Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.052
Filtrar
1.
Immunity ; 55(4): 589-591, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417673

RESUMO

The gut microbiome is well-known to shape local and distal immune responses, both in health and disease. In a recent issue of Nature, Hosang et al. demonstrate how the lung microbiome regulates the magnitude of autoimmune inflammation in the brain.


Assuntos
Microbioma Gastrointestinal , Microbiota , Encéfalo , Interações entre Hospedeiro e Microrganismos , Pulmão , Microbiota/fisiologia
2.
Proc Natl Acad Sci U S A ; 119(15): e2116954119, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394868

RESUMO

SignificanceAntibiotic exposure stands among the most used interventions to drive microbial communities away from undesired states. How the ecology of microbial communities shapes their recovery-e.g., posttreatment shifts toward Clostridioides difficile infections in the gut-after antibiotic exposure is poorly understood. We study community response to antibiotics using a model community that can reach two alternative states. Guided by theory, our experiments show that microbial growth following antibiotic exposure can counteract antibiotic susceptibility in driving transitions between alternative community states. This makes it possible to reverse the outcome of antibiotic exposure through modifying growth dynamics, including cooperative growth, of community members. Our research highlights the relevance of simple ecological models to better understand the long-term effects of antibiotic treatment.


Assuntos
Antibacterianos , Corynebacterium , Resistência Microbiana a Medicamentos , Lactobacillus plantarum , Microbiota , Adaptação Fisiológica , Antibacterianos/farmacologia , Corynebacterium/efeitos dos fármacos , Corynebacterium/crescimento & desenvolvimento , Lactobacillus plantarum/efeitos dos fármacos , Lactobacillus plantarum/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Microbiota/fisiologia
3.
Food Res Int ; 155: 110995, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400416

RESUMO

Microbiota plays an important role in flavor compounds formation during food fermentation. However, the role of initial microbial diversity in regulating flavor compounds formation is still unclear. Here, we used high-throughput amplicon sequencing and structural equation modeling to reveal the effect of initial microbial diversity on final metabolic diversity in Chinese sesame flavor-type liquor fermentation. The results showed that the initial fungal diversity positively impacted fungal succession (R = 0.74, P < 0.001). The longest fungal succession distance (0.054) was observed at the highest initial fungal diversity (38.580). Moreover, fungal succession positively affected metabolic succession (R = 0.71, P < 0.001), and the metabolic succession positively promoted the metabolic diversity (R = 0.68, P < 0.001). In addition, the longest succession distance of fungi (0.054) led to the longest succession distance of metabolites (0.065), and resulted in the highest metabolic diversity (0.409), that was significantly higher than the lowest metabolic diversity (0.219) (P < 0.05). Finally, a simulative fermentation experiment verified the significant and positive effect of initial fungal diversity on final metabolic diversity (R2 = 0.52, P < 0.05) in liquor fermentation. These results indicated the importance of initial fungal diversity for promoting flavor compounds formation. This work provides insights into improving flavor compounds formation by controlling initial fungal diversity in food fermentation, and it will be beneficial for improving the quality of fermented foods.


Assuntos
Microbiota , Bebidas Alcoólicas/análise , China , Fermentação , Microbiota/fisiologia
4.
Cell Metab ; 34(4): 510-512, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385703

RESUMO

The microbiome in arguably sterile tissues has received considerable attention in the last few years. A recent report by Leinwand and colleagues disentangles host-microbe interactions in the mammalian liver. The authors demonstrate that a distinct liver microbiome controls hepatic immune responses in mice, challenging the perception of a sterile liver.


Assuntos
Microbiota , Animais , Interações entre Hospedeiro e Microrganismos , Imunidade , Fígado , Mamíferos , Camundongos , Microbiota/fisiologia
5.
Front Immunol ; 13: 827953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479075

