Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.875
Filtrar
1.
World J Microbiol Biotechnol ; 36(2): 29, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32016527

RESUMO

Short-chain halogenated aliphatic hydrocarbons (e.g. perchloroethene, trichloroethene) are among the most toxic environmental pollutants. Perchloroethene and trichloroethene can be dechlorinated to non-toxic ethene through reductive dechlorination by Dehalococcoides sp. Bioaugmentation, applying cultures containing organohalide-respiring microorganisms, is a possible technique to remediate sites contaminated with chlorinated ethenes. Application of site specific inocula is an efficient alternative solution. Our aim was to develop site specific dechlorinating microbial inocula by enriching microbial consortia from groundwater contaminated with trichloroethene using microcosm experiments containing clay mineral as solid phase. Our main goal was to develop fast and reliable method to produce large amount (100 L) of bioactive agent with anaerobic fermentation technology. Polyphasic approach has been applied to monitor the effectiveness of dechlorination during the transfer process from bench-scale (500 mL) to industrial-scale (100 L). Gas chromatography measurement and T-RFLP (Terminal Restriction Fragment Length Polymorphism) revealed that the serial subculture of the enrichments shortened the time-course of the complete dechlorination of trichloroethene to ethene and altered the composition of bacterial communities. Complete dechlorination was observed in enrichments with significant abundance of Dehalococcoides sp. cultivated at 8 °C. Consortia incubated in fermenters at 18 °C accelerated the conversion of TCE to ethene by 7-14 days. Members of the enrichments belong to the phyla Bacteroidetes, Chloroflexi, Proteobacteria and Firmicutes. According to the operational taxonomic units, main differences between the composition of the enrichment incubated at 8 °C and 18 °C occurred with relative abundance of acetogenic and fermentative species. In addition to the temperature, the site-specific origin of the microbial communities and the solid phase applied during the fermentation technique contributed to the development of a unique microbial composition.


Assuntos
Anaerobiose/fisiologia , Bactérias/metabolismo , Biodegradação Ambiental , Argila/química , Microbiota/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Chloroflexi/genética , Chloroflexi/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Fermentação , Firmicutes/genética , Firmicutes/metabolismo , Geobacter/genética , Geobacter/metabolismo , Água Subterrânea/microbiologia , Consórcios Microbianos , Polimorfismo de Fragmento de Restrição , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Tricloroetileno/química , Microbiologia da Água , Poluentes Químicos da Água/metabolismo
2.
Water Res ; 171: 115439, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31940510

RESUMO

After the Federal emergency in Flint, MI was declared in early 2016 in response to elevated lead-in-water and incidence of Legionnaires' disease, concerns arose that contaminants in residential water heaters could continue to contribute to poor quality tap water. Here, a comprehensive field survey of residential water heaters (n = 30) and associated water quality was conducted and the subsequent effects of an aggressive manual water heater clean-out was determined, including draining the tank and removing sediments via brushing and flushing. Before cleaning, inorganics accumulated in the tank sediments did not serve as a source of metals measured at hot water outlets. After cleaning, hardness- (calcium, magnesium, silica) and corrosion-associated inorganics (lead, iron, copper, aluminum, zinc) decreased by 64% in samples from sediment cleanout drain valves. Culturable L. pneumophila was only detected in 1 home (3.3%) prior to cleaning and 2 homes (6.7%) after cleaning, thus quantitative polymerase chain reaction was used to quantify potential effects on unculturable strains despite the limitation of differentiating live and dead cells. After the cleaning protocol, Legionella spp. and L. pneumophila gene numbers decreased or remained non-detectable in 83% and 98% of samples, respectively. Homes with less than 0.4 mg/L influent free chlorine tended to have quantifiable Legionella spp. gene numbers in water entering the home and had elevated L. pneumophila and Legionella spp. gene numbers throughout the home plumbing. Also, Legionella spp. and L. pneumophila gene numbers were highest for water heaters set at or below ∼42 °C and significantly decreased >51 °C, consistent with Legionella's preferred temperature range. Examination of the only home that had culturable L. pneumophila both before and after the cleaning protocol revealed that the organism was culturable from several sample locations throughout the home, including in water representative of the water main. Notably, the home was located in close proximity to McLaren Hospital, where an outbreak of Legionnaires disease was reported, and the water heater had a setpoint within the Legionella growth range of 44.2 °C. Considering that other factors were more strongly associated with Legionella occurrence and water heater sediment was not detectably mobilizing to tap water, it was concluded that water heater cleaning had some benefits, but was not an overarching factor contributing to possible human health risks.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Água , Microbiologia da Água , Abastecimento de Água
3.
Water Res ; 171: 115435, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31927096

