Unable to write in log file ../../bases/logs/portalorg/logerror.txt Pesquisa | Portal Regional da BVS
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.943
Filtrar
1.
Braz. j. biol ; 84: e250916, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345552

RESUMO

Abstract The study was conducted to evaluate the effect of Moringa olifera on the growth and gut health of Tilapia (Oreochromis niloticus). The feed having 30% crude protein was prepared as an experimental diet with 4%, 8% and 10% M. olifera leaf supplementation, respectively. The control diet was devoid of M. olifera leaves. The 10 weeks feeding trial was carried out on 60 fish in aquaria. Fish was fed @ 3% of body weight twice a day. Diet with the high level of inclusion of M. olifera leaves significantly increased the growth rate, Survival Rate (SR), Specific Growth Rate (SGR) and Feed Conversion Efficiency (FCE) in all treatment groups compared to the control group. Similarly, Feed Conversion Ratio (FCR) gradually decreased and found highly-significant. To check the gut health of the Tilapia, random samples were selected and dissected. Nutrient agar was used as culture media to check the growth of bacteria. Pour Plate Method was used for viable colonies count by colony counter. Through staining method, the different bacteria such as Escherichia coli, Salmonella, Shigella and Pseudomonas aeruginosa were identify abundantly in the intestine of control diet fish but less number present in treatment diets groups. These results showed that M. olifera leaves up to 10% of dietary protein can be used for Nile tilapia for significant growth and healthy gut microbiota of fish.


Resumo O estudo foi conduzido para avaliar o efeito da Moringa olifera no crescimento e saúde intestinal da tilápia (Oreochromis niloticus). A ração com 30% de proteína bruta foi preparada como dieta experimental com 4%, 8% e 10% de suplementação de folhas de M. olifera, respectivamente. A dieta controle foi desprovida de folhas de M. olifera. O ensaio de alimentação de 10 semanas foi realizado em 60 peixes em aquários. O peixe pesava 3% do peso corporal duas vezes ao dia. A dieta com alto nível de inclusão de folhas de M. olifera aumentou significativamente a taxa de crescimento, taxa de sobrevivência (SR), taxa de crescimento de sobrevivência (SGR) e eficiência de conversão alimentar (FCE) em todos os grupos de tratamento em comparação com o grupo de controle. Da mesma forma, a taxa de conversão de alimentação (FCR) diminuiu gradualmente e foi considerada altamente significativa. Para verificar a saúde intestinal da tilápia, amostras aleatórias foram selecionadas e dissecadas. O ágar nutriente foi usado como meio de cultura para verificar o crescimento das bactérias. O método da placa de Verter foi usado para a contagem de colônias viáveis ​​por contador de colônias. Através do método de coloração, diferentes como Escherichia coli, Salmonella, Shigella e Pseudomonas aeruginosa foram identificados abundantemente no intestino de peixes da dieta controle, mas em menor número nos grupos de dieta de tratamento. Esses resultados mostraram que M. olifera deixa até 10% da proteína dietética e pode ser usado para tilápia do Nilo para um crescimento significativo e microbiota intestinal saudável de peixes.


Assuntos
Animais , Ciclídeos , Moringa , Microbioma Gastrointestinal , Folhas de Planta , Suplementos Nutricionais/análise , Dieta/veterinária , Ração Animal/análise
2.
Food Chem ; 430: 137006, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541036

RESUMO

Carbohydrates with different structures have metabolic differences in the human body, as well as individual differences. The present study aimed to investigate the effects of bacterial, short-chain fatty acids (SCFAs) and gas profiles of partially hydrolyzed guar gum (PHGG) on the fecal microbiota of 41 Chinese individuals by simulated fermentation in vitro. Results showed that PHGG stimulated the growth of Bifidobacterium and Faecalibacterium, inhibited the growth of Escherichia-Shigella, Klebsiella, and Dorea, and induced the production of fermentation gases (CO2, and H2) and SCFAs (acetic acid, butyric acid). Furthermore, Bifidobacterium was significantly increased in the young female and the old male-originated samples, while Klebsiella was significantly decreased in the old female ones after PHGG intervention, and there were also certain differences in gases and SCFAs among different population samples. These findings indicate that PHGG can modulate gut microbiota and metabolism well, whereas its use varies in different populations.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Humanos , Masculino , Feminino , Fermentação , Fibras na Dieta/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Galactanos/química , Mananas/química , Gomas Vegetais/química , Bactérias/metabolismo , Gases
3.
Food Chem ; 430: 137054, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566983

RESUMO

Interactions between dietary fiber and phenolic compounds in foods can influence their gastrointestinal fate. This study aimed to examine the effect of four types of pectin on the polyphenols of cherry laurel puree and human gut microbiota during a simulated in vitro gastrointestinal digestion and large intestine fermentation. Results revealed that the combined addition of different pectins and pectinase to cherry laurel puree significantly affected the content and bioaccessibility of phenolics. The addition of pectins and pectinase distinctively impacted the phenolic subclasses in both raw and post-digested/fermented cherry laurel puree, suggesting differential interactions due to structural features. Both pectins and pectinase modulated the composition of fecal microbiota after in vitro fermentation, increasing bacterial diversity following pectinase treatment. The combined addition of pectins followed by pectinase had differential impacts on polyphenol bioaccessibility and gut microbiome diversity, hence having a potential outcome in terms of human health.