RESUMO

Background: Inherited susceptibility and environmental carcinogens are crucial players in lung cancer etiology. The lung microbiome is getting rising attention in carcinogenesis. The present work sought to investigate the microbiome in lung cancer patients affected by familial lung cancer (FLC) and indoor air pollution (IAP); and further, to compare host gene expression patterns with their microbiome for potential links. Methods: Tissue sample pairs (cancer and adjacent nonmalignant tissue) were used for 16S rRNA (microbiome) and RNA-seq (host gene expression). Subgroup microbiome diversities and their matched gene expression patterns were analyzed. Significantly enriched taxa were screened out, based on different clinicopathologic characteristics. Results: Our FLC microbiome seemed to be smaller, low-diversity, and inactive to change; we noted microbiome differences in gender, age, blood type, anatomy site, histology type, TNM stage as well as IAP and smoking conditions. We also found smoking and IAP dramatically decreased specific-OTU biodiversity, especially in normal lung tissue. Intriguingly, enriched microbes were in three categories: opportunistic pathogens, probiotics, and pollutant-detoxication microbes; this third category involved Sphingomonas, Sphingopyxis, etc. which help degrade pollutants, but may also cause epithelial damage and chronic inflammation. RNA-seq highlighted IL17, Ras, MAPK, and Notch pathways, which are associated with carcinogenesis and compromised immune system. Conclusions: The lung microbiome can play vital roles in carcinogenesis. FLC and IAP subjects were affected by fragile lung epithelium, vulnerable host-microbes equilibrium, and dysregulated immune surveillance and response. Our findings provided useful information to study the triple interplay among environmental carcinogens, population genetic background, and diversified lung microbiome.


Assuntos
Carcinógenos Ambientais , Neoplasias Pulmonares , Microbiota , Carcinogênese/patologia , Carcinógenos Ambientais/farmacologia , Expressão Gênica , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microbiota/fisiologia , RNA Ribossômico 16S/genética
6.
Bioessays ; 44(5): e2100233, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35261041

RESUMO

The microbiome of human hair follicles (HFs) has emerged as an important player in different HF and skin pathologies, yet awaits in-depth exploration. This raises questions regarding the tightly linked interactions between host environment, nutrient dependency of host-associated microbes, microbial metabolism, microbe-microbe interactions and host immunity. The use of simple model systems facilitates addressing generally important questions and testing overarching, therapeutically relevant principles that likely transcend obvious interspecies differences. Here, we evaluate the potential of the freshwater polyp Hydra, to dissect fundamental principles of microbiome regulation by the host, that is the human HF. In particular, we focus on therapeutically targetable host-microbiome interactions, such as nutrient dependency, microbial interactions and host defence. Offering a new lens into the study of HF - microbiota interactions, we argue that general principles of how Hydra manages its microbiota can inform the development of novel, microbiome-targeting therapeutic interventions in human skin disease.


Assuntos
Hydra , Microbiota , Animais , Biologia , Folículo Piloso , Humanos , Hydra/fisiologia , Interações Microbianas , Microbiota/fisiologia
7.
Periodontol 2000 ; 89(1): 59-82, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35244967

RESUMO

In the initiation or exacerbation of Alzheimer disease, the dissemination of oral microorganisms into the brain tissue or the low-level systemic inflammation have been speculated to play a role. However, the impact of oral microorganisms, such as Porphyromonas gingivalis, on the pathogenesis of Alzheimer disease and the potential causative relationship is still unclear. The present review has critically reviewed the literature by examining the following aspects: (a) the oral microbiome and the immune response in the elderly population, (b) human studies on the association between periodontal and gut microorganisms and Alzheimer disease, (c) animal and in vitro studies on microorganisms and Alzheimer disease, and (d) preventive and therapeutic approaches. Factors contributing to microbial dysbiosis seem to be aging, local inflammation, systemic diseases, wearing of dentures, living in nursing homes and no access to adequate oral hygiene measures. Porphyromonas gingivalis was detectable in post-mortem brain samples. Microbiome analyses of saliva samples or oral biofilms showed a decreased microbial diversity and a different composition in Alzheimer disease compared to cognitively healthy subjects. Many in-vitro and animal studies underline the potential of P gingivalis to induce Alzheimer disease-related alterations. In animal models, recurring applications of P gingivalis or its components increased pro-inflammatory mediators and ß-amyloid in the brain and deteriorated the animals' cognitive performance. Since periodontitis is the result of a disturbed microbial homoeostasis, an effect of periodontal therapy on the oral microbiome and host response related to cognitive parameters may be suggested and should be elucidated in further clinical trials.