RESUMO

Escherichia coli levels in recreational waters are often used to predict when fecal-associated pathogen levels are a human health risk. The reach of the Chattahoochee River that flows through the Chattahoochee River National Recreation Area (CRNRA), located in the Atlanta-metropolitan area, is a popular recreation area that frequently exceeds the U.S. Environmental Protection Agency beach action value (BAV) for E. coli. A BacteriALERT program has been implemented to provide real-time E. coli estimates in the reach and notify the public of potentially harmful levels of fecal-associated pathogens as indicated by surrogate models based on real-time turbidity measurements from continuous water quality monitoring stations. However, E. coli does not provide information about the sources of fecal contamination and its accuracy as a human health indicator is questionable when sources of contamination are non-human. The objectives of our study were to investigate, within the Park and surrounding watersheds, seasonal and precipitation-related patterns in microbial source tracking marker concentrations of possible sources (human, dog, and ruminant), assess correlations between source contamination levels and culturable E. coli levels, determine which sources best explained model-based E. coli estimates above the BAV and detection of esp2 (a marker for the esp gene associated with pathogenic strains of Enterococcus faecium and Enterococcus faecalis), and investigate associations between source contamination levels and land use features. Three BacteriALERT sites on the Chattahoochee River were sampled six times per season in the winter and summer from December 2015 through September 2017, and 11 additional stream sites (synoptic sites) from the CRNRA watershed were sampled once per season. Samples were screened with microbial source tracking (MST) quantitative PCR (qPCR) markers for humans (HF183 Taqman), dogs (DogBact), and ruminants (Rum2Bac), the esp2 qPCR marker, and culturable E. coli. At the BacteriALERT sites, HF183 Taqman concentrations were higher under wet conditions DogBact concentrations were greater in the winter and under wet conditions, and Rum2Bac concentrations were comparatively low throughout the study with no difference across seasons or precipitation conditions. Concentrations of HF183 Taqman, DogBact, and Rum2Bac were positively correlated with culturable E. coli concentrations; however, DogBact had the largest R2 value among the three markers, and the forward stepwise regression indicated it was the best predictor of culturable E. coli concentrations at the BacteriALERT sites. Recursive partitioning indicated that BAV exceedances of model-based E. coli estimates were best explained by DogBact concentrations ≥3 gene copies per mL (CN/mL). Detections of esp2 at BacteriALERT sites were best explained by DogBact concentrations ≥11 CN/mL, while detections of esp2 at synoptic sites were best explained by HF183 Taqman ≥29 CN/mL. At the synoptic sites, HF183 Taqman levels were associated with wastewater treatment plant density. However, this relationship was driven primarily by a single site, suggesting possible conveyance issues in that catchment. esp2 detections at synoptic sites were positively associated with development within a 2-km radius and negatively associated with development within the catchment, suggesting multiple sources of esp2 in the watershed. DogBact and Rum2Bac were not associated with the land use features included in our analyses. Implications for Park management include: 1) fecal contamination levels were highest during wet conditions and in the off season when fewer visitors are expected to be participating in water-based recreation, 2) dogs are likely contributors to fecal contamination in the CRNRA and may be sources of pathogenic bacteria indicating further investigation of the origins of this contamination may be warranted as would be research to understand the human health risks from exposure to dog fecal contamination, and 3) high levels of the human marker at one site in the CRNRA watershed suggests more extensive monitoring in that catchment may locate the origin of human fecal contamination detected during this study.


Assuntos
Escherichia coli , Rios , Animais , Cães , Monitoramento Ambiental , Fezes , Humanos , Recreação , Estações do Ano , Microbiologia da Água , Poluição da Água
4.
Chemosphere ; 242: 125310, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31896192