Assuntos
Microbioma Gastrointestinal , Polifenóis , Humanos , Polifenóis/análise , Fermentação , Pectinas/farmacologia , Poligalacturonase , Fenóis/farmacologia , Digestão
4.
J Ethnopharmacol ; 318(Pt B): 117050, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595814

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Coptis chinensis Franch. polysaccharide (CCP) and berberine (BBR) are the primary active components of Coptis chinensis Franch. BBR is clinically used for the treatment of intestinal infections and gastroenteritis. CCP was also reported to be effective for the treatment of ulcerative colitis (UC). However, whether CCP combined with BBR shows a synergistic effect on the treatment of UC has not been elucidated yet. AIM OF THE STUDY: This study aspired to investigate the therapeutic effect and the possible mechanisms of the combination of CCP with BBR on chronic UC. MATERIALS AND METHODS: By periodic administration of dextran sulfate sodium (DSS) to C57BL/6J mice, chronic UC model mice were induced. CCP (15 mg/kg), BBR (50 mg/kg), and CCP.BBR (a combination of 15 mg/kg CCP and 50 mg/kg BBR) were orally administered to the model mice for 10 days. Changes of body weight, disease activity index, colon length, organ index, histopathological damage, expression of cytokines, and intestinal tight junction proteins were determined to evaluate the therapeutic effects. 16S rDNA sequencing, targeted short-chain fatty acid metabolomics, qPCR, and western blotting were performed to elucidate the potential mechanism. RESULTS: Both CCP and BBR alleviated UC via improving colon pathological damage, inhibiting the inflammatory response, and regulating the expression of intestinal tight junction proteins. The combination of CCP with BBR showed a more substantial therapeutic effect via increasing the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, thereby increasing the contents of SCFAs in vivo and activating AhR/IL-22 pathway. CONCLUSION: The combination of CCP and BBR showed a synergistic effect on the therapy of chronic UC and the mechanism was associated with regulating gut microbiota and activating AhR/IL-22 pathway.


Assuntos
Berberina , Besouros , Colite Ulcerativa , Microbioma Gastrointestinal , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Berberina/farmacologia , Berberina/uso terapêutico , Coptis chinensis , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
5.
J Ethnopharmacol ; 318(Pt B): 116945, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37490989

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 'Xiayuxue decoction' (XYXD) is a traditional Chinese medicine compound, composing of three natural medicines: Rheum officinale Baill., Prunus persica (L.) Batsch and Eupolyphaga sinensis Walker. It is derived from the famous traditional Chinese medical classics 'Jingui Yaolue' and has been used for thousands of years. In the Guidelines for the Diagnosis and Treatment of Primary liver Cancer issued by China's Health Commission, XYXD was applied in the treatment of primary liver cancer. AIM OF THE STUDY: To clarify the pharmacodynamic material basis and mechanism of XYXD in the treatment of hepatocellular carcinoma (HCC). MATERIALS AND METHODS: Firstly, the active components of XYXD and its distribution in vivo were identified by Ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Then, the effective components and mechanism of XYXD against HCC were explored by network pharmacology combined with cell experiments in vitro. Furthermore, the anti-HCC effect of XYXD was determined by animal experiments in vivo. Metagenomic sequencing was used to detect its effect in gut microbiota, and targeted metabolism was used to detect the changes of bile acids in the liver. Finally, the related targets of NKT cell immune function activation were detected by RT-qPCR and Elisa. RESULTS: A total of 113 active ingredients in XYXD were identified, and the distribution of active ingredients in blood, liver, tumor, cecum, intestinal contents and feces was clarified. The circulation process and active ingredient group of XYXD were preliminarily clarified. In addition, we found five anti-HCC active ingredients in XYXD through network pharmacology combined with cell experiments in vitro, among which aloe emodin had the most significant effect, and predicted the potential mechanism of XYXD against HCC through NKT cell pathway. Moreover, the inhibitory effect of XYXD on liver tumor growth was clarified by animal experiments in vivo. The mechanism was mainly to promote the production of bile salt hydrolase (BSH) by increasing the abundance of Bacteroides and Lactobacillus, BSH converts conjugated bile acids into primary bile acids, and reduces the conversion of primary bile acids to secondary bile acids by reducing the abundance of Eubacterium, thereby increasing the content of primary bile acids. Primary bile acids trigger NKT cells in the liver to produce interferon-γ to exert anti-HCC immune effects. CONCLUSION: This study found that the traditional Chinese herbal formula XYXD can trigger the immune effect of NKT cells against HCC by regulating the interaction between gut microbiota and bile acids.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Ácidos e Sais Biliares , Imunidade Celular
6.
J Ethnopharmacol ; 318(Pt B): 116950, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506781

