Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.354
Filtrar
1.
Int J Mol Med ; 48(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34414454

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) is the virus that causes coronavirus disease 2019. Angiotensin­converting enzyme 2 (ACE2) is the SARS­CoV binding site and is ubiquitously expressed in endothelial cells of several organs, with the highest levels in the cardiovascular system, kidney and lungs. A disintegrin and metalloproteinase 17 (ADAM17) is involved in ectodomain shedding of ACE2. In the present study, reverse­transcription­quantitative PCR, transfection, TUNNEL assay, dual­luciferase activity assay and western blotting were conducted to investigate the effects of microRNA (miR)­28­3p on ADAM17­dependent shedding of the ACE2 ectodomain following treatment with the spike protein (S­protein) of SARS­CoV­2. It was found that miR­28­3p was significantly downregulated in 293T cells treated with 100 ng/ml of S­protein for 24 h at 37˚C, which led to upregulation of ADAM17. In addition, the expression of ADAM17 and miR­28­3p were negatively correlated based on Pearson's correlation test in 293T cells treated with S­protein for 24 h. Overexpression of miR­28­3p and inhibition of ADAM17 regulated 293T cell viability, apoptosis and ACE2 ectodomain shedding. It was also demonstrated that ADAM17 was the target gene of miR­28­3p and that miR­28­3p negatively regulated ADAM17 expression. Notably, the inhibition of ADAM17 expression blocked the effects of miR­28­3p inhibitor on proliferation, apoptosis and ACE2 ectodomain shedding in 293T cells treated with S­protein. The findings of the present study suggested that miR­28­3p inhibits ADAM17­dependent ACE2 ectodomain shedding in 293T cells treated with the S­protein of SARS­CoV­2, which suggested the potential therapeutic role of miR­28­3p mimic in the prevention and treatment of patients with SARS­CoV­2.


Assuntos
Proteína ADAM17/metabolismo , Enzima de Conversão de Angiotensina 2/química , COVID-19/imunologia , Perfilação da Expressão Gênica , MicroRNAs/fisiologia , Apoptose , COVID-19/virologia , Proliferação de Células , Sobrevivência Celular , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , MicroRNAs/antagonistas & inibidores , Domínios Proteicos
2.
Mol Med Rep ; 24(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34328196

RESUMO

Inflammation and oxidative stress have indispensable roles in the development of acute lung injury (ALI). MicroRNA (miRNA/miR)­351­5p was initially identified as a myogenesis­associated miRNA; however, its role in lipopolysaccharide (LPS)­induced ALI remains unclear. The aim of the present study was to investigate the role and potential mechanisms of miR­351­5p in ALI. ALI was induced through a single intratracheal injection of LPS for 12 h, and miR­351­5p agomir, antagomir or their corresponding negative controls were injected into the tail vein before LPS stimulation. Compound C, 2',5'­dideoxyadenosine and H89 were used to inhibit AMP­activated protein kinase (AMPK), adenylate cyclase and protein kinase A (PKA), respectively. miR­351­5p levels in the lungs were significantly increased in response to LPS injection. miR­351­5p antagomir alleviated, while miR­351­5p agomir aggravated LPS­induced oxidative stress and inflammation in the lungs. The present results also demonstrated that miR­351­5p antagomir attenuated LPS­induced ALI via activating AMPK, and that the cAMP/PKA axis was required for the activation of AMPK by the miR­351­5p antagomir. In conclusion, the present study indicated that miR­351­5p aggravated LPS­induced ALI via inhibiting AMPK, suggesting that targeting miR­351­5p may help to develop efficient therapeutic approaches for treating ALI.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Inflamação/genética , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/genética
3.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299149

RESUMO

In the last decades, a kind of small non-coding RNA molecules, called as microRNAs, has been applied as negative regulators in various types of cancer treatment through down-regulation of their targets. More recent studies exert that microRNAs play a critical role in the EMT process of cancer, promoting or inhibiting EMT progression. Interestingly, accumulating evidence suggests that pure compounds from natural plants could modulate deregulated microRNAs to inhibit EMT, resulting in the inhibition of cancer development. This small essay is on the purpose of demonstrating the significance and function of microRNAs in the EMT process as oncogenes and tumor suppressor genes according to studies mainly conducted in the last four years, providing evidence of efficient target therapy. The review also summarizes the drug candidates with the ability to restrain EMT in cancer through microRNA regulation.