RESUMO

The bacterial composition of biofilms in drinking water distribution systems is significantly impacted by the disinfection regime and substrate material. However, studies that have addressed the changes in the biofilm community during the early stage of formation (less than 10 weeks) were not yet adequate. Here, we explore the effects of the substrate materials (cast iron, stainless steel, copper, polyvinyl chloride, and high density polyethylene) and different disinfectants (chlorine and chloramine) on the community composition and function of young biofilm by using 16S rDNA sequencing. The results showed that Alphaproteobacteria (39.14%-80.87%) and Actinobacteria (5.90%-40.03%) were the dominant classes in chlorine-disinfection samples, while Alphaproteobacteria (17.46%-74.18%) and Betaproteobacteria (3.79%-68.50%) became dominant in a chloraminated group. The infrequently discussed genus Phreatobacter became predominant in the chlorinated samples, but it was inhibited by chloramine and copper ions. The key driver of the community composition was indicated as different disinfectants according to principle coordination analysis (PCoA) and Permutational multivariate analysis of variance (Adonis test), and the bacterial community changed significantly over time. Communities of biofilms grown on cast iron showed a great distance from the other materials according to Bray-Curtis dissimilarity, and they had a unique dominant genus, Dechloromonas. A metagenomics prediction based on 16S rDNA was used to detect the functional pathways of antibiotic biosynthesis and beta-lactam resistance, and it revealed that several pathways were significantly different in terms of their chlorinated and chloraminated groups.


Assuntos
Biofilmes/efeitos dos fármacos , Cloraminas/farmacologia , Cloro/farmacologia , Desinfetantes/farmacologia , Água Potável/microbiologia , Microbiota/efeitos dos fármacos , Materiais de Construção/microbiologia , Desinfecção/métodos , Água Potável/química , Ferro , Microbiota/genética , RNA Ribossômico 16S/genética , Aço Inoxidável , Microbiologia da Água/normas
5.
Water Res ; 171: 115440, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31955059

RESUMO

Managing waterborne and water-related diseases is one of the most critical factors in the aftermath of hurricane-induced natural disasters. The goal of the study was to identify water-quality impairments in order to set the priorities for post-hurricane relief and to guide future decisions on disaster preparation and relief administration. Field investigations were carried out on St. Thomas, U.S. Virgin Islands as soon as the disaster area became accessible after the back-to-back hurricane strikes by Irma and Maria in 2017. Water samples were collected from individual household rain cisterns, the coastal ocean, and street-surface runoffs for microbial concentration. The microbial community structure and the occurrence of potential human pathogens were investigated in samples using next generation sequencing. Loop mediated isothermal amplification was employed to detect fecal indicator bacteria, Enterococcus faecalis. The results showed both fecal indicator bacteria and Legionella genetic markers were prevalent but were low in concentration in the water samples. Among the 22 cistern samples, 86% were positive for Legionella and 82% for Escherichia-Shigella. Enterococcus faecalis was detected in over 68% of the rain cisterns and in 60% of the coastal waters (n = 20). Microbial community composition in coastal water samples was significantly different from cistern water and runoff water. Although identification at bacterial genus level is not direct evidence of human pathogens, our results suggest cistern water quality needs more organized attention for protection of human health, and that preparation and prevention measures should be taken before natural disasters strike.


Assuntos
Tempestades Ciclônicas , Qualidade da Água , Fezes , Humanos , Ilhas , Chuva , Ilhas Virgens Americanas , Microbiologia da Água
6.
Water Res ; 170: 115294, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31765827

RESUMO

Recreational water epidemiology studies are rare in settings with minimal wastewater treatment where risk may be highest, and in tropical settings where warmer temperature influences the ecology of fecal indicator bacteria commonly used to monitor recreational waters. One exception is a 1999 study conducted in São Paulo Brazil. We compared the risk and exposure characteristics of these data with those conducted in the United Kingdom (UK) in the early 1990s that are the basis of the World Health Organization's (WHO) guidelines on recreational water risks. We then developed adjusted risk difference models (excess gastrointestinal illness per swimming event) for children (<10 years of age) and non-children (≥10 years of age) across five Brazil beaches. We used these models along with beach water quality data from 2004 to 2015 to assess spatial and temporal trends in water quality and human risk. Risk models indicate that children in Brazil have as much as two times the risk of gastrointestinal illness than non-children. In Brazil, 11.8% of the weekly water samples from 2004 to 2015 exceeded 158 enterococci CFU/100 ml, the highest level of fecal streptococci concentration measured in the UK study. Risks associated with these elevated levels equated to median NEEAR-Gastrointestinal Illness (NGI) risks of 53 and 96 excess cases per 1000 swimmers in non-children and children, respectively. Two of the five beaches appear to drive the overall elevated NGI risks seen during this study. Distinct enteric pathogen profiles that exist in tropical settings as well as in settings with minimal wastewater treatment highlight the importance of regionally specific guideline development.


