Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.304
Filtrar
1.
Bone Joint J ; 104-B(1): 53-58, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34969277

RESUMO

AIMS: Fungal and mycobacterial periprosthetic joint infections (PJI) are rare events. Clinicians are wary of missing these diagnoses, often leading to the routine ordering of fungal and mycobacterial cultures on periprosthetic specimens. Our goal was to examine the utility of these cultures and explore a modern bacterial culture technique using bacterial blood culture bottles (BCBs) as an alternative. METHODS: We performed a retrospective review of patients diagnosed with hip or knee PJI between 1 January 2010 and 31 December 2019, at the Mayo Clinic in Rochester, Minnesota, USA. We included patients aged 18 years or older who had fungal, mycobacterial, or both cultures performed together with bacterial cultures. Cases with positive fungal or mycobacterial cultures were reviewed using the electronic medical record to classify the microbiological findings as representing true infection or not. RESULTS: There were 2,067 episodes of PJI diagnosed within the study period. A total of 3,629 fungal cultures and 2,923 mycobacterial cultures were performed, with at least one of these performed in 56% of episodes (n = 1,157). Test positivity rates of fungal and mycobacterial cultures were 5% (n = 179) and 1.2% (n = 34), respectively. After a comprehensive review, there were 40 true fungal and eight true mycobacterial PJIs. BCB were 90% sensitive in diagnosing true fungal PJI and 100% sensitive in detecting rapidly growing mycobacteria (RGM). Fungal stains were performed in 27 true fungal PJI but were only positive in four episodes (14.8% sensitivity). None of the mycobacterial stains was positive. CONCLUSION: Routine fungal and mycobacterial stains and cultures should not be performed as they have little clinical utility in the diagnosis of PJI and are associated with significant costs. Candida species and RGM are readily recovered using BCB. More research is needed to predict rare non-Candida fungal and slowly growing mycobacterial PJI that warrant specialized cultures. Cite this article: Bone Joint J 2022;104-B(1):53-58.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Infecções por Mycobacterium/microbiologia , Micoses/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
2.
Small Methods ; 5(11): e2100713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34927979

RESUMO

The past year has established the link between the COVID-19 pandemic and the global spread of severe fungal infections; thus, underscoring the critical need for rapid and realizable fungal disease diagnostics. While in recent years, health authorities, such as the Centers for Disease Control and Prevention, have reported the alarming emergence and spread of drug-resistant pathogenic fungi and warned against the devastating consequences, progress in the diagnosis and treatment of fungal infections is limited. Early diagnosis and patient-tailored therapy are established to be key in reducing morbidity and mortality associated with fungal (and cofungal) infections. As such, antifungal susceptibility testing (AFST) is crucial in revealing susceptibility or resistance of these pathogens and initiating correct antifungal therapy. Today, gold standard AFST methods require several days for completion, and thus this much delayed time for answer limits their clinical application. This review focuses on the advancements made in developing novel AFST techniques and discusses their implications in the context of the practiced clinical workflow. The aim of this work is to highlight the advantages and drawbacks of currently available methods and identify the main gaps hindering their progress toward clinical application.


Assuntos
Antifúngicos/uso terapêutico , COVID-19/epidemiologia , Micoses/diagnóstico , Micoses/tratamento farmacológico , COVID-19/virologia , Testes Diagnósticos de Rotina , Farmacorresistência Fúngica , Humanos , Testes de Sensibilidade Microbiana , Micoses/epidemiologia , Micoses/microbiologia , Pandemias , SARS-CoV-2/isolamento & purificação
3.
PLoS One ; 16(10): e0258801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34695141

RESUMO

The epidemiology of Nosema spp. in honey bees, Apis mellifera, may be affected by winter conditions as cold temperatures and differing wintering methods (indoor and outdoor) provide varying levels of temperature stress and defecation flight opportunities. Across the Canadian Prairies, including Alberta, the length and severity of winter vary among geographic locations. This study investigates the seasonal pattern of Nosema abundance in two Alberta locations using indoor and outdoor wintering methods and its impact on bee population, survival, and commercial viability. This study found that N. ceranae had a distinct seasonal pattern in Alberta, with high spore abundance in spring, declining to low levels in the summer and fall. The results showed that fall Nosema monitoring might not be the best indicator of treatment needs or future colony health outcomes. There was no clear pattern for differences in N. ceranae abundance by location or wintering method. However, wintering method affected survival with colonies wintered indoors having lower mortality and more rapid spring population build-up than outdoor-wintered colonies. The results suggest that the existing Nosema threshold should be reinvestigated with wintering method in mind to provide more favorable outcomes for beekeepers. Average Nosema abundance in the spring was a significant predictor of end-of-study winter colony mortality, highlighting the importance of spring Nosema monitoring and treatments.