Assuntos
Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Animais , Humanos , MicroRNAs/genética , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais
4.
Mol Cell Biochem ; 476(10): 3745-3756, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34100174

RESUMO

Sepsis is one of the leading causes of morbidity and mortality and a major cause of acute lung injury (ALI). carried by exosomes play a role in a variety of diseases. However,there are not many studies of exosomal miRNAs in sepsis and sepsis lung injury.miR-1298-5p and suppressor of cytokine signaling 6 (SOCS6) were silenced or overexpressed in human bronchial epithelial cells (BEAS-2B). PKH-67 Dye was used to trace exosome endocytosis. Cell permeability was evaluated by measuring trans-epithelial electrical resistance (TEER) and FITC dextran flux. ELISA kits were used for cytokine detection. Quantitative RT-PCR and western blots were used to evaluate gene expression. miR-1298-5p was elevated in exosomes from patients with sepsis lung injury (Sepsis_exo). Treatment of BEAS-2B cells using Sepsis_exo significantly inhibited cell proliferation, and induced cell permeability and inflammatory response. miR-1298-5p directly targeted SOCS6. Overexpressing SOCS6 reversed miR-1298-5p-induced cell permeability and inflammatory response. Inhibition of STAT3 blocked SOCS6-silencing caused significant increase of cell permeability and inflammation. Exosomes isolated from patients of sepsis lung injury increased cell permeability and inflammatory response in BEAS-2B cells through exosomal miR-1298-5p which targeted SOCS6 via STAT3 pathway. The findings highlight the importance of miR-1298-5p/SOCS6/STAT3 axis in sepsis lung injury and provide new insights into therapeutic strategies for sepsis lung injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , MicroRNAs/metabolismo , Sepse/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Lesão Pulmonar Aguda/genética , Linhagem Celular , Exocitose/genética , Exossomos/metabolismo , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Sepse/genética , Proteínas Supressoras da Sinalização de Citocina/genética
5.
Nucleic Acids Res ; 49(11): 6456-6473, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34107032

RESUMO

RNA-protein interactions are central to all gene expression processes and contribute to a variety of human diseases. Therapeutic approaches targeting RNA-protein interactions have shown promising effects on some diseases that are previously regarded as 'incurable'. Here, we developed a fluorescent on-bead screening platform, RNA Pull-Down COnfocal NAnoscanning (RP-CONA), to identify RNA-protein interaction modulators in eukaryotic cell extracts. Using RP-CONA, we identified small molecules that disrupt the interaction between HuR, an inhibitor of brain-enriched miR-7 biogenesis, and the conserved terminal loop of pri-miR-7-1. Importantly, miR-7's primary target is an mRNA of α-synuclein, which contributes to the aetiology of Parkinson's disease. Our method identified a natural product quercetin as a molecule able to upregulate cellular miR-7 levels and downregulate the expression of α-synuclein. This opens up new therapeutic avenues towards treatment of Parkinson's disease as well as provides a novel methodology to search for modulators of RNA-protein interaction.


Assuntos
Proteína Semelhante a ELAV 1/antagonistas & inibidores , MicroRNAs/antagonistas & inibidores , Quercetina/farmacologia , alfa-Sinucleína/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Proteína Semelhante a ELAV 1/metabolismo , Células HEK293 , Células HeLa , Humanos , MicroRNAs/metabolismo , Microscopia Confocal , RNA Mensageiro/metabolismo , alfa-Sinucleína/genética
6.
Life Sci ; 280: 119698, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111466

RESUMO

AIMS: The purpose of this study was to investigate the effects of miR-431-5p on hepatocyte apoptosis in AIH. MATERIALS AND METHODS: We used intraperitoneal injection of S100 to establish AIH mouse model and injected AAV into tail vein on day 14 of modeling to regulate miR-431-5p expression. The expression of ALT, AST, IgG and apoptosis-related proteins Bax, Bcl-2 and cleaved caspase 3 were measured in each group. Cellular experiments were performed using miR-431-5p mimics or inhibitors to transfect LPS-stimulated AML12 cells, and apoptosis was verified using Western blot and Hoechst 33342/PI Double Staining. The target of miR-431-5p, KLF15, was screened using databases and verified by the luciferase reporter assay. The relationship between KLF15 and p53 was verified by si-KLF15 and PFTß (a p53-specific inhibitor). KEY FINDINGS: Here, we observed that the increase in the level of miR-431-5p was accompanied by a decrease in the expression of Krüppel-like zinc finger transcription factor 15 (KLF15). In addition, the deletion of miR-431-5p significantly reduced hepatocyte apoptosis in AIH mice induced by liver S100 and apoptosis of AML12 cells induced by LPS stimulation, accompanied by decreased expression of Bax and cleaved caspase-3 as well as increased expression of Bcl-2. Moreover, KLF15 was the direct and functional target of miR-431-5p. Furthermore, miR-431-5p negatively regulated the expression of KLF15, and KLF15 deletion partially abolished the inhibitory effect of miR-431-5p deletion on apoptosis by activating p53 signaling. SIGNIFICANCE: In summary, miR-431-5p may be a potential therapeutic target for AIH.