Assuntos
Praias , Microbiologia da Água , Brasil , Criança , Clima , Monitoramento Ambiental , Fezes , Humanos , Reino Unido
7.
Water Res ; 169: 115281, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733621

RESUMO

The predatory bacterium, Bdellovibrio bacteriovorus, was applied as a biological pre-treatment to solar disinfection and solar photocatalytic disinfection for rainwater treatment. The photocatalyst used was immobilised titanium-dioxide reduced graphene oxide. The pre-treatment followed by solar photocatalysis for 120 min under natural sunlight reduced the viable counts of Klebsiella pneumoniae from 2.00 × 109 colony forming units (CFU)/mL to below the detection limit (BDL) (<1 CFU/100 µL). Correspondingly, ethidium monoazide bromide quantitative PCR analysis indicated a high total log reduction in K. pneumoniae gene copies (GC)/mL (5.85 logs after solar photocatalysis for 240 min). In contrast, solar disinfection and solar photocatalysis without the biological pre-treatment were more effective for Enterococcus faecium disinfection as the viable counts of E. faecium were reduced by 8.00 logs (from 1.00 × 108 CFU/mL to BDL) and the gene copies were reduced by ∼3.39 logs (from 2.09 × 106 GC/mL to ∼9.00 × 102 GC/mL) after 240 min of treatment. Predatory bacteria can be applied as a pre-treatment to solar disinfection and solar photocatalytic treatment to enhance the removal efficiency of Gram-negative bacteria, which is crucial for the development of a targeted water treatment approach.


Assuntos
Desinfecção , Purificação da Água , Bactérias , Luz Solar , Titânio , Microbiologia da Água
8.
Water Res ; 169: 115252, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726393

RESUMO

Legionnaires' disease (LD) is a severe pneumonia caused by several species of the genus Legionella, most frequently by Legionella pneumophila. Cooling towers are the most common source for large community-associated outbreaks. Colonization, survival, and proliferation of L. pneumophila in cooling towers are necessary for outbreaks to occur. These steps are affected by the chemical and physical parameters of the cooling tower environment. We hypothesize that the bacterial community residing in the cooling tower could also affect the presence of L. pneumophila. A 16S rRNA gene targeted amplicon sequencing approach was used to study the bacterial community of cooling towers and its relationship with the Legionella spp. and L. pneumophila communities. The results indicated that the water source shaped the bacterial community of cooling towers. Several taxa were enriched and positively correlated with Legionella spp. and L. pneumophila. In contrast, Pseudomonas showed a strong negative correlation with Legionella spp. and several other genera. Most importantly, continuous chlorine application reduced microbial diversity and promoted the presence of Pseudomonas creating a non-permissive environment for Legionella spp. This suggests that disinfection strategies as well as the resident microbial population influences the ability of Legionella spp. to colonize cooling towers.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Cloro , Humanos , Pseudomonas , RNA Ribossômico 16S , Microbiologia da Água
9.
Water Res ; 169: 115250, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726395

RESUMO

The use of irrigation water sourced from reclamation facilities and untreated surface water bodies may be a practical solution to attenuate the burden on diminishing groundwater aquifers. However, comprehensive microbial characterizations of these water sources are generally lacking, especially with regard to variations through time and across multiple water types. To address this knowledge gap we used a shotgun metagenomic approach to characterize the taxonomic and functional variations of microbial communities within two agricultural ponds, two freshwater creeks, two brackish rivers, and three water reclamation facilities located in the Mid-Atlantic, United States. Water samples (n = 24) were collected from all sites between October and November 2016, and filtered onto 0.2 µm membrane filters. Filters were then subjected to total DNA extraction and shotgun sequencing on the Illumina HiSeq platform. From these data, we found that Betaproteobacteria dominated the majority of freshwater sites, while Alphaproteobacteria were abundant at times in the brackish waters. One of these brackish sites was also host to a greater abundance of the bacterial genera Gimesia and Microcystis. Furthermore, predicted microbial features (e.g. antibiotic resistance genes (ARGs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) arrays) varied based on specific site and sampling date. ARGs were found across samples, with the diversity and abundance highest in those from a reclamation facility and a wastewater-impacted freshwater creek. Additionally, we identified over 600 CRISPR arrays, containing ∼2600 unique spacers, suggestive of a diverse and often site-specific phage community. Overall, these results provide a better understanding of the complex microbial community in untreated surface and reclaimed waters, while highlighting possible environmental and human health impacts associated with their use in agriculture.