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tea (Camellia sinensis) has been consumed for centuries as a traditional remedy for various metabolic diseases. The pharmacological mechanisms of many conventional medicines, including tea, often need to be clarified. Chin brick tea is a unique Chinese black tea grown in Hubei, China, rich in tea elements such as tea polyphenols and tea polysaccharides. AIM OF THE STUDY: We focus on the effects of commercial chin brick tea on non-alcoholic fatty liver disease by altering intestinal flora and its metabolite, bile acids. MATERIALS AND METHODS: Targeted UPLC-MS/MS was employed to quantify the tea elements in commercial chin brick tea. In this study, we performed an integrated approach of animal experiments, 16 S rDNA, and ultra-performance liquid chromatography-tandem mass spectrometry to explore the potential mechanism of action of chin brick tea in preventing non-alcoholic fatty liver disease (NAFLD). RESULTS: After 14 weeks of administration, CBT extract could signiffcantly decrease the levels of body weight, liver weight, LDL-C, TC, ALT, IL-1ß and IL-18, and slight increase HDL-C levels in NAFLD mice. The results indicated that the interventional impact of CBT with high-fat diet-induced NAFLD might depend on intestinal flora and its metabolites bile acids. Moreover, sequencing of 16 S rRNA genes demonstrated that CBT could signiffcantly improve the intestinal flora disorder of NAFLD mice. Speciffcally, CBT increased the levels of Lactobacillus, Alloprevotella, and Ruminococcaceae, while reducing the levels of Bacteroides in NAFLD mice. Then, a total of 23 bile acids were identified, 17 differential bile acids were obtained by screening, and CBT increase the primary bile acids/secondary bile acids ratio in NAFLD mice. Additionally, correlation analysis revealed that Bacteroides was negatively correlated with DCA and ωMCA, Lactobacillus was positively correlated with DCA and ωMCA, Bacteroides was positively correlated with NAFLD, Lactobacillus was negatively associated with NAFLD, and DCA and ωMCA were negatively correlated with NAFLD. CONCLUSION: CBT extract has a good interventional impact on NAFLD mice. The mechanism by which this extract exerts its action is, at least partly, related to its regulation of intestinal flora and its metabolites bile acids.


Assuntos
Camellia sinensis , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camellia sinensis/química , Metabolismo dos Lipídeos , Cromatografia Líquida , Ácidos e Sais Biliares/metabolismo , Queixo , Espectrometria de Massas em Tandem/métodos , Fígado , Chá/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo
7.
J Ethnopharmacol ; 318(Pt A): 116848, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423515

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum bungeanum Maxim. (Rutaceae) is a known herbal medicine with various bioactivities, including anti-obesity, lipid-lowering, learning & memory improving and anti-diabetes, and amides in Z. bungeanum (AZB) are considered as the major active agents for its bioactivities. AIM OF THE STUDY: This research was carried out to uncover the anti-NAFL effect of AZB and its corresponding molecular mechanisms. METHODS: The central composite design-response surface methodology (CCD-RSM) was utilized to optimize the AZB extraction process, and the anti-NAFL effect of AZB was investigated on high fat diet (HFD) fed mice (HFD mice). The levels of ROS in liver tissues were determined using laser confocal microscopy with DCFH-DA probe staining, and anti-enzymes (such as HO-1, SOD, CAT & GSH-PX) and MDA in liver tissues were measured using commercial detecting kits. GC-MS was used to determine the short-chain fatty acids (SCFAs) contents in feces and blood of mice. 16S high-throughput sequencing, western blotting (WB) assay and immunofluorescence (IF) were used to explore the intestinal flora changes in mice and the potential mechanisms of AZB for treatment of NAFL. RESULTS: Our results showed AZB reduced body weight, alleviated liver pathological changes, reduced fat accumulation, and improved oxidative stress in HFD mice. In addition, we also found AZB improved OGTT and ITT, reduced TG, TC, LDL-C, whereas increased HDL-C in HFD mice. AZB increased total number of the species and interspecies kinship of gut microbiota and reduced the richness and diversity of gut microbiota in HFD mice. Moreover, AZB decreased the ratio of Firmicutes/Bacteroidota, whereas increased the abundance of Allobaculum, Bacteroides and Dubosiella in feces of HFD-fed mice. Furthermore, AZB increased the production of SCFAs, and up-regulated the phosphorylation of AMPK and increased the nuclear transcription of Nrf2 in liver of HFD mice. CONCLUSION: Collectively, our results suggested AZB can improve NAFL, which could reduce body weight, reverse liver lesions and fat accumulation, improve oxidative stress in liver tissues of HFD mice. Furthermore, the mechanisms are related to increase of the abundance of high-producing bacteria for SCFAs (e.g. Allobaculum, Bacteroides and Dubosiella) to activate AMPK/Nrf2 signaling.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Zanthoxylum , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Quinases Ativadas por AMP , Fator 2 Relacionado a NF-E2 , Amidas/farmacologia , Fígado/patologia , Obesidade/tratamento farmacológico , Ácidos Graxos Voláteis , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
8.
J Ethnopharmacol ; 318(Pt A): 116893, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423520