Assuntos
Apoptose , Hepatite Autoimune/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/patologia , MicroRNAs/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Hepatite Autoimune/etiologia , Hepatite Autoimune/patologia , Fatores de Transcrição Kruppel-Like/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Proteínas S100/efeitos adversos , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Regulação para Cima
7.
Cell Prolif ; 54(7): e13074, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34101281

RESUMO

OBJECTIVES: Pulp regeneration brings big challenges for clinicians, and vascularization is considered as its determining factor. We previously accomplished pulp regeneration with autologous stem cells from deciduous teeth (SHED) aggregates implantation in teenager patients, however, the underlying mechanism needs to be clarified for regenerating pulp in adults. Serving as an important effector of mesenchymal stem cells (MSCs), exosomes have been reported to promote angiogenesis and tissue regeneration effectively. Here, we aimed to investigate the role of SHED aggregate-derived exosomes (SA-Exo) in the angiogenesis of pulp regeneration. MATERIALS AND METHODS: We extracted exosomes from SHED aggregates and utilized them in the pulp regeneration animal model. The pro-angiogenetic effects of SA-Exo on SHED and human umbilical vein endothelial cells (HUVECs) were evaluated. The related mechanisms were further investigated. RESULTS: We firstly found that SA-Exo significantly improved pulp tissue regeneration and angiogenesis in vivo. Next, we found that SA-Exo promoted SHED endothelial differentiation and enhanced the angiogenic ability of HUVECs, as indicated by the in vitro tube formation assay. Mechanistically, miR-26a, which is enriched in SA-Exo, improved angiogenesis both in SHED and HUVECs via regulating TGF-ß/SMAD2/3 signalling. CONCLUSIONS: In summary, these data reveal that SA-Exo shuttled miR-26a promotes angiogenesis via TGF-ß/SMAD2/3 signalling contributing to SHED aggregate-based pulp tissue regeneration. These novel insights into SA-Exo may facilitate the development of new strategies for pulp regeneration.


Assuntos
Polpa Dentária/fisiologia , Exossomos/metabolismo , MicroRNAs/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Compostos de Anilina/farmacologia , Antagomirs/metabolismo , Compostos de Benzilideno/farmacologia , Diferenciação Celular/efeitos dos fármacos , Exossomos/transplante , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Dente Decíduo/citologia , Fator de Crescimento Transformador beta/metabolismo
8.
Cell Prolif ; 54(8): e13089, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34180104

RESUMO

OBJECTIVE: Thymopentin (5TP) significantly improved typical murine premature ovarian failure (POF) symptoms induced by a high-fat and high-sugar (HFHS) diet. However, its effect and mechanism remain unclear. MATERIALS AND METHODS: RNA-Seq was used to detect the differentially expressed genes among each group. HFHS-induced POF mouse model was generated and injected with siRNA using Poly (lactic-co-glycolic acid) (PLGA) as a carrier. RESULTS: RNA-Seq suggested that 5TP promoted the expression of Yin Yang 2 (YY2) in mouse ovarian granulosa cell (mOGC) of HFHS-POF mice. Luciferase reporter assay indicated that 5TP promoted the binding of YY2 to the specific sequence C(C/T)AT(G/C)(G/T) on the Lin28A promoter and promoted Lin28A transcription and expression. We continuously injected PLGA-cross-linked siRNA nanoparticles targeting YY2 into HFHS-POF mice (siYY2@PLGA), which significantly reduced the therapeutic effect of 5TP. siYY2@PLGA injection also significantly attenuated the upregulation of Lin28a expression in mOGCs induced by 5TP and enhanced the expression of let-7 family microRNAs, thereby inhibiting the proliferation and division of mOGCs. qPCR results showed that there was a significant difference in the expression levels of exosome-derived Yy2 mRNAs between POF patients and normal women, and that there was a specific correlation between the expression level of exosome-derived Yy2 and the peripheral concentrations of the blood hormones pregnenolone, progesterone and oestradiol. CONCLUSIONS: Thymopentin promotes the transcriptional activation of Lin28A via stimulating transcription factor YY2 expression, inhibits the activity of let-7 family microRNAs and alleviates the ageing of ovarian granulosa cells, ultimately achieving a therapeutic effect on POF in mice.


Assuntos
MicroRNAs/metabolismo , Insuficiência Ovariana Primária/patologia , Proteínas de Ligação a RNA/metabolismo , Timopentina/farmacologia , Fatores de Transcrição/metabolismo , Animais , Biomarcadores/sangue , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Exossomos/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Insuficiência Ovariana Primária/diagnóstico , Insuficiência Ovariana Primária/tratamento farmacológico , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais/efeitos dos fármacos , Timopentina/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
9.
J Med Chem ; 64(11): 7110-7155, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34060847

RESUMO

RNAs are involved in an enormous range of cellular processes, including gene regulation, protein synthesis, and cell differentiation, and dysfunctional RNAs are associated with disorders such as cancers, neurodegenerative diseases, and viral infections. Thus, the identification of compounds with the ability to bind RNAs and modulate their functions is an exciting approach for developing next-generation therapies. Numerous RNA-binding agents have been reported over the past decade, but the design of synthetic molecules with selectivity for specific RNA sequences is still in its infancy. In this perspective, we highlight recent advances in targeting RNAs with synthetic molecules, and we discuss the potential value of this approach for the development of innovative therapeutic agents.


Assuntos
Descoberta de Drogas , RNA/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , RNA/antagonistas & inibidores , Precursores de RNA/metabolismo , Splicing de RNA/efeitos dos fármacos , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
10.
Theranostics ; 11(13): 6315-6333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995660

RESUMO

Objective: This study aimed to explore the role of circular RNAs (circRNAs) in M2 macrophage (M2M)-derived small extracellular vesicles (SEVs) in myocardial fibrosis development. Methods: The regulatory role of M2M-derived extracellular vesicles (EVs) was evaluated in a mouse model of acute myocardial infarction. Immunofluorescence, quantitative real-time PCR (RT-qPCR), nanoparticle tracking analysis, Western blot analysis and electron microscopy were used to identify macrophages, large extracellular vesicles (LEVs) and SEVs. The circRNA expression profiles of M0 macrophages (M0Ms) and M2Ms were determined by microarray analysis. Bioinformatic analysis, cell coculture and cell proliferation assays were performed to investigate the expression, function, and regulatory mechanisms of circUbe3a in vitro. qPCR, RNA immunoprecipitation (RIP), dual-luciferase reporter assays, RNA fluorescence in situ hybridization (RNA-FISH), Western blot analysis and a series of rescue experiments were used to verify the correlation among circUbe3a, miR-138-5p and RhoC. Results: CircUbe3a from M2M-derived SEVs triggered functional changes in cardiac fibroblasts (CFs). CircUbe3a was synthesized and loaded into SEVs during increased M2M infiltration after myocardial infarction. The fusion of the released SEVs with the plasma membrane likely caused the release of circUbe3a into the cytosol of CFs. Silencing or overexpressing circUbe3a altered CF proliferation, migration, and phenotypic transformation in vitro. We confirmed that circUbe3a plays a crucial role in enhancing functional changes in CFs by sponging miR-138-5p and then translationally repressing RhoC in vitro. In vivo, the addition of M2M-derived SEVs or overexpression of circUbe3a significantly exacerbated myocardial fibrosis after acute myocardial infarction, and these effects were partially abolished by circUbe3a-specific shRNA. Conclusions: Our findings suggest that M2M-derived circUbe3a-containing SEVs promote the proliferation, migration, and phenotypic transformation of CFs by directly targeting the miR-138-5p/RhoC axis, which may also exacerbate myocardial fibrosis after acute myocardial infarction.