Assuntos
Criação de Abelhas/métodos , Abelhas/crescimento & desenvolvimento , Micoses/epidemiologia , Nosema/patogenicidade , Estações do Ano , Temperatura , Alberta/epidemiologia , Animais , Abelhas/microbiologia , Micoses/microbiologia , Nosema/isolamento & purificação
4.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576268

RESUMO

Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.


Assuntos
Antifúngicos/farmacologia , Micoses/microbiologia , Nanomedicina , Aspergilose/tratamento farmacológico , Aspergillus/efeitos dos fármacos , Azóis/farmacologia , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Criptococose/tratamento farmacológico , Cryptococcus/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Lipídeos/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Polienos , Polímeros/química , Dióxido de Silício/química , Solubilidade
5.
Ann Clin Microbiol Antimicrob ; 20(1): 69, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563202

RESUMO

BACKGROUND: Coronavirus SARS-CoV-2 causes COVID-19 illness which can progress to severe pneumonia. Empiric antibacterials are often employed though frequency of bacterial coinfection superinfection is debated and concerns raised about selection of bacterial antimicrobial resistance. We evaluated sputum bacterial and fungal growth from 165 intubated COVID-19 pneumonia patients. Objectives were to determine frequency of culture positivity, risk factors for and outcomes of positive cultures, and timing of antimicrobial resistance development. METHODS: Retrospective reviews were conducted of COVID-19 pneumonia patients requiring intubation admitted to a 1058-bed four community hospital system on the east coast United States, March 1 to May 1, 2020. Length of stay (LOS) was expressed as mean (standard deviation); 95% confidence interval (95% CI) was computed for overall mortality rate using the exact binomial method, and overall mortality was compared across each level of a potential risk factor using a Chi-Square Test of Independence. All tests were two-sided, and significance level was set to 0.05. RESULTS: Average patient age was 68.7 years and LOS 19.9 days. Eighty-three patients (50.3% of total) originated from home, 10 from group homes (6.1% of total), and 72 from nursing facilities (43.6% of total). Mortality was 62.4%, highest for nursing home residents (80.6%). Findings from 253 sputum cultures overall did not suggest acute bacterial or fungal infection in 73 (45%) of 165 individuals sampled within 24 h of intubation. Cultures ≥ 1 week following intubation did grow potential pathogens in 72 (64.9%) of 111 cases with 70.8% consistent with late pneumonia and 29.2% suggesting colonization. Twelve (10.8% of total) of these late post-intubation cultures revealed worsened antimicrobial resistance predominantly in Pseudomonas, Enterobacter, or Staphylococcus aureus. CONCLUSIONS: In severe COVID-19 pneumonia, a radiographic ground glass interstitial pattern and lack of purulent sputum prior to/around the time of intubation correlated with no culture growth or recovery of normal oral flora ± yeast. Discontinuation of empiric antibacterials should be considered in these patients aided by other clinical findings, history of prior antimicrobials, laboratory testing, and overall clinical course. Continuing longterm hospitalisation and antibiotics are associated with sputum cultures reflective of hospital-acquired microbes and increasing antimicrobial resistance. TRIAL REGISTRATION: Not applicable as this was a retrospective chart review study without interventional arm.