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Buyang Huanwu decoction (BHD), a famous traditional Chinese medicine (TCM) formula, was first recorded in Qing Dynasty physician Qingren Wang's Yi Lin Gai Cuo. BHD has been widely utilized in the treatment of patients with neurological disorders, including Parkinson's disease (PD). However, the underlying mechanism has not been fully elucidated. In particular, little is known about the role of gut microbiota. AIM OF THE STUDY: We aimed to reveal the alterations and functions of gut microbiota and its correlation with the liver metabolome in the process of improving PD with BHD. MATERIALS AND METHODS: The cecal contents were collected from PD mice treated with or without BHD. 16S rRNA gene sequencing was performed on an Illumina MiSeq-PE250 platform, and the ecological structure, dominant taxa, co-occurrence patterns, and function prediction of the gut microbial community were analyzed by multivariate statistical methods. The correlation between differential microbial communities in the gut and differentially accumulated metabolites in the liver was analyzed using Spearman's correlation analysis. RESULTS: The abundance of Butyricimonas, Christensenellaceae, Coprococcus, Peptococcaceae, Odoribacteraceae, and Roseburia was altered significantly in the model group, which was by BHD. Ten genera, namely Dorea, unclassified_Lachnospiraceae, Oscillospira, unidentified_Ruminococcaceae, unclassified_Clostridiales, unidentified_Clostridiales, Bacteroides, unclassified_Prevotellaceae, unidentified_Rikenellaceae, and unidentified_S24-7, were identified as key bacterial communities. According to the function prediction of differential genera, the mRNA surveillance pathway might be a target of BHD. Integrated analysis of gut microbiota and the liver metabolome revealed that several gut microbiota genera such as Parabacteroides, Ochrobactrum, Acinetobacter, Clostridium, and Halomonas, were positively or negatively correlated with some nervous system-related metabolites, such as L-carnitine, L-pyroglutamic acid, oleic acid, and taurine. CONCLUSIONS: Gut microbiota might be a target of BHD in the process of ameliorating PD. Our findings provide novel insight into the mechanisms underlying the effects of BHD on PD and contribute to the development of TCM.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , RNA Ribossômico 16S/genética , Fígado , Metaboloma
9.
J Ethnopharmacol ; 318(Pt A): 116866, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429503

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Echinacoside (ECH) is the dominant phenylethanoid glycoside-structured compound identified from our developed herbal formula Huangci granule, which has been previously reported to inhibit the invasion and metastasis of CRC and prolong patients' disease-free survival duration. Though ECH has inhibitory activity against aggressive colorectal cancer (CRC) cells, its anti-metastasis effect in vivo and the action mechanism is undetermined. Given that ECH has an extremely low bioavailability and gut microbiota drives the CRC progression, we hypothesized that ECH could inhibit metastatic CRC by targeting the gut microbiome. AIM OF THE STUDY: The purpose of this study was to investigate the impact of ECH on colorectal cancer liver metastasis in vivo and its potential mechanisms. MATERIALS AND METHODS: An intrasplenic injection-induced liver metastatic model was established to examine the efficiency of ECH on tumor metastasis in vivo. Fecal microbiota from the model group and the ECH group were separately transplanted into pseudo-sterile CRLM mice in order to verify the role of gut flora in the ECH anti-metastatic effect. The 16S rRNA gene sequence was applied to analyze the structure and composition of the gut microbiota after ECH intervention, and the effect of ECH on short-chain fatty acid (SCFAs)-producing bacteria growth was proven by anaerobic culturing in vitro. GC-MS was applied to quantitatively analyze the serum SCFAs levels in mice. RNA-seq was performed to detect the gene changes involving tumor-promoting signaling pathway. RESULTS: ECH inhibited CRC metastasis in a dose-dependent manner in the metastatic colorectal cancer (mCRC) mouse model. Manipulation of gut bacteria in the mCRC mouse model further proved that SCFA-generating gut bacteria played an indispensable role in mediating the antimetastatic action of ECH. Under an anaerobic condition, ECH benefited SCFA-producing microbiota without affecting the total bacterial load, presenting a dose-dependent promotion on the growth of a butyrate producer, Faecalibacterium prausnitzii (F.p). Furthermore, ECH-reshaped or F.p-colonized microbiota with a high butyrate-producing capability inhibited liver metastasis by suppressing PI3K/AKT signaling and reversing the epithelial-mesenchymal transition (EMT) process, whereas this anti-metastatic ability was abrogated by the butyrate synthase inhibitor heptanoyl-CoA. CONCLUSION: This study demonstrated that ECH exhibits oral anti-metastatic efficacy by facilitating butyrate-producing gut bacteria, which downregulates PI3K/AKT signaling and EMT. It hints at a novel role for ECH in CRC therapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Microbioma Gastrointestinal , Neoplasias Hepáticas , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Ribossômico 16S , Transdução de Sinais , Ácidos Graxos Voláteis/metabolismo , Butiratos/uso terapêutico , Neoplasias do Colo/patologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Modelos Animais de Doenças , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo
10.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(4): 581-590, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37654138