Assuntos
Vesículas Extracelulares/química , Macrófagos/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , RNA Circular/genética , Animais , Divisão Celular , Movimento Celular , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Remodelação Ventricular , Proteína de Ligação a GTP rhoC/fisiologia
11.
Mol Cell Biochem ; 476(9): 3407-3421, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33973132

RESUMO

Long noncoding RNA (lncRNA)-DGCR5 has been recognized as a potential tumor progression regulator, while its expression and specific functions in preeclampsia (PE) development remain unveiled. The expressions of miR-454-3p, lncRNA-DiGeorge syndrome critical region gene 5 (DGCR5) and growth arrest and DNA damage protein-inducible 45A (GADD45A) in placental tissues from PE patients or HTR-8/SVneo cells were assessed by Western blot or qRT-PCR. Dual-luciferase reporter assay determined the binding relations between miR-454-3p and GADD45A and between miR-454-3p and lncRNA-DGCR5. The viability, apoptosis, migration, invasiveness and tube formation of HTR-8/SVneo cell were evaluated using cell counting kit (CCK)-8, Annexin-V/Propidium iodide staining, wound healing, transwell and tube formation assays, respectively. miR-454-3p was low-expressed in PE tissue, and upregulation of miR-454-3p increased viability and promoted migration, invasion and tube formation in HTR-8/SVneo cells while inhibiting apoptosis. Then, miR-454-3p was found to directly target GADD45A which was high-expressed in PE tissues. Overexpressing GADD45A decreased the viability and inhibited the migration, invasion and tube formation of HTR-8/SVneo cells while enhancing apoptosis, and it neutralized the effect of miR-454-3p upregulation. In turn, miR-454-3p upregulation reversed the effect of GADD45A overexpression. Meanwhile, miR-454-3p could also target lncRNA-DGCR5. Silencing lncRNA-DGCR5 increased miR-454-3p expression and cell viability and promoted migration, invasion and tube formation in HTR-8/SVneo cells while inhibiting apoptosis, and it counteracted the effect of miR-454-3p downregulation. As usual, miR-454-3p downregulation reversed the effect of lncRNA-DGCR5 silencing. To conclude, silencing lncRNA-DGCR5 increased viability, promoted migration, invasion and tube formation, and inhibited apoptosis in HTR-8/SVneo cells by rescuing the inhibition of GADD45A expression caused by miR-454-3p.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Regulação da Expressão Gênica , Inativação Gênica , MicroRNAs/antagonistas & inibidores , Pré-Eclâmpsia/patologia , RNA Longo não Codificante/antagonistas & inibidores , Trofoblastos/patologia , Apoptose , Biomarcadores/metabolismo , Estudos de Casos e Controles , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , MicroRNAs/genética , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Prognóstico , RNA Longo não Codificante/genética , Taxa de Sobrevida , Trofoblastos/metabolismo , Células Tumorais Cultivadas
12.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947152

RESUMO

Previously, we have revealed that the miR-130 family (miR-130b, miR-301a, and miR-301b) functions as an oncomiR in bladder cancer. The pharmacological inhibition of the miR-130 family molecules by the seed-targeting strategy with an 8-mer tiny locked nucleic acid (LNA) inhibits the growth, migration, and invasion of bladder cancer cells by repressing stress fiber formation. Here, we searched for a functionally advanced target sequence with LNA for the miR-130 family with low cytotoxicity and found LNA #9 (A(L)^i^i^A(L)^T(L)^T(L)^G(L)^5(L)^A(L)^5(L)^T(L)^G) as a candidate LNA. LNA #9 inhibited cell growth in vitro and in an in vivo orthotopic bladder cancer model. Proteome-wide tyrosine phosphorylation analysis suggested that the miR-130 family upregulates a wide range of receptor tyrosine kinases (RTKs) signaling via the expression of phosphorylated Src (pSrcTyr416). SILAC-based proteome analysis and a luciferase assay identified protein tyrosine phosphatase non-receptor type 1 (PTPN1), which is implicated as a negative regulator of multiple signaling pathways downstream of RTKs as a target gene of the miR-130 family. The miR-130-targeted LNA increased and decreased PTPN1 and pSrcTyr416 expressions, respectively. PTPN1 knockdown led to increased tumor properties (cell growth, invasion, and migration) and increased pSrcTyr416 expression in bladder cancer cells, suggesting that the miR-130 family upregulates multiple RTK signaling by targeting PTPN1 and subsequent Src activation in bladder cancer. Thus, our newly designed miR-130 family targeting LNA could be a promising nucleic acid therapeutic agent for bladder cancer.