Assuntos
Bactérias/efeitos dos fármacos , Infecções Bacterianas/complicações , COVID-19/terapia , Infecção Hospitalar/complicações , Fungos/efeitos dos fármacos , Micoses/complicações , Pneumonia/terapia , Escarro/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos , Anti-Infecciosos/farmacologia , Bactérias/genética , Bactérias/isolamento & purificação , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , COVID-19/complicações , COVID-19/mortalidade , COVID-19/virologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana , Farmacorresistência Fúngica Múltipla , Feminino , Fungos/genética , Fungos/isolamento & purificação , Hospitalização , Humanos , Intubação , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Micoses/microbiologia , Pneumonia/complicações , Pneumonia/mortalidade , Pneumonia/virologia , Estudos Retrospectivos , SARS-CoV-2/fisiologia
6.
J Med Microbiol ; 70(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34491156

RESUMO

Introduction. The increase of invasive fungal infections (IFIs) and associated treatment failure in populations at risk is driving us to look for new treatments.Hypothesis. The CIN-102 compound, derived from cinnamon essential oil, could be a new antifungal class with an activity, in particular, on strains resistant to current antifungals but also on biofilms, a factor of virulence and resistance of fungi.Aim. The aim of this study is to show the activity of CIN-102 on various strains resistant to current antifungals, on the biofilm and to determine the possibility of resistance induced with this compound.Methodology. We studied the MIC of CIN-102 and of current antifungals (voriconazole and amphotericin B) using CLSI techniques against eight different strains of three genera of filamentous fungi involved in IFIs and having resistance phenotypes to current antifungals. We also determined their effects on biofilm formation, and the induced resistance by voriconazole (VRC) and CIN-102.Results. MIC values determined for CIN-102 were between 62.5 and 250 µg ml-1. We demonstrated the antifungal effect of CIN-102 on biofilm, and more particularly on its formation, with 100 % inhibition achieved for most of the strains. CIN-102 at a sub-inhibitory concentration in the medium did not induce resistance in our strains, even after 30 generations.Conclusions. In this study we show that CIN-102 is effective against resistant filamentous fungi and against biofilm formation. In addition, our strains did not acquire a resistance phenotype against CIN-102 over time, unlike with VRC. CIN-102 is therefore an interesting candidate for the treatment of IFIs, including in cases of therapeutic failure linked to resistance, although further studies on its efficacy, safety and mechanism of action are needed.


Assuntos
Antifúngicos/farmacologia , Benzoatos/farmacologia , Biofilmes/efeitos dos fármacos , Cinamatos/farmacologia , Fungos/efeitos dos fármacos , Micoses , Terpenos/farmacologia , Anfotericina B/farmacologia , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Voriconazol/farmacologia
7.
PLoS One ; 16(9): e0257008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34478465

RESUMO

In this study, the feasibility of classifying soybean frogeye leaf spot (FLS) is investigated. Leaf images and hyperspectral reflectance data of healthy and FLS diseased soybean leaves were acquired. First, image processing was used to classify FLS to create a reference for subsequent analysis of hyperspectral data. Then, dimensionality reduction methods of hyperspectral data were used to obtain the relevant information pertaining to FLS. Three single methods, namely spectral index (SI), principal component analysis (PCA), and competitive adaptive reweighted sampling (CARS), along with a PCA and SI combined method, were included. PCA was used to select the effective principal components (PCs), and evaluate SIs. Characteristic wavelengths (CWs) were selected using CARS. Finally, the full wavelengths, CWs, effective PCs, SIs, and significant SIs were divided into 14 datasets (DS1-DS14) and used as inputs to build the classification models. Models' performances were evaluated based on the classification accuracy for both the overall and individual classes. Our results suggest that the FLS comprised of five classes based on the proportion of total leaf surface covered with FLS. In the PCA and SI combination model, 5 PCs and 20 SIs with higher weight coefficient of each PC were extracted. For hyperspectral data, 20 CWs and 26 effective PCs were also selected. Out of the 14 datasets, the model input variables provided by five datasets (DS2, DS3, DS4, DS10, and DS11) were more superior than those of full wavelengths (DS1) both in support vector machine (SVM) and least squares support vector machine (LS-SVM) classifiers. The models developed using these five datasets achieved overall accuracies ranging from 91.8% to 94.5% in SVM, and 94.5% to 97.3% in LS-SVM. In addition, they improved the classification accuracies by 0.9% to 3.6% (SVM) and 0.9% to 3.7% (LS-SVM).