RESUMO

Objective To investigate the effects of Weidiao-3(WD-3)Mixture on the clinical efficacy of immunotherapy for advanced gastric cancer and the intestinal flora.Methods Fifty-one patients with advanced gastric cancer treated in Wuxi Traditional Chinese Medicine Hospital from January 2020 to December 2021 were randomized into a WD-3 group(immunotherapy + WD-3 Mixture,one dose per day)(n=25)and a gastric cancer(GC) group(only immunotherapy)(n=26)according to the admission time.Ten healthy volunteers were included as the healthy control group.The Karnofsky score and the Quality of Life Questionnare-Core score were evaluated before and after treatment,and the clinical efficacy was compared after treatment.After treatment,the stool samples were collected for 16SrRNA gene high-throughput sequencing and targeted metabolomics.The α and ß diversity and structure of the intestinal flora and the content of short-chain fatty acids were compared between groups.Results The quality of life in both groups improved after treatment and was better in the WD-3 group than in the GC group(P=0.035).The dry mouth(P=0.038)and altered taste(P=0.008)were mitigated in the WD-3 group after treatment,and the reflux(P=0.001)and dry mouth(P=0.022)were mitigated in the GC group after treatment.After treatment,the WD-3 group outperformed the GC group in terms of dysphagia(P=0.047)and dry mouth(P=0.045).The WD-3 group was superior to the GC group in terms of objective remission rate and disease control rate,with prolonged median progression-free survival and median overall survival(P=0.039,P=0.043).The α and ß diversity indexes of the intestinal flora showed no significant differences between WD-3 and GC groups(all P>0.05).At the phylum level,WD-3 and GC groups had lower relative abundance of Firmicutes(P=0.038,P=0.042)and higher relative abundance of Proteobacteria(P=0.016,P=0.015)than the healthy control group.The relative abundance of Actinomycetes in the GC group was lower than that in the healthy control group(P=0.035)and the WD-3 group(P=0.046).At the genus level,the GC group had lower relative abundance of Bifidobacteria and Coprococcus than the healthy control group and the WD-3 group(all P<0.001).LEfSe revealed the differences in the relative abundance of 6 intestinal bacterial taxa between the WD-3 group and the GC group.At the genus level,Saccharopolyspora had higher relative abundance in the WD-3 group than in the healthy control group and only existed in the WD-3 group.The content of isobutyric acid and isovaleric acid in the WD-3 group was higher than that in the healthy control group(P=0.037,P=0.004).Conclusion WD-3 Mixture may increase the relative abundance of Bifidobacteria and Coprococcus and the content of isobutyric acid and isovaleric acid to alter the intestinal microecology,thereby improving the efficacy of immunotherapy for gastric cancer.


Assuntos
Microbioma Gastrointestinal , Neoplasias Gástricas , Humanos , Isobutiratos , Qualidade de Vida , Neoplasias Gástricas/terapia , Imunoterapia , Resultado do Tratamento
11.
Carbohydr Polym ; 320: 121206, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659809

RESUMO

Herein, we aimed to explore the polysaccharide material basis of Serratula chinensis and establish its beneficial effects against colitis. A neutral polysaccharide (SCP) was extracted from S. chinensis in high yield using hot water. The molecular weights were calculated by HPSEC as Mw = 2928 Da, Mn = 2634 Da, and Mw/Mn = 1.11. FT-IR and 1D/2D-NMR spectroscopic analyses confirmed that SCP was an inulin-type fructan with α-D-Glcp-(1 â†’ [1)-ß-D-Fruf-(2]17) linkages. Treatment with SCP (200 or 400 mg/kg) alleviated dextran sulfate sodium (DSS)-induced mouse colitis symptoms, including the loss of body weight, increase of disease activity index score, and shortening of colon length. Histopathological and immunofluorescence assessments revealed that SCP could reduce pathological damage to the colon, restore the number of goblet cells, increase the content of glycoproteins in goblet cells and mucins in crypts, and enhance the expression of tight junction proteins ZO-1 and occludin. In addition, metagenomic sequencing revealed that SCP could improve the dysbiosis of gut microbiomes and act on multiple microbial functions. Moreover, SCP treatment increased the content of colonic acetic acid and butanoic acid. Collectively, these results indicated that SCP could alleviate the DSS-induced colitis in mice through regulation of intestinal barrier and gut microbiota.