Assuntos
Antineoplásicos/uso terapêutico , MicroRNAs/antagonistas & inibidores , Proteínas de Neoplasias/fisiologia , Oligonucleotídeos/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , RNA Neoplásico/antagonistas & inibidores , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Camundongos , MicroRNAs/genética , RNA Neoplásico/genética , Receptores Proteína Tirosina Quinases/biossíntese , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes/metabolismo , Regulação para Cima , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Aging (Albany NY) ; 13(8): 11470-11490, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33864447

RESUMO

BACKGROUNDS: A major side effect of statin, a widely used drug to treat hyperlipidemia, is skeletal myopathy through cell apoptosis. The aim of this study is to investigate the roles of microRNA in statin-induced injury. METHODS: Apolipoprotein E knockout (ApoE-/-) mice were administered with simvastatin (20 mg/kg/day) for 8 weeks. Exercise capacity was evaluated by hanging grid test, forelimb grip strength, and running tolerance test. RESULTS: In cultured skeletal muscle cells, statin increased the levels of miR-1a but decreased the levels of mitogen-activated protein kinase kinase kinase 1 (MAP3K1) in a time or dose dependent manner. Both computational target-scan analysis and luciferase gene reporter assay indicated that MAP3K1 is the target gene of miR-1a. Statin induced cell apoptosis of skeletal muscle cells, but abolished by downregulating of miR-1a or upregulation of MAP3K1. Further, the effects of miR-1a inhibition on statin-induced cell apoptosis were ablated by MAP3K1 siRNA. In ApoE-/- mice, statin induced cell apoptosis of skeletal muscle cells and decreased exercise capacity in mice infected with vector, but not in mice with lentivirus-mediated miR-1a gene silence. CONCLUSION: Statin causes skeletal injury through induction of miR-1a excessive expression to decrease MAP3K1 gene expression.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , MAP Quinase Quinase Quinase 1/genética , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/patologia , Doenças Musculares/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hiperlipidemias/tratamento farmacológico , Camundongos , Camundongos Knockout para ApoE , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Fibras Musculares Esqueléticas/efeitos dos fármacos , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/patologia , Condicionamento Físico Animal , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Sinvastatina/efeitos adversos , Regulação para Cima/efeitos dos fármacos
14.
Aging (Albany NY) ; 13(8): 11629-11645, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879631

RESUMO

Emerging evidence has demonstrated that circular RNAs (circRNAs) are abnormally expressed in non-small cell lung carcinoma (NSCLC). However, the contributions of circRNAs to the tumorigenesis of lung adenocarcinoma (LUAD), one of the subtypes of NSCLC, remain unclear. Based on a microarray assay, we found that hsa_circ_0072309 was significantly upregulated in NSCLC compared with matched normal samples. Moreover, functional experiments demonstrated that hsa_circ_0072309 promotes the proliferation, migration, and invasion of NSCLC cells. In vitro precipitation of circRNAs, luciferase reporter assays, and biotin-coupled microRNA capture assays were carried out to investigate the mechanisms by which hsa_circ_0072309 regulates NSCLC. Through the above work, we found that hsa_circ_0072309 interacted with miR-607 via its miRNA response element to upregulate the expression of FTO, an m6A demethylase and downstream target of miR-607, thus promoting tumorigenesis of NSCLC. In total, our findings indicated the oncogenic role of hsa_circ_0072309 in NSCLC and provide a potential target for treatment.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , RNA Circular/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , MicroRNAs/antagonistas & inibidores , Invasividade Neoplásica/genética , RNA Circular/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biochem Biophys Res Commun ; 556: 31-38, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33836345

RESUMO

Chemoresistance is a major cause for high mortality and poor survival in patients with ovarian cancer. Changes of cellular autophagy is associated with tumor cell chemoresistance. MAP kinase interacting serine/threonine kinase 2 (MKNK2) belongs to the protein kinase superfamily mediating cell cycle, apoptosis and angiogenesis. However, its effects on chemoresistance during ovarian cancer development remain unclear. In this study, we found that MKNK2 expression levels were markedly up-regulated in chemoresistant ovarian cancer cells compared with the sensitive cells. In addition, significantly increased expression of MKNK2 was detected in clinical ovarian cancer tissues, particularly in tumor samples from patients with drug resistance, and high MKNK2 expression is closely associated with poor prognosis. Our in vitro experiments subsequently showed that MKNK2 knockdown markedly reduced the proliferation of chemoresistant ovarian cancer cells, which was confirmed in SKOV3/DDP xenograft mouse models. Importantly, MKNK2 knockdown considerably induced autophagy in ovarian cancer cells with drug resistance, which was involved in the suppression of cell proliferation. Of note, we showed that miR-125b directly targeted MKNK2, and a negative correlation was observed between the expression of them in clinical tumor tissues. MKNK2 silence also increased miR-125b expression levels in drug-resistant ovarian cancer cells. Intriguingly, MKNK2 knockdown-suppressed cell proliferation and -induced autophagy were almost abrogated by miR-125b inhibition in chemoresistant ovarian cancer cells. Together, these findings demonstrated that MNKN2 is responsible for chemoresistance in ovarian cancer through modulating autophagy by targeting miR-125b, which may be a promising therapeutic target to develop strategies against ovarian cancer with drug resistance.