Assuntos
Metagenoma , Águas Residuárias , Resistência Microbiana a Medicamentos , Humanos , Rios , Microbiologia da Água
10.
Water Environ Res ; 92(1): 35-41, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31433097

RESUMO

Pinpointing water pollution sources using host-specific gastrointestinal microbes, known as microbial source tracking (MST), have significant benefits for countries with water quality management issues related to pollution. A recently discovered bacteriophage, crAssphage, shows promise as a human-specific MST marker. However, loss of genetic materials during the recovery and the detection processes could alter the ability to measure virus quantities in a water sample. This study determined the crAssphage recovery efficiencies in water sources, including seawater, freshwater, and influent and effluent from a wastewater treatment plant, by spiking natural crAssphage concentrates prior to DNA extraction and quantitative PCR analysis. The results showed that river and seawater with no or low crAssphage background experienced no recovery loss. Evaluating recovery efficiencies in samples with high crAssphage backgrounds posed a challenge due to the inability to prepare high crAssphage titers. This study highlights the importance of intra-laboratory assessment of recovery efficiency in environmental samples for retrieving absolute crAssphage quantification with correction of bias among water samples and increase in data accuracy. PRACTITIONER POINTS: In laboratory assessment of recovery efficiency is crucial for bias correction and data accuracy for absolute crAssphage quantification in water samples. No loss in crAssphage recovery was observed in river and seawater that contained no or low crAssphage backgrounds. Inability to prepare high crAssphage spike concentrations remains the major limitation for evaluating recovery in samples with high crAssphage backgrounds. The results underline the importance of evaluating method recovery in real environmental samples that reflect actual matrix effect. Absolute crAssphage quantification, as human-specific pollution marker, could be used for prioritizing water quality restoration and area-based management plan.


Assuntos
Esgotos , Água , Monitoramento Ambiental , Fezes , Humanos , Concentração de Íons de Hidrogênio , Microbiologia da Água , Poluição da Água
11.
Water Res ; 170: 115269, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739243

RESUMO

The Sustainable Development Goals recognize that the availability and quality of improved water sources affect how households use and benefit from these sources. Although unreliability in piped water supplies in low- and middle-income countries (LMICs) has been described, few studies have assessed household coping strategies in response to unreliable water supplies and associated health outcomes. We characterized unreliability in the piped water supply of the town of Borbón, Ecuador over the twelve years following a major upgrade, as well as household coping strategies and associations with diarrhea. We examined trends in primary and secondary drinking water sources, water storage, and water treatment using longitudinal data collected from 2005 to 2012. In 2017, a follow-up survey was administered (N = 202) and a subset of 84 household water samples were tested for chlorine residual levels and microbial contamination. From 2005 to 2017, access to a household water connection increased from 19.4% to 90.3%. However, reliability decreased over time, as in the latter half of 2009, households had access to piped water 79% of the time, compared to 63% by 2017. Piped water samples were highly contaminated with total coliforms (100% of samples) and Escherichia coli (89% of samples). From 2005 to 2017, households less likely to report drinking water treatment (50.6%-5.0%). And from 2009 to 2017, bottled water was increasingly consumed as the primary drinking water source (18.8%-62.4%). From 2005 to 2012, having a household connection was not statistically significantly associated with diarrhea case status (OR: 0.86 95%CI: 0.53, 1.39). Neither household water treatment nor bottled water consumption were negatively associated with diarrhea. Increased water storage was associated with diarrhea (OR: 1.33 per 10L of water stored, 95%CI: 1.05, 1.69). Household water treatment, and consumption of purchased bottled water, two coping strategies that households may have undertaken in response to an unreliable water supply, were not associated with a reduced likelihood of diarrhea. These data suggest a need to understand how impoverished rural households in LMICs respond to unreliable water supplies, and to develop heath messaging appropriate for this context.