Assuntos
Besouros , Colite , Microbioma Gastrointestinal , Animais , Camundongos , Inulina/farmacologia , Inulina/uso terapêutico , Frutanos/farmacologia , Frutanos/uso terapêutico , Sulfato de Dextrana/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Colite/induzido quimicamente , Colite/tratamento farmacológico
12.
Inflamm Bowel Dis ; 29(9): 1362-1369, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655859

RESUMO

BACKGROUND: Microbiome studies report low gut microbial richness and diversity in ulcerative colitis (UC) patients. We explored whether UC patients who reach long-term clinical, endoscopic, and histological remission show a gut microbial ecosystem that is similar to healthy individuals. METHODS: We collected 184 stool samples from 111 individuals (UC patients in long remission, short remission, flare, and healthy control subjects). Microbiota was analyzed by amplicon sequencing (16S ribosomal RNA) and quantitative polymerase chain reaction for specific taxa. All UC remission patients were followed-up for 2 years. FINDINGS: A drop in species diversity and richness, underrepresentation of butyrate producers, and gain of potentially harmful bacteria were significantly detected in samples from disease-flare and short-remission patients. In contrast, Chao1 and Shannon indexes of diversity did not differ among patients in long remission and healthy control subjects. Long-remission patients also presented fecal bacterial composition closer to that in healthy control subjects. There was a positive correlation between Akkermansia muciniphila abundance and time in remission (rs = 0.53, P < .001). Logistic regression analysis showed that a high Shannon index (odds ratio, 4.83; 95% confidence interval, 1.5-20.6) or presence of A. muciniphila (odds ratio, 4.9; 95% confidence interval, 1.12-29.08) in fecal samples at entry was independently associated with clinical remission over a follow-up period of 24 months. INTERPRETATION: UC patients who achieve long-term remission show evidence of substantial recovery of the gut microbial ecosystem in terms of diversity and composition. Recovery may just reflect adequate control of inflammatory activity, but higher bacterial diversity or the presence of A. muciniphila in fecal samples predicts flare-free outcomes.


Microbiome studies have shown low gut microbial richness and diversity in ulcerative colitis patients. Patients who achieve long-term remission show evidence of substantial recovery of the gut microbial ecosystem in terms of diversity and composition.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Microbiota , Humanos , Butiratos , Fezes
13.
Medicine (Baltimore) ; 102(35): e34764, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657030

RESUMO

BACKGROUND: Accumulating evidence has indicated a possible connection between post-stroke cognitive impairment (PSCI) and gut microbiota imbalance. To further investigate this association, the present work was designed to systematically assess the dissimilarity of gut microbiota between PSCI and healthy individuals or stroke patients. METHODS: A meta-analysis and systematic review was conducted by searching various databases including PubMed, Web of Science, Embase, VIP, CNKI, and Wangfang for relevant studies. The pooled outcomes were used to estimate the combined dissimilarity of gut microbiota composition between PSCI and healthy individuals or patients with stroke. RESULTS: Nine eligible studies were included in this meta-analysis. The results showed that there were no significant changes in observed richness indexes (Chao1 and ACE) and Shannon index. Notably, a significant decrease in Simpson index was observed in PSCI patients in comparison to the healthy individuals (-0.31, 95% CI: -0.62 to -0.01, P = 0.04). Moreover, the microbiota composition at the phylum level (increased abundance of Proteobacteria), family level (increased abundance of Bacteroidaceae, Lachnospiraceae, and Veillonellaceae; decreased abundance of Enterobacteriaceae), and genus level (increased abundance of Bacteroides, Clostridium XIVa, and Parabacteroides; decreased abundance of Prevotella and Ruminococcus) was found to be significantly different between PSCI and controls. CONCLUSION: This meta-analysis suggests a significant shift of observed species and microbiota composition in PSCI compared to healthy individuals or patients with stroke.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Microbiota , Acidente Vascular Cerebral , Humanos , Bacteroides , Clostridiales , Disfunção Cognitiva/etiologia , Acidente Vascular Cerebral/complicações
14.
Eur J Med Res ; 28(1): 319, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660064

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a global disease with a growing public health concern and is associated with a complex interplay of factors, including the microbiota and immune system. Resveratrol, a natural anti-inflammatory and antioxidant agent, is known to relieve IBD but the mechanism involved is largely unexplored. METHODS: This study examines the modulatory effect of resveratrol on intestinal immunity, microbiota, metabolites, and related functions and pathways in the BALB/c mice model of IBD. Mouse RAW264.7 macrophage cell line was used to further explore the involvement of the macrophage-arginine metabolism axis. The treatment outcome was assessed through qRT-PCR, western blot, immunofluorescence, immunohistochemistry, and fecal 16S rDNA sequencing and UHPLC/Q-TOF-MS. RESULTS: Results showed that resveratrol treatment significantly reduced disease activity index (DAI), retained mice weight, repaired colon and spleen tissues, upregulated IL-10 and the tight junction proteins Occludin and Claudin 1, and decreased pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. Resveratrol reduced the number of dysregulated metabolites and improved the gut microbial community structure and diversity, including reversing changes in the phyla Bacteroidetes, Proteobacteria, and Firmicutes, increasing 'beneficial' genera, and decreasing potential pathogens such as Lachnoclostridium, Acinobacter, and Serratia. Arginine-proline metabolism was significantly different between the colitis-treated and untreated groups. In the colon mucosa and RAW264.7 macrophage, resveratrol regulated arginine metabolism towards colon protection by increasing Arg1 and Slc6a8 and decreasing iNOS. CONCLUSION: This uncovers a previously unknown mechanism of resveratrol treatment in IBD and provides the microbiota-macrophage-arginine metabolism axis as a potential therapeutic target for intestinal inflammation.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Resveratrol/farmacologia , Macrófagos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Arginina
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1888): 20220221, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37661739

RESUMO

The role of the gut microbiota in determining body fatness has been a prominent area of research and has received significant public attention. Based largely on animal studies, recent attempts to translate these findings into interventions in humans have not been successful. This review will outline the key mouse research that initiated this area of study, examine whether those results warranted the initial enthusiasm and progress into human studies, and examine whether later follow-up research supported earlier conclusions. It will look at whether the absence of a gut microbiota protects germ-free mice from obesity, whether microbiota can transfer obesity into germ-free mice, the evidence for the role of immune system activation as a causal mechanism linking the gut microbiota to body weight, and consider the evidence for effects of individual bacterial species. Finally, it will examine the outcomes of randomized controlled trials of microbiota transfer in human participants that have not shown effects on body weight. With a more critical reading, early studies did not show as large an effect as first appeared and later research, including human trials, has failed to support a role of the gut microbiota in shaping body weight. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Obesidade/etiologia , Peso Corporal , Tecido Adiposo
16.
Nutrients ; 15(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37686739

RESUMO

We previously found that the continuous feeding of ethanol caused mice dysbiosis, in which the cecal microbiota were significantly altered, as compared with those in the non-feeding control group, especially in some bacterial genera involved in gut inflammation. In the present study, we have found that the fermented extract of stevia (Stevia rebaudiana) leaves with plant-derived lactic acid bacteria (LABs), Pediococcus pentosaceus LY45, improves the trimethylamine (TMA) productivity of cecal content, which can be used as an indicator of dysbiosis. The following animal experiment also shows that the LY45-fermented stevia extract represses the typical increase in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, which decreased from 1106 to 210 IU/L (p < 0.05) and from 591 to 100 IU/L (p < 0.05), respectively, together with the simultaneously latent TMA productivity (from 1356 to 745 µM, p < 0.05) of cecal content in the ethanol-fed mice. The microbiota analyses have shown that the observed increased alterations in pro-inflammatory genera putative SMB53 (family Clostridiaceae) and Dorea are restored by the fermented stevia extract. Our result indicates that the preliminary bioconversion of herbal medicinal precursors by fermentation with safe microorganisms like LABs is expected to be a hopeful method of producing specific metabolites that may contribute to the reconstruction of gut microbiota.


Assuntos
Microbioma Gastrointestinal , Lactobacillales , Stevia , Animais , Camundongos , Disbiose , Etanol , Clostridiaceae , Extratos Vegetais/farmacologia
17.
Nutrients ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686818

RESUMO

BACKGROUND: Sorghum is a cereal source of energy, carbohydrates, resistant starch, proanthocyanidins, and 3-deoxyanthocyanins; it promotes satiety by slowing digestion and benefits intestinal health. OBJECTIVE: This study investigated the effects of extruded sorghum SC319 consumption on intestinal health, weight loss, and inflammatory markers in men with overweight. METHODS: This was a randomized, controlled, single-blind clinical trial. Twenty-one men were randomly allocated into one of two groups: the sorghum group (test), which received 40 g of extruded SC319 whole sorghum (n = 10), or the wheat group (control), which received 38 g of extruded whole wheat (n = 11) for eight weeks. RESULTS: The sorghum consumption increased the weight loss intragroup, decreased the body fat percentage intergroup, and did not change inflammatory markers, while the wheat group had increased IL-6 levels compared to baseline. Short-chain fatty acid production, fecal pH, and α and ß diversity indexes did not differ intra- and intergroup after interventions. However, sorghum consumption decreased genus levels of Clostridium_sensu_stricto 1, Dorea, and Odoribacter and increased CAG-873 and Turicibacter compared to baseline. Further, sorghum showed a tendency (p = 0.07) to decrease the proteobacteria phyla compared to wheat. CONCLUSION: Extruded sorghum SC319 improved intestinal microbiota and body composition and promoted weight loss, demonstrating its prebiotic potential.


Assuntos
Microbioma Gastrointestinal , Sorghum , Masculino , Humanos , Sobrepeso , Grão Comestível , Método Simples-Cego
18.
Nutrients ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686830

RESUMO

Alzheimer's disease (AD) is prone to onset and progression under oxidative stress conditions. Hericium coralloides (HC) is an edible medicinal fungus that contains various nutrients and possesses antioxidant properties. In the present study, the nutritional composition and neuroprotective effects of HC on APP/PS1 mice were examined. Behavioral experiments showed that HC improved cognitive dysfunction in APP/PS1 mice. Immunohistochemical and Western blotting results showed that HC reduced the levels of p-tau and amyloid-ß deposition in the brain. By altering the composition of the gut microbiota, HC promoted the growth of short-chain fatty acid-producing bacteria and suppressed the growth of Helicobacter. Metabolomic results showed that HC decreased D-glutamic acid and oxidized glutathione levels. In addition, HC reduced the levels of reactive oxygen species, enhanced the secretion of superoxide dismutase, catalase, and glutathione peroxidase, inhibited the production of malondialdehyde and 4-hydroxynonenal, and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Collectively, HC demonstrated antioxidant activity by activating Nrf2 signaling and regulating gut microbiota, further exerting neuroprotective effects. This study confirms that HC has the potential to be a clinically effective AD therapeutic agent and offers a theoretical justification for both the development and use of this fungus.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Fármacos Neuroprotetores , Animais , Camundongos , Fator 2 Relacionado a NF-E2 , Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Antioxidantes/farmacologia
19.
Nutrients ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686860

RESUMO

Patients with post-cholecystectomy (PC) often experience adverse gastrointestinal conditions, such as PC syndrome, colorectal cancer (CRC), and non-alcoholic fatty liver disease (NAFLD), that accumulate over time. An epidemiological survey further revealed that the risk of cholecystectomy is associated with high-fat and high-cholesterol (HFHC) dietary intake. Mounting evidence suggests that cholecystectomy is associated with disrupted gut microbial homeostasis and dysregulated bile acids (BAs) metabolism. However, the effect of an HFHC diet on gastrointestinal complications after cholecystectomy has not been elucidated. Here, we aimed to investigate the effect of an HFHC diet after cholecystectomy on the gut microbiota-BA metabolic axis and elucidate the association between this alteration and the development of intestinal inflammation. In this study, a mice cholecystectomy model was established, and the levels of IL-Iß, TNF-α, and IL-6 in the colon were increased in mice fed an HFHC diet for 6 weeks. Analysis of fecal BA metabolism showed that an HFHC diet after cholecystectomy altered the rhythm of the BA metabolism by upregulating liver CPY7A1, CYP8B1, and BSEP and ileal ASBT mRNA expression levels, resulting in increased fecal BA levels. In addition, feeding an HFHC diet after cholecystectomy caused a significant dysbiosis of the gut microbiota, which was characterized by the enrichment of the metabolic microbiota involved in BAs; the abundance of pro-inflammatory gut microbiota and related pro-inflammatory metabolite levels was also significantly higher. In contrast, the abundance of major short-chain fatty acid (SCFA)-producing bacteria significantly decreased. Overall, our study suggests that an HFHC diet after cholecystectomy promotes intestinal inflammation by exacerbating the gut microbiome and BA metabolism dysbiosis in cholecystectomy. Our study also provides useful insights into the maintenance of intestinal health after cholecystectomy through dietary or probiotic intervention strategies.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Animais , Camundongos , Disbiose , Colesterol , Colecistectomia/efeitos adversos , Ácidos e Sais Biliares , Modelos Animais de Doenças , Inflamação/etiologia
20.
BMC Genomics ; 24(1): 524, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670231

RESUMO

BACKGROUND: Gut microbiota plays a significant role in host survival, health, and diseases; however, compared to other livestock, research on the gut microbiome of donkeys is limited. RESULTS: In this study, a total of 30 donkey samples of rectal contents from six regions, including Shigatse, Changdu, Yunnan, Xinjiang, Qinghai, and Dezhou, were collected for metagenomic sequencing. The results of the species annotation revealed that the dominant phyla were Firmicutes and Bacteroidetes, and the dominant genera were Bacteroides, unclassified_o_Clostridiales (short for Clostridiales) and unclassified_f_Lachnospiraceae (short for Lachnospiraceae). The dominant phyla, genera and key discriminators were Bacteroidetes, Clostridiales and Bacteroidetes in Tibet donkeys (Shigatse); Firmicutes, Clostridiales and Clostridiales in Tibet donkeys (Changdu); Firmicutes, Fibrobacter and Tenericutes in Qinghai donkeys; Firmicutes, Clostridiales and Negativicutes in Yunnan donkeys; Firmicutes, Fibrobacter and Fibrobacteres in Xinjiang donkeys; Firmicutes, Clostridiales and Firmicutes in Dezhou donkeys. In the functional annotation, it was mainly enriched in the glycolysis and gluconeogenesis of carbohydrate metabolism, and the abundance was the highest in Dezhou donkeys. These results combined with altitude correlation analysis demonstrated that donkeys in the Dezhou region exhibited strong glucose-conversion ability, those in the Shigatse region exhibited strong glucose metabolism and utilization ability, those in the Changdu region exhibited a strong microbial metabolic function, and those in the Xinjiang region exhibited the strongest ability to decompose cellulose and hemicellulose. CONCLUSION: According to published literature, this is the first study to construct a dataset with multi-regional donkey breeds. Our study revealed the differences in the composition and function of gut microbes in donkeys from different geographic regions and environmental settings and is valuable for donkey gut microbiome research.


Assuntos
Equidae , Microbioma Gastrointestinal , Bacteroidetes , China , Clostridiales , Firmicutes , Equidae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...