Assuntos
Doença de Alzheimer , Microbiota , Idoso , Doença de Alzheimer/etiologia , Animais , Disbiose , Humanos , Inflamação , Microbiota/fisiologia , Porphyromonas gingivalis/fisiologia
8.
Front Cell Infect Microbiol ; 12: 824925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265534

RESUMO

In recent years, it has become clear that microbiome play a variety of essential roles in human metabolism, immunity, and overall health and that the composition of these microbiome is influenced by our environment, diet, weight, hormones, and other factors. Indeed, numerous physiological and pathological conditions, including obesity and metabolic syndrome, are associated with changes in our microbiome, referred to as dysbiosis. As a result, it is not surprising that such changes occur during pregnancy, which includes substantial weight gain and significant changes in metabolism and immune defenses. The present review relates physiological changes during pregnancy to alterations in the microbial composition at various sites, including the gut, oral cavity, and vagina. Pregnancy has been linked to such microbial changes, and we believe that, in contrast to certain disease states, these microbial changes are vital for a healthy pregnancy, probably through their influence on the mother's immunological, endocrinological, and metabolic status.


Assuntos
Microbiota , Dieta , Disbiose , Feminino , Humanos , Microbiota/fisiologia , Boca , Gravidez , Vagina
9.
Ren Fail ; 44(1): 571-580, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35350960

RESUMO

In recent years, the clinical impact of intestinal microbiota-kidney interaction has been emerging. Experimental evidence highlighted a bidirectional evolutionary correlation between intestinal microbiota and kidney diseases. Nonetheless, acute kidney injury (AKI) is still a global public health concern associated with high morbidity, mortality, healthcare costs, and limited efficient therapy. Several studies on the intestinal microbiome have improved the knowledge and treatment of AKI. Therefore, the present review outlines the concept of the gut-kidney axis and data about intestinal microbiota dysbiosis in AKI to improve the understanding of the mechanisms of the intestinal microbiome on the modification of kidney function and response to kidney injury. We also introduced the future directions and research areas, emphasizing the intervention approaches and recent research advances of intestinal microbiota dysbiosis during AKI, thereby providing a new perspective for future clinical trials.


Assuntos
Injúria Renal Aguda , Microbioma Gastrointestinal , Microbiota , Injúria Renal Aguda/terapia , Disbiose , Microbioma Gastrointestinal/fisiologia , Humanos , Rim , Microbiota/fisiologia
10.
Nat Commun ; 13(1): 1076, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228537

RESUMO

Despite the high prevalence of both cervico-vaginal human papillomavirus (HPV) infection and bacterial vaginosis (BV) worldwide, their causal relationship remains unclear. While BV has been presumed to be a risk factor for HPV acquisition and related carcinogenesis for a long time, here, supported by both a large retrospective follow-up study (n = 6,085) and extensive in vivo data using the K14-HPV16 transgenic mouse model, we report a novel blueprint in which the opposite association also exists. Mechanistically, by interacting with several core members (NEMO, CK1 and ß-TrCP) of both NF-κB and Wnt/ß-catenin signaling pathways, we show that HPV E7 oncoprotein greatly inhibits host defense peptide expression. Physiologically secreted by the squamous mucosa lining the lower female genital tract, we demonstrate that some of these latter are fundamental factors governing host-microbial interactions. More specifically, several innate molecules down-regulated in case of HPV infection are hydrolyzed, internalized and used by the predominant Lactobacillus species as amino acid source sustaining their growth/survival. Collectively, this study reveals a new viral immune evasion strategy which, by its persistent/negative impact on lactic acid bacteria, ultimately causes the dysbiosis of vaginal microbiota.


Assuntos
Microbiota , Infecções por Papillomavirus , Vaginose Bacteriana , Aminoácidos , Animais , Feminino , Seguimentos , Lactobacillus/fisiologia , Camundongos , Microbiota/fisiologia , Membrana Mucosa , Peptídeos , Estudos Retrospectivos , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
11.
J Agric Food Chem ; 70(13): 3958-3968, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344652

RESUMO

The aryl hydrocarbon receptor (AhR) plays an important role in intestinal homeostasis, and some microbial metabolites of tryptophan are known AhR agonists. In this study, we assessed the impact of tryptophan supplementation on the formation of tryptophan metabolites, AhR activation, and microbiota composition in the simulator of the human intestinal microbial ecosystem (SHIME). AhR activation, microbial composition, and tryptophan metabolites were compared during high tryptophan supplementation (4 g/L tryptophan), control, and wash-out periods. During tryptophan supplementation, the concentration of several tryptophan metabolites was increased compared to the control and wash-out period, but AhR activation by fermenter supernatant was significantly decreased. This was due to the higher levels of tryptophan, which was found to be an antagonist of AhR signaling. Tryptophan supplementation induced most microbial changes in the transverse colon including increased relative abundance of lactobacillus. We conclude that tryptophan supplementation leads to increased formation of AhR agonists in the colon.


Assuntos
Microbioma Gastrointestinal , Microbiota , Suplementos Nutricionais , Humanos , Microbiota/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Triptofano/farmacologia
12.
Cells ; 11(5)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269538

RESUMO

The mucosal immune system of the respiratory tract possesses an effective "defense barrier" against the invading pathogenic microorganisms; therefore, the lungs of healthy organisms are considered to be sterile for a long time according to the strong pathogens-eliminating ability. The emergence of next-generation sequencing technology has accelerated the studies about the microbial communities and immune regulating functions of lung microbiota during the past two decades. The acquisition and maturation of respiratory microbiota during childhood are mainly determined by the birth mode, diet structure, environmental exposure and antibiotic usage. However, the formation and development of lung microbiota in early life might affect the occurrence of respiratory diseases throughout the whole life cycle. The interplay and crosstalk between the gut and lung can be realized by the direct exchange of microbial species through the lymph circulation, moreover, the bioactive metabolites produced by the gut microbiota and lung microbiota can be changed via blood circulation. Complicated interactions among the lung microbiota, the respiratory viruses, and the host immune system can regulate the immune homeostasis and affect the inflammatory response in the lung. Probiotics, prebiotics, functional foods and fecal microbiota transplantation can all be used to maintain the microbial homeostasis of intestinal microbiota and lung microbiota. Therefore, various kinds of interventions on manipulating the symbiotic microbiota might be explored as novel effective strategies to prevent and control respiratory diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Pulmão , Microbiota/fisiologia , Probióticos/uso terapêutico
13.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216335

RESUMO

Chronic low-grade inflammation is a hallmark of aging, which is now coined as inflamm-aging. Inflamm-aging contributes to many age-associated diseases such as obesity, type 2 diabetes, cardiovascular disease, and inflammatory bowel disease (IBD). We have shown that gut hormone ghrelin, via its receptor growth hormone secretagogue receptor (GHS-R), regulates energy metabolism and inflammation in aging. Emerging evidence suggests that gut microbiome has a critical role in intestinal immunity of the host. To determine whether microbiome is an integral driving force of GHS-R mediated immune-metabolic homeostasis in aging, we assessed the gut microbiome profiles of young and old GHS-R global knockout (KO) mice. While young GHS-R KO mice showed marginal changes in Bacteroidetes and Firmicutes, aged GHS-R KO mice exhibited reduced Bacteroidetes and increased Firmicutes, featuring a disease-susceptible microbiome profile. To further study the role of GHS-R in intestinal inflammation in aging, we induced acute colitis in young and aged GHS-R KO mice using dextran sulfate sodium (DSS). The GHS-R KO mice showed more severe disease activity scores, higher proinflammatory cytokine expression, and decreased expression of tight junction markers. These results suggest that GHS-R plays an important role in microbiome homeostasis and gut inflammation during aging; GHS-R suppression exacerbates intestinal inflammation in aging and increases vulnerability to colitis. Collectively, our finding reveals for the first time that GHS-R is an important regulator of intestinal health in aging; targeting GHS-R may present a novel therapeutic strategy for prevention/treatment of aging leaky gut and inflammatory bowel disease.


Assuntos
Envelhecimento/metabolismo , Colite/metabolismo , Disbiose/metabolismo , Receptores de Grelina/metabolismo , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiologia , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/fisiologia , Obesidade/metabolismo
14.
Reproduction ; 163(5): R81-R96, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35195535

RESUMO

Microbiome or microbiota is essential to regulate many mammalian physiological processes, including reproduction. Like other organs or tissues, the upper female reproductive tract used to be considered as devoid of microorganisms; however, a non-infection-related bacterial community was discovered in the uterus from humans and other mammals, and its composition is related to reproductive success. The dysbiosis of endometrial microbiota is associated with benign and malign uterine diseases. Hence, this review addressed the current knowledge about uterine microbiota alterations and their association with common endometrial diseases, including endometrial polyposis, endometriosis, uterine myomatosis, endometrial hyperplasia, and endometrial cancer. There is a specific bacterial community in the endometrium in the most-analyzed uterine diseases. However, the constant finding consists in a reduced abundance of Firmicutes and Lactobacillus, while there is an increased abundance of Proteobacteria (such as Escherichia coli and Enterococcus), Bacteroidetes (Prevotella, for example), and Actinobacteria (as Gardnerella), in contrast to healthy endometrium. Besides, we discussed the future usefulness of the endometrial microbiota components as biomarkers to diagnose uterine diseases and their probable clinical outcomes. In addition, we analyzed their potential use as probiotics since they could provide an alternative or complement to existing therapies.


Assuntos
Endometriose , Microbiota , Doenças Uterinas , Animais , Endométrio/microbiologia , Feminino , Humanos , Mamíferos , Microbiota/fisiologia , Útero/microbiologia
15.
Nature ; 602(7898): 647-653, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165440

RESUMO

Integration of sensory and molecular inputs from the environment shapes animal behaviour. A major site of exposure to environmental molecules is the gastrointestinal tract, in which dietary components are chemically transformed by the microbiota1 and gut-derived metabolites are disseminated to all organs, including the brain2. In mice, the gut microbiota impacts behaviour3, modulates neurotransmitter production in the gut and brain4,5, and influences brain development and myelination patterns6,7. The mechanisms that mediate the gut-brain interactions remain poorly defined, although they broadly involve humoral or neuronal connections. We previously reported that the levels of the microbial metabolite 4-ethylphenyl sulfate (4EPS) were increased in a mouse model of atypical neurodevelopment8. Here we identified biosynthetic genes from the gut microbiome that mediate the conversion of dietary tyrosine to 4-ethylphenol (4EP), and bioengineered gut bacteria to selectively produce 4EPS in mice. 4EPS entered the brain and was associated with changes in region-specific activity and functional connectivity. Gene expression signatures revealed altered oligodendrocyte function in the brain, and 4EPS impaired oligodendrocyte maturation in mice and decreased oligodendrocyte-neuron interactions in ex vivo brain cultures. Mice colonized with 4EP-producing bacteria exhibited reduced myelination of neuronal axons. Altered myelination dynamics in the brain have been associated with behavioural outcomes7,9-14. Accordingly, we observed that mice exposed to 4EPS displayed anxiety-like behaviours, and pharmacological treatments that promote oligodendrocyte differentiation prevented the behavioural effects of 4EPS. These findings reveal that a gut-derived molecule influences complex behaviours in mice through effects on oligodendrocyte function and myelin patterning in the brain.


Assuntos
Ansiedade , Microbioma Gastrointestinal , Microbiota , Animais , Ansiedade/metabolismo , Bactérias , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Bainha de Mielina , Fenóis/metabolismo
16.
BMC Microbiol ; 22(1): 53, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151278

RESUMO

BACKGROUND: Cancer impacts millions of lives globally each year, with approximately 10 million cancer-related deaths recorded worldwide in 2020. Mounting research has recognised the human microbiome as a key area of interest in the pathophysiology of various human diseases including cancer tumorigenesis, progression and in disease outcome. It is suggested that approximately 20% of human cancers may be linked to microbes. Certain residents of the human microbiome have been identified as potentially playing a role, including: Helicobacter pylori, Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Porphyromonas gingivalis. MAIN BODY: In this review, we explore the current evidence that indicate a link between the human microbiome and cancer. Microbiome compositional changes have been well documented in cancer patients. Furthermore, pathogenic microbes harbouring specific virulence factors have been implicated in driving the carcinogenic activity of various malignancies including colorectal, gastric and pancreatic cancer. The associated genetic mechanisms with possible roles in cancer will be outlined. It will be indicated which microbes have a potential direct link with cancer cell proliferation, tumorigenesis and disease progression. Recent studies have also linked certain microbial cytotoxins and probiotic strains to cancer cell death, suggesting their potential to target the tumour microenvironment given that cancer cells are integral to its composition. Studies pertaining to such cytotoxic activity have suggested the benefit of microbial therapies in oncological treatment regimes. It is also apparent that bacterial pathogenic protein products encoded for by certain loci may have potential as oncogenic therapeutic targets given their possible role in tumorigenesis. CONCLUSION: Research investigating the impact of the human microbiome in cancer has recently gathered pace. Vast amounts of evidence indicate the human microbiome as a potential player in tumorigenesis and progression. Promise in the development of cancer biomarkers and in targeted oncological therapies has also been demonstrated, although more studies are needed. Despite extensive in vitro and in vivo research, clinical studies involving large cohorts of human patients are lacking. The current literature suggests that further intensive research is necessary to validate both the role of the human microbiome in cancer, and the use of microbiome modification in cancer therapy.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/terapia , Microbiota/genética , Animais , Bacteroides fragilis/genética , Bacteroides fragilis/patogenicidade , Carcinogênese/patologia , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/patogenicidade , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Camundongos , Microbiota/fisiologia , Probióticos , Microambiente Tumoral , Fatores de Virulência
17.
BMC Microbiol ; 22(1): 55, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164712

RESUMO

BACKGROUND: The rhizosphere is the narrow zone of soil immediately surrounding the root, and it is a critical hotspot of microbial activity, strongly influencing the physiology and development of plants. For analyzing the relationship between the microbiome and metabolome in the rhizosphere of tea (Camellia sinensis) plants, the bacterial composition and its correlation to soil metabolites were investigated under three different fertilization treatments (unfertilized, urea, cow manure) in different growing seasons (spring, early and late summer). RESULTS: The bacterial phyla Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria dominated the rhizosphere of tea plants regardless of the sampling time. These indicated that the compositional shift was associated with different fertilizer/manure treatments as well as the sampling time. However, the relative abundance of these enriched bacteria varied under the three different fertilizer regimes. Most of the enriched metabolic pathways stimulated by different fertilizer application were all related to sugars, amino acids fatty acids and alkaloids metabolism. Organic acids and fatty acids were potential metabolites mediating the plant-bacteria interaction in the rhizosphere. Bacteria in the genera Proteiniphilum, Fermentimonas and Pseudomonas in spring, Saccharimonadales and Gaiellales in early summer, Acidobacteriales and Gaiellales in late summer regulated relative contents of organic and fatty acids. CONCLUSION: This study documents the profound changes to the rhizosphere microbiome and bacterially derived metabolites under different fertilizer regimes and provides a conceptual framework towards improving the performance of tea plantations.


Assuntos
Camellia sinensis/microbiologia , Esterco/análise , Microbiota/genética , Rizosfera , Microbiologia do Solo , Agricultura , Animais , Bactérias/classificação , Bactérias/genética , Bovinos , Metaboloma , Microbiota/fisiologia , Solo/química
18.
Sci Rep ; 12(1): 2064, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136122

RESUMO

Microbial community metabolism and functionality play a key role modulating global biogeochemical processes. However, the metabolic activities and contribution of actively growing prokaryotes to ecosystem energy fluxes remain underexplored. Here we describe the temporal and spatial dynamics of active prokaryotes in the different water masses of the Mediterranean Sea using a combination of bromodeoxyuridine labelling and 16S rRNA gene Illumina sequencing. Bulk and actively dividing prokaryotic communities were drastically different and depth stratified. Alteromonadales were rare in bulk communities (contributing 0.1% on average) but dominated the actively dividing community throughout the overall water column (28% on average). Moreover, temporal variability of actively dividing Alteromonadales oligotypes was evinced. SAR86, Actinomarinales and Rhodobacterales contributed on average 3-3.4% each to the bulk and 11, 8.4 and 8.5% to the actively dividing communities in the epipelagic zone, respectively. SAR11 and Nitrosopumilales contributed less to the actively dividing than to the bulk communities during all the study period. Noticeably, the large contribution of these two taxa to the total prokaryotic communities (23% SAR11 and 26% Nitrosopumilales), especially in the meso- and bathypelagic zones, results in important contributions to actively dividing communities (11% SAR11 and 12% Nitrosopumilales). The intense temporal and spatial variability of actively dividing communities revealed in this study strengthen the view of a highly dynamic deep ocean. Our results suggest that some rare or low abundant phylotypes from surface layers down to the deep sea can disproportionally contribute to the activity of the prokaryotic communities, exhibiting a more dynamic response to environmental changes than other abundant phylotypes, emphasizing the role they might have in community metabolism and biogeochemical processes.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Archaea/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Microbiota/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Archaea/classificação , Archaea/genética , Bromodesoxiuridina/química , Meio Ambiente , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Mar Mediterrâneo , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
19.
Microbiol Spectr ; 10(1): e0190921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138192

RESUMO

Microbial community structure is influenced by the environment and in turn exerts control on many environmental parameters. We applied this concept in a bioreactor study to test whether microbial community structure contains information sufficient to predict the concentration of H2S as the product of sulfate reduction. Microbial sulfate reduction is a major source of H2S in many industrial and environmental systems and is often influenced by the existing physicochemical conditions. Production of H2S in industrial systems leads to occupational hazards and adversely affects the quality of products. A long-term (148 days) experiment was conducted in upflow bioreactors to mimic sulfidogenesis, followed by inhibition with nitrate salts and a resumption of H2S generation when inhibition was released. We determined microbial community structure in 731 samples across 20 bioreactors using 16S rRNA gene sequencing and applied a random forest algorithm to successfully predict different phases of sulfidogenesis and mitigation (accuracy = 93.17%) and sessile and effluent microbial communities (accuracy = 100%). Similarly derived regression models that also included cell abundances were able to predict H2S concentration with remarkably high fidelity (R2 > 0.82). Metabolic profiles based on microbial community structure were also found to be reliable predictors for H2S concentration (R2 = 0.78). These results suggest that microbial community structure contains information sufficient to predict sulfidogenesis in a closed system, with anticipated applications to microbially driven processes in open environments. IMPORTANCE Microbial communities control many biogeochemical processes. Many of these processes are impractical or expensive to measure directly. Because the taxonomic structure of the microbial community is indicative of its function, it encodes information that can be used to predict biogeochemistry. Here, we demonstrate how a machine learning technique can be used to predict sulfidogenesis, a key biogeochemical process in a model system. A distinction of this research was the ability to predict H2S production in a bioreactor from the effluent bacterial community structure without direct observations of the sessile community or other environmental conditions. This study establishes the ability to use machine learning approaches in predicting sulfide concentrations in a closed system, which can be further developed as a valuable tool for predicting biogeochemical processes in open environments. As machine learning algorithms continue to improve, we anticipate increased applications of microbial community structure to predict key environmental and industrial processes.


Assuntos
Florestas , Aprendizado de Máquina , Microbiota/fisiologia , Modelos Biológicos , Árvores/microbiologia , Reatores Biológicos/microbiologia , Microbiota/genética , RNA Ribossômico 16S/genética
20.
Sci Rep ; 12(1): 2006, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132164

RESUMO

Characterization of the microbial community is essential for understanding the symbiotic relationships between microbes and host insects. Chrysomya megacephala is a vital resource, a forensic insect, a pollinator, and a vector for enteric bacteria, protozoa, helminths, and viruses. However, research on its microbial community is incomprehensive, particularly at the pupal stage, which comprises approximately half of the entire larval development stage and is important entomological evidence in forensic medicine. For the first time, this study investigated the bacterial communities of C. megacephala pupae at different ages using third-generation sequencing technology. The results showed that C. megacephala has a diverse and dynamic bacterial community. Cluster analysis at ≥ 97% similarity produced 154 operational taxonomic units (OTUs) that belonged to 10 different phyla and were distributed into 15 classes, 28 orders, 50 families, 88 genera, and 130 species. Overall, the number of bacterial OTUs increased with the development of pupae, and the relative abundance of Wolbachia in the Day5 group was significantly lower than that in the other groups. Within the pupal stage, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla of bacteria. At the genus level, Wolbachia and Ignatzschineria coexisted, a rarely known feature. In addition, we found Erysipelothrix rhusiopathiae, the etiological agent of swine erysipelas, which is rarely identified in insects. This study enriches the understanding of the microbial community of C. megacephala and provides a reference for better utilization and control of C. megacephala.


Assuntos
Calliphoridae/microbiologia , Microbiota , Pupa/microbiologia , Análise de Sequência de RNA/métodos , Animais , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/fisiologia , Erysipelothrix/genética , Erysipelothrix/isolamento & purificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/fisiologia , Entomologia Forense , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/fisiologia , Microbiota/genética , Microbiota/fisiologia , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/fisiologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Simbiose , Wolbachia/genética , Wolbachia/isolamento & purificação , Wolbachia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...