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Micoses/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta , Soja/ultraestrutura , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cercospora , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Soja/microbiologia , Máquina de Vetores de Suporte
9.
PLoS Pathog ; 17(8): e1009846, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432851

RESUMO

The fruit fly Drosophila melanogaster combats microbial infection by producing a battery of effector peptides that are secreted into the haemolymph. Technical difficulties prevented the investigation of these short effector genes until the recent advent of the CRISPR/CAS era. As a consequence, many putative immune effectors remain to be formally described, and exactly how each of these effectors contribute to survival is not well characterized. Here we describe a novel Drosophila antifungal peptide gene that we name Baramicin A. We show that BaraA encodes a precursor protein cleaved into multiple peptides via furin cleavage sites. BaraA is strongly immune-induced in the fat body downstream of the Toll pathway, but also exhibits expression in other tissues. Importantly, we show that flies lacking BaraA are viable but susceptible to the entomopathogenic fungus Beauveria bassiana. Consistent with BaraA being directly antimicrobial, overexpression of BaraA promotes resistance to fungi and the IM10-like peptides produced by BaraA synergistically inhibit growth of fungi in vitro when combined with a membrane-disrupting antifungal. Surprisingly, BaraA mutant males but not females display an erect wing phenotype upon infection. Here, we characterize a new antifungal immune effector downstream of Toll signalling, and show it is a key contributor to the Drosophila antimicrobial response.


Assuntos
Antifúngicos/farmacologia , Beauveria/efeitos dos fármacos , Proteínas de Drosophila/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Micoses/tratamento farmacológico , Peptídeos/farmacologia , Animais , Beauveria/crescimento & desenvolvimento , Beauveria/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Feminino , Masculino , Micoses/imunologia , Micoses/microbiologia
10.
J Breath Res ; 15(4)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34464944

RESUMO

The evidence that severe coronavirus disease 2019 (COVID-19) is a risk factor for development of mycotic respiratory infection with an increased mortality is rising. Immunosuppressed are among the most susceptible patients andAspergillusspecies is the most feared superinfection. In this study we evaluated mycotic isolation prevalence on bronchoalveolar lavage (BAL) of patients who underwent bronchoscopy in search of severe acute respiratory coronavirus 2 (SARS-CoV-2) RNA. Moreover, we described the clinical characteristics and main outcomes of these patients. We included 118 patients, 35.9% of them were immunosuppressed for different reasons: in 23.7% we isolated SARS-CoV-2 RNA, in 33.1% we identified at least one mycotic agent and both in 15.4%. On BAL we observed in three casesAspergillusspp, in six casesPneumocystisand in 32Candidaspp. The prevalence of significant mold infection was 29.3% and 70.7% of cases were false positive or clinically irrelevant infections. In-hospital mortality of patients with fungal infection was 15.3%. The most frequent computed tomography (CT) pattern, evaluated with the Radiological Society of North America consensus statement, among patients with a mycotic pulmonary infection was the atypical one (p< 0.0001). Mycotic isolation on BAL may be interpreted as an innocent bystander, but its identification could influence the prognosis of patients, especially in those who need invasive investigations during the COVID-19 pandemic; BAL plays a fundamental role in resolving clinical complex cases, especially in immunosuppressed patients independently from radiological features, without limiting its role in ruling out SARS-CoV-2 infection.


Assuntos
Lavagem Broncoalveolar , COVID-19/diagnóstico , COVID-19/epidemiologia , Micoses/diagnóstico , Micoses/epidemiologia , Nasofaringe/microbiologia , SARS-CoV-2 , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Feminino , Humanos , Hospedeiro Imunocomprometido , Masculino , Pessoa de Meia-Idade , Micoses/microbiologia , Nasofaringe/virologia , Pandemias , Prevalência , Prognóstico , RNA Viral/análise , RNA Viral/genética , RNA Viral/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
11.
Sci Rep ; 11(1): 17383, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462470

RESUMO

Amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused the greatest known loss of biodiversity due to an infectious disease. We used Bd infection data from quantitative real-time PCR (qPCR) assays of amphibian skin swabs collected across Chile during 2008-2018 to model Bd occurrence with the aim to determine bioclimatic and anthropogenic variables associated with Bd infection. Also, we used Bd presence/absence records to identify geographical Bd high-risk areas and compare Bd prevalence and infection loads between amphibian families, ecoregions, and host ecology. Data comprised 4155 Bd-specific qPCR assays from 162 locations across a latitudinal gradient of 3700 km (18º to 51ºS). Results showed a significant clustering of Bd associated with urban centres and anthropogenically highly disturbed ecosystems in central-south Chile. Both Bd prevalence and Bd infection loads were higher in aquatic than terrestrial amphibian species. Our model indicated positive associations of Bd prevalence with altitude, temperature, precipitation and human-modified landscapes. Also, we found that macroscale drivers, such as land use change and climate, shape the occurrence of Bd at the landscape level. Our study provides with new evidence that can improve the effectiveness of strategies to mitigate biodiversity loss due to amphibian chytridiomycosis.


Assuntos
Anfíbios/microbiologia , Batrachochytrium/genética , Altitude , Animais , Batrachochytrium/isolamento & purificação , Chile , DNA Fúngico/análise , DNA Fúngico/metabolismo , Ecossistema , Modelos Lineares , Micoses/epidemiologia , Micoses/microbiologia , Micoses/patologia , Micoses/veterinária , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Análise Espacial , Temperatura
12.
Molecules ; 26(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34443521

RESUMO

One of the primary reasons for the search for new antimicrobial agents is the increasing and spreading resistance of microorganisms to previously used drugs. This is particularly important in the case of rapidly progressing infections that require the rapid administration of an appropriately selected antibiotic. However, along with the administration of antibiotics, complications in the disease-weakened body may arise in the form of systemic mycoses, viral infections, and protozoan infections. Therefore, there is an increasing interest among researchers focusing on the use of naturally occurring terpenic compounds in stand-alone or combined therapies with antibiotics. In this publication, the aim of our work is to present the results of a literature review on the antimicrobial activity of eucalyptol.


Assuntos
Anti-Infecciosos/uso terapêutico , Farmacorresistência Bacteriana/genética , Eucaliptol/uso terapêutico , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Anti-Infecciosos/química , Eucaliptol/química , Humanos , Micoses/tratamento farmacológico , Micoses/microbiologia
13.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205910

RESUMO

To overcome the limitations of the Limulus amebocyte lysate (LAL) assay method for the diagnosis of invasive fungal infection, we applied a reaction system combining recombinant ß-glucan binding proteins and a scanning single-molecule counting (SSMC) method. A novel (1→3)-ß-D-glucan recognition protein (S-BGRP) and a (1→6)-ß-glucanase mutant protein were prepared and tested for the binding of (1→6)-branched (1→3)-ß-D-glucan from fungi. S-BGRP and (1→6)-ß-glucanase mutant proteins reacted with ß-glucan from Candida and Aspergillus spp. Although LAL cross-reacted with plant-derived ß-glucans, the new detection system using the SSMC method showed low sensitivity to plant (1→3)-ß-D-glucan, which significantly improved the appearance of false positives, a recognized problem with the LAL method. Measurement of ß-glucan levels by the SSMC method using recombinant ß-glucan-binding proteins may be useful for the diagnosis of fungal infections. This study shows that this detection system could be a new alternative diagnostic method to the LAL method.


Assuntos
Técnicas Biossensoriais , Endotoxinas/isolamento & purificação , Micoses/diagnóstico , beta-Glucanas/isolamento & purificação , Aspergillus/química , Aspergillus/isolamento & purificação , Aspergillus/patogenicidade , Candida/química , Candida/isolamento & purificação , Candida/patogenicidade , Endotoxinas/química , Humanos , Micoses/microbiologia , Imagem Individual de Molécula , beta-Glucanas/química
14.
Can J Microbiol ; 67(7): 497-505, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34232751

RESUMO

To colonize and infect the host, arthroconidial yeasts must avoid being killed by the host's defenses. The formation of biofilms on implanted devices allows fungi to avoid host responses and to disseminate into the host. To better study the mechanisms of infection by arthroconidial yeasts, adherence and biofilm formation were assayed using patient samples collected over 10 years. In clinical samples, adherence varies within species, but the relative adherence is constant for those samples isolated from the same infection site. Herein we document, for the first time, in-vitro biofilm formation by Trichosporon dohaense, T. ovoides, T. japonicum, T. coremiiforme, Cutaneotrichosporon mucoides, Cutaneotrichosporon cutaneum, Galactomyces candidus, and Magnusiomyces capitatus on clinically relevant catheter material. Analysis of biofilm biomass assays indicated that biofilm mass changes less than 2-fold, regardless of the species. Our results support the hypothesis that most pathogenic fungi can form biofilms, and that biofilm formation is a source of systemic infections.