Assuntos
Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/antagonistas & inibidores , Neoplasias Ovarianas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biochem Biophys Res Commun ; 558: 107-113, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33906109

RESUMO

MicroRNAs play an irreplaceable role in gene expression regulation. Upregulation of several miRNAs increases the risk of invasion and metastasis of breast cancer cells. An oncogenic miRNA, miR-21, is highly expressed in triple-negative breast cancer (TNBC) and is associated with tumor proliferation, invasion, carcinogenesis, prognosis, and therapeutic resistance. However, targeted delivery of therapeutic anti-miRNAs into cancer cells remains challenging, especially for TNBC. In this study, we report the application of an RNA nanotechnology-based platform for the targeted delivery of anti-miR-21 by epidermal growth factor receptor (EGFR) aptamer in vitro to TNBC and chemical-resistant breast cancer cells. RNA nanoparticles reduced cell viability and sensitized breast cancer cells to doxorubicin (DOX) treatment in vitro. Inhibition of miR-21 by RNA nanoparticles suppressed TNBC cell invasion, migration, and colony formation. The results indicate the potential application of nanotechnology-based delivery platforms in clinical anti-cancer therapeutics.


Assuntos
Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/uso terapêutico , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Aptâmeros de Nucleotídeos/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Nanotecnologia , Invasividade Neoplásica/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaio Tumoral de Célula-Tronco
17.
Mol Cell Biochem ; 476(8): 2999-3007, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33791918

RESUMO

MicroRNAs (miRs) regulate diverse biological functions in both normal and pathological cellular conditions by post-transcriptional regulation of various genes expression. Nevertheless, the role of miRs in regulating the protective functions of omega-3 fatty acid in relation to hypoxia in cardiomyocytes remains unknown. The aim of this study was to investigate the effects of omega-3 fatty acid supplementation on cardiomyocyte apoptosis and further delineate the mechanisms underlying microRNA-210 (miRNA-210)-induced cardiomyocyte apoptosis in vitro. H9C2 cultured cells were first subjected to hypoxia followed by a subsequent treatment with main component of the Omega-3 fatty acid, Docosahexaenoic Acid (DHA). Cell apoptosis were detected by flow cytometry and the expression of miR-210-3p were detected by RT-qPCR and caspase-8-associated protein 2 (CASP8AP2) at protein levels by immunoblotting. Dual luciferase assay was used to verify the mutual effect between miR-210-3p and the 3'-untranslated region (UTR) of CASP8AP2 gene. DHA was shown to reduce apoptosis in H9C2 cells subjected to hypoxia. While DHA caused a significant increase in the expression of miR-210-3p, there was a marked reduction in the protein expression of CASP8AP2. MiR-210-3p and CASP8AP2 were significantly increased in H9C2 cardiomyocyte subjected to hypoxia. Overexpression of miR-210-3p could ameliorate hypoxia-induced apoptosis in H9C2 cells. MiR-210-3p negatively regulated CASP8AP2 expression at the transcriptional level. Both miR-210-3p mimic and CASP8AP2 siRNA could efficiently inhibit apoptosis in H9C2 cardiomyocyte subjected to hypoxia. We provide strong evidence showing that Omega-3 fatty acids can attenuate apoptosis in cardiomyocyte under hypoxic conditions via the up-regulation of miR-210-3p and targeting CASP8AP2 signaling pathway.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Ácidos Graxos Ômega-3/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipóxia/fisiopatologia , MicroRNAs/antagonistas & inibidores , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos
18.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799971

RESUMO

This review outlines recent preclinical and clinical advances in molecular imaging of abdominal aortic aneurysms (AAA) with a focus on molecular magnetic resonance imaging (MRI) of the extracellular matrix (ECM). In addition, developments in pharmacologic treatment of AAA targeting the ECM will be discussed and results from animal studies will be contrasted with clinical trials. Abdominal aortic aneurysm (AAA) is an often fatal disease without non-invasive pharmacologic treatment options. The ECM, with collagen type I and elastin as major components, is the key structural component of the aortic wall and is recognized as a target tissue for both initiation and the progression of AAA. Molecular imaging allows in vivo measurement and characterization of biological processes at the cellular and molecular level and sets forth to visualize molecular abnormalities at an early stage of disease, facilitating novel diagnostic and therapeutic pathways. By providing surrogate criteria for the in vivo evaluation of the effects of pharmacological therapies, molecular imaging techniques targeting the ECM can facilitate pharmacological drug development. In addition, molecular targets can also be used in theranostic approaches that have the potential for timely diagnosis and concurrent medical therapy. Recent successes in preclinical studies suggest future opportunities for clinical translation. However, further clinical studies are needed to validate the most promising molecular targets for human application.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/tratamento farmacológico , Matriz Extracelular/patologia , Imagem Molecular/métodos , Proteínas ADAMTS/antagonistas & inibidores , Animais , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Interleucinas/metabolismo , Imageamento por Ressonância Magnética , Metaloproteinases da Matriz/análise , Metaloproteinases da Matriz/metabolismo , MicroRNAs/antagonistas & inibidores , Terapia de Alvo Molecular
19.
Bull Cancer ; 108(6): 596-604, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33863546

RESUMO

Osteosarcoma (OS) is a human malignancy, which primarily affects the long bones and occurs in children and adolescent. Although advanced clinical approaches and the addition of neoadjuvant chemotherapy improved 5-year survival of OS patients, a large fraction of them developed chemoresistance. Thus, due to the high morbidity and mortality of OS, it is urgent to investigate effectively molecular targets against chemoresistant osteosarcoma. In this study, we aimed to evaluate the functions of miR-27a-3p in the Taxol sensitivity of osteosarcoma. From fifty-paired OS tumour tissues and adjacent normal bone tissues, we detected significantly upregulated miR-27a-3p expressions in osteosarcoma. In addition, expression of miR-27a-3p was remarkedly elevated in OS cancer cell lines compared with normal osteoblast cells, hFOB1.19. Blocking miR-27a-3p effectively suppressed OS cell growth and sensitised OS cells to Taxol. miRNA target prediction indicated Fbxw7 was a potential target of miR-27a-3p. We demonstrated Fbxw7 functioned as a tumour suppressor in osteosarcoma. Overexpression of miR-27a-3p significantly suppressed Fbxw7 protein expression in OS cells. The direct binding between miR-27a-3p and Fbxw7 3'UTR was validated by luciferase assay. Particularly, results from rescue experiments by inhibiting Fbxw7 expressions in miR-23a-3p-blocked OS cells demonstrated the miR-27a-3p-mediated Taxol resistance was through direct targeting Fbxw7. In summary, our findings report a new molecular mechanism for the miR-27a-3p-mediated Taxol resistance via targeting tumour suppressor, Fbxw7 in osteosarcoma. This study potentiates a miRNA-based therapeutic approach against Taxol resistant osteosarcoma.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Proteína 7 com Repetições F-Box-WD/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Osteossarcoma/tratamento farmacológico , Paclitaxel/uso terapêutico , Adolescente , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Criança , Resistencia a Medicamentos Antineoplásicos , Proteína 7 com Repetições F-Box-WD/metabolismo , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Regulação para Cima
20.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799504

RESUMO

Garcinol extracted from Garcinia indica fruit peel and leaves is a polyisoprenylated benzophenone. In traditional medicine it was used for its antioxidant and anti-inflammatory properties. Several studies have shown anti-cancer properties of garcinol in cancer cell lines and experimental animal models. Garcinol action in cancer cells is based on its antioxidant and anti-inflammatory properties, but also on its potency to inhibit histone acetyltransferases (HATs). Recent studies indicate that garcinol may also deregulate expression of miRNAs involved in tumour development and progression. This paper focuses on the latest research concerning garcinol as a HAT inhibitor and miRNA deregulator in the development and progression of various cancers. Garcinol may be considered as a candidate for next generation epigenetic drugs, but further studies are needed to establish the precise toxicity, dosages, routes of administration, and safety for patients.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Histona Acetiltransferases/genética , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Terpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Garcinia/química , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...