Assuntos
Água Potável , Abastecimento de Água , Adaptação Psicológica , Cidades , Diarreia , Equador , Humanos , Reprodutibilidade dos Testes , Microbiologia da Água
12.
Water Res ; 170: 115349, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830650

RESUMO

Levels of fecal indicator bacteria (FIB) provide a surrogate measure of the microbial quality of water used for a wide range of applications. Despite the common use of these measures, a significant limitation is a delay in results due to the time required for cultivation and enumeration of FIB. Testing requires at least 18-24 h, and therefore, FIB cannot be used to identify current or real-time microbial water quality. An approach of nowcasting or empirical modelling approaches that incorporate water quality, environmental, and weather variables to predict FIB levels in real-time has been developed with some success. However, FIB levels are dependent on a complex interaction of numerous variables, which can be challenging to model with ordinary linear regression or classification methods most commonly applied. In this study, novel use of Bayesian Belief Networks (BBNs) that allow for a probabilistic representation of complex variable interactions is investigated for real-time modelling of FIB levels surface waters. In particular, the integration of both water quality measures and current/historical weather for prediction of fecal coliforms and Escherichia coli levels is achieved using BBNs. For 4-bin classification of fecal coliform levels, BBNs increased prediction accuracy by 25%-54% compared to other previously used techniques including logistic regression, Naïve Bayes, and random forests. Binary prediction of E. coli levels exceeding a threshold of 20 CFU/100 mL was also significantly improved using BBNs with prediction accuracies >90% for all monitoring sites. Advantages of the BBN approach are also demonstrated identifying the ability to make predictions from incomplete monitoring data as well as probabilistic inference of variable importance in FIB levels. In particular, the results indicate that water quality surrogates such as conductivity are essential to real-time prediction of FIB. The results and models described in this work can be readily utilized to provide accurate and real-time assessments of FIB levels in surface waters utilizing commonly monitored parameters.


Assuntos
Escherichia coli , Qualidade da Água , Teorema de Bayes , Monitoramento Ambiental , Fezes , Microbiologia da Água , Tempo (Meteorologia)
13.
Water Res ; 170: 115369, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830653

RESUMO

In several jurisdictions, the arithmetic mean of Escherichia coli concentrations in raw water serves as the metric to set minimal treatment requirements by drinking water treatment plants (DWTPs). An accurate and precise estimation of this mean is therefore critical to define adequate requirements. Distributions of E. coli concentrations in surface water can be heavily skewed and require statistical methods capable of characterizing uncertainty. We present four simple parametric models with different upper tail behaviors (gamma, log-normal, Lomax, mixture of two log-normal distributions) to explicitly account for the influence of peak events on the mean concentration. The performance of these models was tested using large E. coli data sets (200-1800 samples) from raw water regulatory monitoring at six DWTPs located in urban and agricultural catchments. Critical seasons of contamination and hydrometeorological factors leading to peak events were identified. Event-based samples were collected at an urban DWTP intake during two hydrometeorological events using online ß-d-glucuronidase activity monitoring as a trigger. Results from event-based sampling were used to verify whether selected parametric distributions predicted targeted peak events. We found that the upper tail of the log-normal and the Lomax distributions better predicted large concentrations than the upper tail of the gamma distribution. Weekly sampling for two years in urban catchments and for four years in agricultural catchments generated reasonable estimates of the average raw water E. coli concentrations. The proposed methodology can be easily used to inform the development of sampling strategies and statistical indices to set site-specific treatment requirements.


Assuntos
Água Potável , Rios , Agricultura , Monitoramento Ambiental , Escherichia coli , Microbiologia da Água
14.
Environ Technol ; 41(3): 349-356, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29985115

RESUMO

Nano-structured ZnO photocatalysts on cellulose and polyester supports were developed for enhancing solar water disinfection (SODIS). The photocatalysts were fabricated by a two-step hydrothermal method, in which ZnO nanoparticles were synthesized and deposited on a cellulose or polyester support as a seed layer, followed by the growth of one-dimensional ZnO nanorods on the seed layer in a liquid bath containing zinc nitrate and hexamethylenetetramine as sources of precursors. The morphologies and phase compositions of the synthesized ZnO nanorods from different growth conditions were investigated with field emission scanning electron microscope and X-ray diffraction (XRD), respectively. The crystallinity size of the ZnO nanorods was in the range of 17-30 nm and increased with the precursor concentration. The XRD patterns also revealed that higher growth solution concentrations led to higher intensity of XRD peaks, indicating higher crystallinity. Additionally, to test for SODIS enhancement, experiments using 200-mL transparent polyethylene bags as SODIS reactors, with ZnO photocatalysts inside, and water samples containing 106 CFU of Escherichia Coli were conducted in a laboratory UVA setup. The photocatalyst with a polyester support resulted in a 15% higher disinfection efficiency than that of the one with a cellulose support. Moreover, a field test of enhanced SODIS was conducted in actual sunlight, using specially designed SODIS reactors containing ZnO photocatalysts with a polyester support. Nearly total disinfection (97-98% efficiency) was achieved within the first 15 min of every test. The treated water was also tested for zinc contents, which could be released from the photocatalysts, by ICP-OES. The results were lower than 2 mg/L.


