4, synthesized as extracellular domains in insect cells, were able to bind the deacetylated (DA) oligomers CO5-DA-CO8-DA. Our results suggest that the receptor complex consisting of PsLYK9 and PsLYR4 can trigger a signal pathway that stimulates the immune response in peas. However, PsLYR3 seems not to be involved in the perception of CO4-5, as a possible co-receptor of PsLYK9.


Assuntos
Quitina/análogos & derivados , Ervilhas/metabolismo , Proteínas de Plantas/metabolismo , Animais , Linhagem Celular , Parede Celular/metabolismo , Parede Celular/microbiologia , Quitina/metabolismo , Hidrólise , Insetos/metabolismo , Micorrizas/metabolismo , Ervilhas/microbiologia , Imunidade Vegetal/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Células Sf9 , Transdução de Sinais/fisiologia , Simbiose/fisiologia
18.
Int J Biol Macromol ; 172: 560-572, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476615

RESUMO

In the present study, eleven novel complete mitogenomes of Boletus were assembled and compared. The eleven complete mitogenomes were all composed of circular DNA molecules, with sizes ranging from 32,883 bp to 48,298 bp. The mitochondrial gene arrangement of Boletus varied greatly from other Boletales mitogenomes, and gene position reversal were observed frequently in the evolution of Boletus. Across the 15 core protein-coding genes (PCGs) tested, atp9 had the least and rps3 had the largest genetic distances among the eleven Boletus species, indicating varied evolution rates of core PCGs. In addition, the Ka/Ks value for nad3 gene was >1, suggesting that this gene was subject to possible positive selection pressure. Comparative mitogenomic analysis indicated that the intronic region was significantly correlated with the size of mitogenomes in Boletales. Two large-scale intron loss events were detected in the evolution of Boletus. Phylogenetic analyses based on a combined mitochondrial gene dataset yielded a well-supported (BPP ≥ 0.99; BS =100) phylogenetic tree for 72 Agaricomycetes, and the Boletus species had a close relationship with Paxillus. This study served as the first report on complete mitogenomes in Boletus, which will further promote investigations of the genetics, evolution and phylogeny of the Boletus genus.


Assuntos
Basidiomycota/genética , Proteínas Fúngicas/genética , Genoma Mitocondrial , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Micorrizas/genética , Sequência de Aminoácidos , Basidiomycota/classificação , Basidiomycota/metabolismo , Evolução Biológica , Éxons , Florestas , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Tamanho do Genoma , Íntrons , Mitocôndrias/metabolismo , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/metabolismo , Micorrizas/classificação , Micorrizas/metabolismo , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Árvores/microbiologia
19.
Plant Cell Physiol ; 62(3): 392-400, 2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-33515263

RESUMO

Phosphate (Pi) deficiency is a major factor limiting plant productivity worldwide. Land plants have evolved different strategies to cope with Pi deficiency. For instance, plants activate the so-called Pi starvation response (PSR) system, which is regulated by the transcription factor Phosphate Starvation Response1 (PHR1), to adjust plant growth and metabolic activity accordingly. Additionally, land plants can also establish mutualistic associations with soil microbes able to solubilize Pi from plant-inaccessible soil complexes and to transfer it to the host plant. A growing body of evidence indicates that PHR1 and the PSR system not only regulate the plant responses to Pi deficiency in an abiotic context, but they are also crucial for plants to properly interact with beneficial soil microbes able to provide them with soluble Pi. Recent evidence indicates that PHR1 and the PSR system contribute to shaping the plant-associated microbiota through the modulation of the plant immune system. The PSR and immune system outputs are tightly integrated by PHR1. Here, we review how plant host Pi status influences the establishment of the mutualistic association with soil microbes. We also highlight the role of PHR1 and the PSR system in shaping both the root microbiome and plant responses to Pi deficiency.


Assuntos
Fosfatos/deficiência , Plantas/microbiologia , Simbiose , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Micorrizas/metabolismo , Micorrizas/fisiologia , Fosfatos/metabolismo , Plantas/metabolismo , Microbiologia do Solo , Simbiose/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
20.
Sci Rep ; 11(1): 1100, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441780

RESUMO

Arbuscular mycorrhizal (AM) symbioses are an attractive means of improving the efficiency of soil phosphorus (P) that difficult to be used by plants and may provide a sustainable way of maintaining high yields while reducing P applications. However, quantifying the contribution of indigenous AM fungi on phosphorus uptake and yields of maize (Zea mays L.) under field conditions is not particularly clear. Mesh-barrier compartments were applied to monitor the distribution of hyphal P uptake throughout the experimental period under different planting densities and soil depths, over two consecutive years. AM symbioses enhanced plant P-acquisition efficiency, especially during the silking stage, and hyphae of AM fungi was assessed to contribution 19.4% at most to total available P content of soil. Moreover, the pattern of AM depletion of soil P generally matched shoot nutrient demand under the high planting density, which resulted in significantly increased yield in 2014. Although the hyphal length density was significantly decreased with soil depth, AM fungi still had high potential for P supply in deeper soil. It demonstrates the great potential of indigenous AM fungi to maize productivity in the high-yield area of China, and it would further provide the possibility of elimination P fertilizer applications to maintain high yields.


Assuntos
Micorrizas/metabolismo , Fósforo/metabolismo , Zea mays/metabolismo , Transporte Biológico , China , Produção Agrícola , Micorrizas/crescimento & desenvolvimento , Fósforo/análise , Solo/química , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...