Assuntos
Biofilmes , Candida/fisiologia , Micoses/microbiologia , Leveduras/fisiologia , Candida/classificação , Candida/genética , Candida/isolamento & purificação , Humanos , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
16.
Front Immunol ; 12: 685546, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234782

RESUMO

Talaromyces marneffei (TM) infection is rarely seen in clinical practice, and its pathogenesis may be related to deficiency in antifungal immune function. Human caspase recruitment domain-containing protein 9 (CARD9) is a key molecule in fungal immune surveillance. There have been no previous case reports of TM infection in individuals with CARD9 gene mutations. Herein, we report the case of a 7-month-old Chinese boy who was admitted to our hospital with recurring cough and fever with a papular rash. A blood culture produced TM growth, which was confirmed by metagenomic next-generation sequencing. One of the patient's sisters had died of TM septicaemia at 9 months of age. Whole exome sequencing revealed that the patient had a complex heterozygous CARD9 gene mutation with a c.1118G>C p.R373P variation in exon 8 and a c.610C>T p.R204C variation in exon 4. Based on the culture results, voriconazole antifungal therapy was administered. On the third day of antifungal administration, his temperature dropped to within normal range, the rash gradually subsided, and the enlargement of his lymph nodes, liver, and spleen improved. Two months after discharge, he returned to the hospital for a follow-up examination. His general condition was good, and no specific abnormalities were detected. Oral voriconazole treatment was continued. Unexplained TM infection in HIV-negative individuals warrants investigation for immune deficiencies.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Hepatopatias/diagnóstico , Micoses/diagnóstico , Talaromyces/isolamento & purificação , Antifúngicos/uso terapêutico , China , Soronegatividade para HIV , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Hepatopatias/tratamento farmacológico , Hepatopatias/microbiologia , Masculino , Mutação , Micoses/tratamento farmacológico , Micoses/microbiologia , Talaromyces/genética , Sequenciamento Completo do Exoma
17.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281276

RESUMO

Extracellular vesicles (EVs) are membranous, rounded vesicles released by prokaryotic and eukaryotic cells in their normal and pathophysiological states. These vesicles form a network of intercellular communication as they can transfer cell- and function-specific information (lipids, proteins and nucleic acids) to different cells and thus alter their function. Fungi are not an exception; they also release EVs to the extracellular space. The vesicles can also be retained in the periplasm as periplasmic vesicles (PVs) and the cell wall. Such fungal vesicles play various specific roles in the lives of these organisms. They are involved in creating wall architecture and maintaining its integrity, supporting cell isolation and defence against the environment. In the case of pathogenic strains, they might take part in the interactions with the host and affect the infection outcomes. The economic importance of fungi in manufacturing high-quality nutritional and pharmaceutical products and in remediation is considerable. The analysis of fungal EVs opens new horizons for diagnosing fungal infections and developing vaccines against mycoses and novel applications of nanotherapy and sensors in industrial processes.


Assuntos
Vesículas Extracelulares/fisiologia , Fungos/fisiologia , Transporte Biológico Ativo , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/patogenicidade , Genes Fúngicos , Interações entre Hospedeiro e Microrganismos/imunologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Modelos Biológicos , Micoses/diagnóstico , Micoses/microbiologia , RNA Fúngico/genética , RNA Fúngico/metabolismo
18.
Jt Dis Relat Surg ; 32(2): 556-559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34145840

RESUMO

Osteomyelitis of the phalanx caused by Candida species are rare. A 49-year-old female patient was admitted to an external center with a splinter injury of the third phalanx of the middle finger of her left hand about 45 days ago. She was referred to our clinic with persistent pain and discharge, despite four-week antibiotherapy. Debridement and curettage were performed and partial excision of the distal phalanx at an appropriate level was done. Her complaints gradually resolved postoperatively with prescribed antibiotics for the pathogen identified as Candida lusitaniae based on the intraoperative cultures. At her three-month follow-up visit, treatment yielded near-excellent results. To the best of our knowledge, this is the first case of osteomyelitis of the distal phalanx caused by Candida lusitaniae in the literature, highlighting the importance of definitive diagnosis and pathogen-specific treatment, rather than empirical treatment, to achieve favorable results with cure.


Assuntos
Falanges dos Dedos da Mão/fisiopatologia , Micoses/diagnóstico , Osteomielite/diagnóstico , Saccharomycetales/isolamento & purificação , Candidíase/diagnóstico , Candidíase/diagnóstico por imagem , Candidíase/microbiologia , Feminino , Humanos , Pessoa de Meia-Idade , Micoses/diagnóstico por imagem , Micoses/microbiologia , Osteomielite/diagnóstico por imagem , Osteomielite/microbiologia , Turquia
19.
J Antibiot (Tokyo) ; 74(8): 519-527, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34188199

RESUMO

Antifungal surveillance is an important tool to monitor the prevalence of uncommon fungal species and increasing antifungal resistance throughout the world, but data comparing results across several different Asian countries are scarce. In this study, 372 invasive molds collected in the Asia-Western Pacific region in 2011-2019 were susceptibility tested for mold-active triazoles (isavuconazole, posaconazole, voriconazole, and itraconazole). The collection includes 318 Aspergillus spp. isolates and 53 non-Aspergillus molds. The MIC values using CLSI methods for isavuconazole versus Aspergillus fumigatus ranged from 0.25 to 2 mg l-1. Isavuconazole, itraconazole, posaconazole, and voriconazole acted similarly against A. fumigatus. The mold-active triazoles exhibited a wildtype phenotype to most of the Aspergillus spp. isolates tested (>94%), but poor activity against Fusarium solani species complex and Lomentospora prolificans. Voriconazole was most active against the Scedosporium spp. and posaconazole was most active against the Mucorales. In summary, isavuconazole displayed excellent activity against most species of Aspergillus and was comparable to other mold-active triazoles against non-Aspergillus molds.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Infecções Oportunistas/microbiologia , Ásia , Aspergillus/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Farmacorresistência Fúngica , Humanos , Testes de Sensibilidade Microbiana , Micoses/microbiologia , Ilhas do Pacífico , Vigilância em Saúde Pública , Triazóis/farmacologia
20.
Front Immunol ; 12: 688659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149729

RESUMO

Mast cells (MCs) have been considered as the core effector cells of allergic diseases. However, there are evidence suggesting that MCs are involved in the mechanisms of fungal infection. MCs are mostly located in the border between host and environment and thus may have easy contact with the external environmental pathogens. These cells express receptors which can recognize pathogen-associated molecular patterns such as Toll-like receptors (TLR2/4) and C-type Lectins receptors (Dectin-1/2). Currently, more and more data indicate that MCs can be interacted with some fungi (Candida albicans, Aspergillus fumigatus and Sporothrix schenckii). It is demonstrated that MCs can enhance immunity through triggered degranulation, secretion of cytokines and chemokines, neutrophil recruitment, or provision of extracellular DNA traps in response to the stimulation by fungi. In contrast, the involvement of MCs in some immune responses may lead to more severe symptoms, such as intestinal barrier function loss, development of allergic bronchial pulmonary aspergillosis and increased area of inflammatory in S. schenckii infection. This suggests that MCs and their relevant signaling pathways are potential treatment regimens to prevent the clinically unwanted consequences. However, it is not yet possible to make definitive statements about the role of MCs during fungal infection and/or pathomechanisms of fungal diseases. In our article, we aim to review the function of MCs in fungal infections from molecular mechanism to signaling pathways, and illustrate the role of MCs in some common host-fungi interactions.


Assuntos
Fungos/patogenicidade , Mastócitos/microbiologia , Micoses/microbiologia , Animais , Fungos/imunologia , Interações Hospedeiro-Patógeno , Humanos , Mastócitos/imunologia , Mastócitos/metabolismo , Micoses/imunologia , Micoses/metabolismo , Padrões Moleculares Associados a Patógenos/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...