Assuntos
Purificação da Água , Óxido de Zinco , Desinfecção , Luz Solar , Água , Microbiologia da Água
15.
Water Res ; 168: 115108, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604178

RESUMO

This study addressed the effectiveness of light emitting diodes to achieve inactivation of three different Aspergillus species (Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus) in a real water matrix. Three single small ultraviolet-C diodes emitting light at two different wavelengths were tested: 255 nm that is similar to the wavelength emitted by low pressure mercury lamps and 265 nm that is closer to the maximum absorbance wavelength of DNA. The ultraviolet-C diodes emitting light at 265 nm were found to be more effective than the 255 nm, achieving 3-log, 1-log and 5-log inactivations of Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus using less than 20 mJ/cm2 (13,97 mJ/cm2; 7,28 mJ/cm2; 19,74 mJ/cm2). The diodes have also affected the morphology of the fungal spores and increased the percentage of damaged and dead spores.


Assuntos
Desinfecção , Água , Aspergillus , Raios Ultravioleta , Microbiologia da Água
16.
Water Res ; 168: 115159, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31614234

RESUMO

Worldwide, it is common that the drinking water distribution systems (DWDSs) may be subjected to changes of supply water quality due to the needs of upgrading the treatment processes or switching the source water. However, the potential impacts of quality changed supply water on the stabilized ecological niches within DWDSs and the associated water quality deterioration risks were poorly documented. In the present study, such transition effects caused by changing the supply water quality that resulted from destabilization of biofilm and loose deposits in DWDS were investigated by analyzing the physiochemical and microbiological characteristics of suspended particles before (T0), during (T3-weeks) and after upgrading the treatments (T6-months) in an unchlorinated DWDS in the Netherlands. Our results demonstrated that after 6 months' time the upgraded treatments significantly improved the water quality. Remarkably, water quality deterioration was observed at the initial stage when the quality-improved treated water distributed into the network at T3-weeks, observed as a spike of total suspended solids (TSS, 50-260%), active biomass (ATP, 95-230%) and inorganic elements (e.g. Mn, 130-250%). Furthermore, pyrosequencing results revealed sharp differences in microbial community composition and structure for the bacteria associated with suspended particles between T0 and T3-weeks, which re-stabilized after 6 months at T6-months. The successful capture of transition effects was especially confirmed by the domination of Nitrospira spp. and Polaromonas spp. in the distribution system at T3-weeks, which were detected at rather low relative abundance at treatment plant. Though the transitional effects were captured, this study shows that the introduction of softening and additional filtration did not have an effect on the water quality for the consumer which improved considerably after 6-months' period. The methodology of monitoring suspended particles with MuPFiSs and additional analysis is capable of detecting transitional effects by monitoring the dynamics of suspended particles and its physiochemical and microbiological composition.


Assuntos
Água Potável , Biofilmes , Países Baixos , Microbiologia da Água , Qualidade da Água , Abastecimento de Água
17.
Water Res ; 168: 115163, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31614239

RESUMO

Respiratory infections from opportunistic bacterial pathogens (OBPs) have heightened research interests in drinking water distribution systems, premise plumbing, and point-of-use technologies. In particular, biofilm growth in showerheads increases OBP content, and inhalation of shower aerosols is a major exposure route for Legionellae and Mycobacteria infections. Incorporation of UVC LEDs into showerheads has thus been proposed as a point-of-use option for healthcare facilities. Herein we have examined incongruities between the nature of OBP contamination in shower water and the hypothetical application of conventional UV disinfection engineering concepts. Effective UV dosing within showerheads must overcome significant shielding effects imparted by the biological matrices in which common OBPs reside, including biofilm particles and protozoan hosts. Furthermore, prevention of biofilm growth in showerhead interiors requires a different UV irradiation approach and is lacking in established design parameters. Development of showerhead devices is also likely to face a trade-off between bathing functionality and simpler form factors that are more conducive to internal UV irradiation.


Assuntos
Legionella , Bactérias , Biofilmes , Desinfecção , Desenho de Equipamento , Engenharia Sanitária , Microbiologia da Água
18.
Sci Total Environ ; 698: 134025, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493571

RESUMO

Contaminants in freshwater environments, as well as the associated negative impacts on agricultural produce, have emerged as a critical theme of the water-energy-food nexus affecting food safety and irrigation management. Agricultural produce exposed to irrigation with questionable freshwater can internalize and concentrate pollutants. However, the potential risks posed by the ubiquitous presence of biofilms within irrigation water distribution systems (IWDS) remains overlooked, even though such biofilms may harbor and spread pathogenic, chemical, and other environmental pollutants. Our limited knowledge about the role and functional attributes of IWDS biofilms can be blamed mostly to experimental challenges encountered during attempted studies of these biofilms in their natural environments. Hence, a laboratory-based experimental system designed to simulate a freshwater environment was combined with a biofilm reactor capable of recreating the piping environments in water distribution systems. This experimental system was then tested to assess the robustness and repeatability of experimental early-stage biofilms with respect to physical structure and microbial community, using state-of-the-art confocal microscopy and next-generation sequencing, respectively. The results demonstrated the suitability of this laboratory-based experimental system for studying the impacts of selected pollutants on irrigation water distribution systems.


Assuntos
Irrigação Agrícola/métodos , Biofilmes , Fazendas , Água Doce , Microbiologia da Água , Qualidade da Água
19.
Water Res ; 170: 115353, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881501

RESUMO

Microbial regrowth during drinking water distribution can result in a variety of problems such as a deviating taste and odor, and may even pose a risk to public health. Frequent monitoring is essential to anticipate events of biological instability, and relevant microbial parameters for operational control of biostability of drinking water should be developed. Here, online flow cytometry and derived biological metrics were used to assess the biological stability of a full-scale drinking water tower during normal and disturbed flow regime. Pronounced operational events, such as switching from drinking water source, and seasonal changes, were detected in the total cell counts, and regrowth was observed despite the short hydraulic residence time of 6-8 h. Based on the flow cytometric fingerprints, the Bray-Curtis dissimilarity was calculated and was developed as unambiguous parameter to indicate or warn for changing microbial drinking water quality during operational events. In the studied water tower, drastic microbial water quality changes were reflected in the Bray-Curtis dissimilarity, which demonstrates its use as an indicator to follow-up and detect microbial quality changes in practice. Hence, the Bray-Curtis dissimilarity can be used in an online setup as a straightforward parameter during full-scale operation of drinking water distribution, and combined with the cell concentration, it serves as an early-warning system for biological instability.


Assuntos
Água Potável , Bactérias , Microbiologia da Água , Qualidade da Água , Abastecimento de Água
20.
Chemosphere ; 238: 124550, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31425868

RESUMO

Large volumes of contaminated water are produced via intentional and unintentional incidents, including terrorist attacks, natural disasters and accidental spills. Contaminated waters could contain harmful chemicals, which present management and disposal challenges. This study investigates three Advanced Oxidation Processes (AOPs) - UV/H2O2, O3/H2O2, and electrochemical oxidation using a boron-doped diamond (BDD) anode - to treat eleven contaminants including herbicides, pesticides, pharmaceuticals, and flame retardant compounds. To address treatment and toxicity concerns, this study focuses on the resulting microbial toxicity via Microtox® toxicity and Nitrification Inhibition tests. The results suggest four functional Microtox® toxicity categories upon AOP treatment, which are useful for streamlining AOP selection for specific applications. Except for one compound, the O3/H2O2 and UV/H2O2 AOPs achieved, within experimental error, 100% parent compound degradation during 2 h of treatment for all contaminants, as well as Microtox® toxicities that declined below 10% by the end of the treatment. In addition, anodic oxidation with a BDD electrode exhibited slower degradation and some increases in Microtox® toxicity. Only one compound exhibited above 50% Nitrification Inhibition, indicating the robustness of activated sludge to many contaminated and AOP-treated waters. These results indicate that AOP pre-treatment can be a viable strategy to facilitate drain disposal of contaminated waters, but that eco-toxicity may remain a concern.


Assuntos
Reatores Biológicos , Diamante/química , Eletrodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Poluição da Água/análise , Boro/química , Herbicidas/análise , Herbicidas/química , Herbicidas/toxicidade , Peróxido de Hidrogênio/química , Oxirredução , Praguicidas/análise , Praguicidas/química , Praguicidas/toxicidade , Microbiologia da Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA