Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.175
Filtrar
1.
Talanta ; 233: 122496, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215114

RESUMO

In this work, a synergistic imprinting strategy combined with metal coordination based on ligand-free Fe3O4-Cu was proposed to fabricate molecularly imprinted polymers (MIPs) for the recognition and isolation of bovine hemoglobin (BHb) specifically in biological samples. Copper doped magnetic microspheres prepared solvothermally in a one-pot pathway act as both magnetic core and metal affinity substrate. Upon anchoring BHb to Fe3O4-Cu through metal coordination, the imprinted layer was formed via dopamine self-polymerization. Profiting from the synergistic effect, the obtained imprinted microspheres exhibited an enhanced adsorption performance with the adsorption capacity of 400.86 mg g-1, imprinting factor of 11.88, selectivity coefficient above 5.8, superior to most of other reported BHb-MIPs. Furthermore, kinetic adsorption analyses pointed to a chemisorption-limited process as described by the pseudo-second-order model, and the isothermal adsorption analyses implied monolayer adsorption, as described by the Langmuir model. In addition, the resultant magnetic MIPs can be used at least six adsorption-desorption cycles without re-incubation in the metallic salt solution, avoiding secondary environmental pollution. Furthermore, the well-defined materials showed selectivity both in individual protein samples and bovine serum, providing a promising potential in bioseparation.


Assuntos
Impressão Molecular , Adsorção , Animais , Bovinos , Hemoglobinas , Fenômenos Magnéticos , Microesferas , Polímeros
2.
Ceska Slov Farm ; 70(1): 32-40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237951

RESUMO

Microparticles based on biodegradable synthetic lactic acid and glycolic acid copolymer (PLGA) were successfully prepared by the solvent evaporation method. Ibuprofen was chosen as the model drug. Various formulation and process parameters have been used to prepare each sample with emphasis on size reduction. The effect of the emulsification method (direct emulsification or emulsification using an ULTRA-TURRAX or a NE-1000 dispenser), the volume of the aqueous phase (200, 800 ml) and the stirring speed of the emulsion system (600, 1000 rpm) on the characteristic properties of microparticles, such as encapsulation efficiency, drug loading and particle morphology, was observed. The resulting microparticles were evaluated by optical microscopy or laser diffraction and the dissolution test was performed. It was found that the sample prepared by direct emulsification with 800 ml of an aqueous phase at 600 rpm provided the most favorable results, meanwhile the emulsification pre-step using a homogenizer caused promising particle size reduction. Gradual emulsification was evaluated as inapplicable due to great losses. Key words: microparticles solvent evaporation PLGA ibuprofen size reduction.


Assuntos
Ibuprofeno , Ácido Poliglicólico , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
3.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073191

RESUMO

Despite being one of the most studied eye diseases, clinical translation of glaucoma research is hampered, at least in part, by the lack of validated preclinical models and readouts. The most popular experimental glaucoma model is the murine microbead occlusion model, yet the observed mild phenotype, mixed success rate, and weak reproducibility urge for an expansion of available readout tools. For this purpose, we evaluated various measures that reflect early onset glaucomatous changes in the murine microbead occlusion model. Anterior chamber depth measurements and scotopic threshold response recordings were identified as an outstanding set of tools to assess the model's success rate and to chart glaucomatous damage (or neuroprotection in future studies), respectively. Both are easy-to-measure, in vivo tools with a fast acquisition time and high translatability to the clinic and can be used, whenever judged beneficial, in combination with the more conventional measures in present-day glaucoma research (i.e., intraocular pressure measurements and post-mortem histological analyses). Furthermore, we highlighted the use of dendritic arbor analysis as an alternative histological readout for retinal ganglion cell density counts.


Assuntos
Glaucoma , Microesferas , Células Ganglionares da Retina , Animais , Modelos Animais de Doenças , Feminino , Glaucoma/induzido quimicamente , Glaucoma/metabolismo , Glaucoma/patologia , Masculino , Camundongos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
4.
Colloids Surf B Biointerfaces ; 205: 111895, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34102531

RESUMO

Bimetallic alginate aerogel beads were prepared by ionotropic gelation method with Ca2+-Ba2+ bimetallic solution and ibuprofen was loaded as a model drug. The swelling and drug releasing behaviors of the beads, especially the influence of barium, were investigated in artificial gastric and intestinal fluids. The results showed that these beads presented higher encapsulation efficiency due to the special structure of aerogel, and barium was beneficial for the more stable structure and drug releasing behavior. The lower swelling capacity of bimetallic beads was observed than monometallic beads. A rapid high-level releasing of ibuprofen was achieved in artificial intestinal fluid, which was up to 96.9% within 1 h, while ibuprofen releasing was avoided in artificial gastric fluid effectively. The drug releasing mechanism of these beads was explored in detail. In the bimetallic crosslinking system, Ba2+ presented a special effect on alginate beads with more sensitive pH response performance. Thus, these beads had more widely potential as a site-specific delivery system, especially for intestinal therapy.


Assuntos
Alginatos , Ibuprofeno , Preparações de Ação Retardada , Portadores de Fármacos , Liberação Controlada de Fármacos , Ácido Glucurônico , Ácidos Hexurônicos , Concentração de Íons de Hidrogênio , Microesferas
5.
Lab Chip ; 21(14): 2812-2824, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34109338

RESUMO

Cellular mechanical properties (e.g. compressibility) are important biophysical markers in relation to cellular processes and functionality. Among the methods for cell mechanical measurement, acoustofluidic methods appear to be advantageous due to tunability, biocompatibility and acousto-mechanical nature. However, the previous acoustofluidic methods were limited in throughput and number of measurements. In this study, we developed a high-throughput microfluidic compressibility cytometry approach using multi-tilted-angle surface acoustic wave, which can provide thousands of single-cell compressibility measurements within minutes. The compressibility cytometer was constructed to drag microparticles or cells towards the microfluidic channel sidewall at different segments based on their biophysical properties (such as size and compressibility), as a result of the varied balance between acoustics and flow. Mathematical analysis and computational simulation revealed that the compressibility of a cell could be estimated from the position of collision with the sidewall. Microbeads of different materials and sizes were experimentally tested to validate the simulation and to demonstrate the capability to characterise size and compressibility. MDA MB231 cells, of the triple negative breast cancer subtype, were treated with the microtubule disrupting agent colchicine which increased compressibility and treated with the actin disrupting agent cytochalasin B which increased cell size but did not change compressibility. Moreover, the highly metastatic variant MDA MB231 LNm5 cell line showed increased compressibility compared to the parent MDA MB231 cells, indicating the potential utility of high-throughput mechanophenotyping for tumour cell characterisation.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Acústica , Linhagem Celular , Citometria de Fluxo , Microesferas , Som
6.
Molecules ; 26(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073377

RESUMO

Bioactive glasses (BGs) are being increasingly considered for biomedical applications. One convenient approach to utilize BGs in tissue engineering and drug delivery involves their combination with organic biomaterials in order to form composites with enhanced biocompatibility and biodegradability. In this work, mesoporous bioactive glass nanoparticles (MBGN) have been merged with polyhydroxyalkanoate microspheres with the purpose to develop drug carriers. The composite carriers (microspheres) were loaded with curcumin as a model drug. The toxicity and delivery rate of composite microspheres were tested in vitro, reaching a curcumin loading efficiency of over 90% and an improving of biocompatibility of different concentrations of MBGN due to its administrations through the composite. The composite microspheres were tested in terms of controlled release, biocompatibility and bioactivity. Our results demonstrate that the composite microspheres can be potentially used in biomedicine due to their dual effects: bioactivity (due to the presence of MBGN) and curcumin release capability.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Vidro , Nanopartículas/química , Poliésteres/química , Linhagem Celular , Curcumina , Portadores de Fármacos , Durapatita/química , Emulsões , Humanos , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Microesferas , Osteoblastos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Difração de Raios X
7.
Environ Sci Technol ; 55(13): 8613-8621, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165282

RESUMO

The addition of Fe2O3 into furnaces is a promising method for arsenic pollution control. Nevertheless, Fe2O3 particles undergo serious sintering under actual furnace temperatures. To improve its sintering resistance, Fe2O3 hollow microspheres were synthesized by the template method and were tested in flue gas containing SO2 and NO in the range of 1000-1300 °C. The results demonstrated that the amount of arsenic captured could be steadily maintained above 5 mg/g throughout the operating temperature range, and Fe2O3 microspheres could maintain the originally developed pore structure and hollow morphology well even at 1200 °C. Based on product analysis and density functional theory calculations, the fixation pathway of arsenic was proposed. In no oxygen conditions, As2O3 was first bound to the Fe2O3 surface by forming an -O-As-O-Fe stable structure and then was oxidized by lattice oxygen. The introduction of O2 could regenerate the consumed lattice oxygen and therefore promote arsenic capture. Finally, the oxidized arsenic was fixed in products in the form of FeAsO4. Additionally, the impact of acid gases was also investigated. SO2 showed a notable inhibiting effect on arsenic capture, while the impact of NO was less noticeable.


Assuntos
Arsênio , Ácidos , Gases , Microesferas , Oxirredução
8.
Sci Total Environ ; 783: 147088, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088145

RESUMO

Striped rice stem borer, Chilo suppressalis (Walker) and pink stem borer, Sesamia inferens (Walker) are two important pests, causing substantial yield loss in rice production. Application of conventional synthetic pesticides, such as suspension concentrates and water-dispersible granules, is a primary method for control of the two pests. Due to the flow of water in rice field, spray drift, and soil adsorption, applied such pesticides are often out of the target, resulting in low control efficacy, potential contamination of soil or surface water, and also threat to human health. Thus, there is an urgent need for developing environmentally friendly and highly targeted pesticide formulations to meet the challenges. The present study synthesized chlorantraniliprole loaded chitosan-alginate floating hydrogel microspheres (CCAM) through physical embedding, ionic crosslinking, and incorporation of citronellol as an oil phase. The morphology, particle size, entrapment efficiency, loading capacity, in vitro slow-release kinetics, and floating ability of the CCAM were tested in laboratory conditions. The CCAM and two commercial formulations (suspended and granulated) of chlorantraniliprole were respectively evaluated in two rice fields located in two provinces of China. The CCAM was able to float on the surface of rice field, gather around rice stems, and slowly release chlorantraniliprole, which resulted in significantly higher concentrations of chlorantraniliprole in rice stems and leaves for a prolonged time than suspended and granulated controls. The application of CCAM provided an on-target control of both striped stem borer and pink stem borer. Furthermore, CCAM application had very low residue of chlorantraniliprole in soils. As far as is known, this is the first report of chlorantraniliprole loaded on chitosan-alginate floating hydrogel microspheres for rice stem borer control. Our results indicate that the synthesized CCAM could potentially be used as a controlled-release product for effective control of the two rice pests, while reducing the residual chlorantraniliprole in the soil and avoiding pesticide drift.


Assuntos
Quitosana , Oryza , Alginatos , China , Humanos , Microesferas , ortoaminobenzoatos
9.
J Biomed Nanotechnol ; 17(5): 901-909, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082875

RESUMO

Alginate/Silk fibroin/hyaluronic acid (ALG/SF/HA) nanocomposites were synthesised using blending, inter-linking, and lyophilization methods. We investigated the physicochemical properties of the resulting nanocomposites, including their water retention, weight loss, porosity and cytocompatibility. The optimum ratios of the ALG/SF/HA scaffolding were 3:6.5:0.5. Nanocomposites with optimum ratios were then prepared by integrating pilose antler polypeptides (PAPS) to poly(lactic-co-glycolic acid) (PLGA) microspheres, and the performance was investigated. PAPS-ALG/SF/HA nanocomposites exhibited desirable adhesions and proliferations. Rabbit cartilage deficiencies was developed by the animal model. The cartilage repair effects deficiencies were detected and analyzed between PAPS-SF/ALG/ALG/SF/HA, and control activity classes. The deficiencies were virtually fully remedied after 13 weeks in the presence of PAPS-ALG/SF/HA class, suggesting that the PAPS-ALG/SF/HA nanocomposites had a positive effects on joint cartilage repair.


Assuntos
Alginatos , Cartilagem Articular , Engenharia Tecidual , Animais , Ácido Hialurônico , Microesferas , Peptídeos , Coelhos , Regeneração , Seda , Tecidos Suporte
10.
J Biomed Nanotechnol ; 17(5): 971-980, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082882

RESUMO

Nanotechnology represents a new impetus for biomedical research applications, especially using nanotechnology to formulate microspheres or nanospheres based delivery system for treatment of infectious diseases in animals. In this work, polylactic acid (PLA) microspheres with an average size of 156 nm were prepared by combining emulsion polymerization coupled with emulsion-solvent evaporation. Coating with polyethylenimine (PEI) polymers increased the surface charges of the resulting PLA/PEI microspheres, thus enabled plasmid DNA to adsorb tightly to the microspheres. As expected, the plasmid DNA was successfully transferred into the pig kidney-15 cells with high transfection efficiency. In addition, the protection rate of PLA/PEI microspheres loaded with DNA vaccine against foot-and-mouth disease in guinea pigs reached 87.5%, which was significantly higher than that of the pure DNA vaccine group. These results indicated that PLA/PEI microspheres were expected to be an effective delivery system for DNA vaccines.


Assuntos
Vacinas de DNA , Animais , Cobaias , Ácido Láctico , Microesferas , Tamanho da Partícula , Poliésteres
11.
Mater Sci Eng C Mater Biol Appl ; 126: 112118, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082935

RESUMO

Fibrous materials are of great interest in the development of tissue regenerative matrix. However, synthesis of inorganic fibrous microspheres as cell carriers is a great challenge. In this study, we for the first time report on the synthesis of novel hierarchical and flower-like TiO2 nanowire (NW) microspheres as biocompatible cell carriers. TiO2 NW microspheres were synthesized through in situ alkali hydrothermal treatment of the TiO2 nanoparticle (NP) microspheres and their microstructure, formation mechanism and in vitro biocompatibility were evaluated. SEM observations show that the resulting TiO2 NW microspheres were constructed by a large number of NWs with the diameter of 10-20 nm and exhibited a flower-like and hierarchical morphology with the diameter of 400-600 µm. XRD patterns indicate that TiO2 NW microspheres were constructed by both rutile and anatase phase of TiO2. FT-IR spectra reveal that Ti-O-Ti bonds were involved in TiO2 NW microspheres. In vitro biocompatibility was evaluated by seeding the fibroblast L929 cells on the microspheres. A conventional MTT assay quantitatively indicates that the TiO2 NW microspheres favored adhesion and proliferation of cells and were biocompatible, while SEM observations qualitatively confirmed that the cells were well grown on the surface of TiO2 NW microspheres. Thus, the as-synthesized TiO2 NW microspheres would be applicable to novel and biocompatible cell carriers.


Assuntos
Nanofios , Microesferas , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio
12.
J Agric Food Chem ; 69(25): 6981-6988, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34134484

RESUMO

Controlled release of pesticides by light regulation is one of the most viable strategies recently developed for the highly efficient utilization of agrochemicals. Herein, we report an infrared-light-responsive pesticide delivery system for the controlled release of imidacloprid (IMI) by preparation of functional hollow carbon microspheres (HCMs). After IMI loading and surface functionalization with polyethylene glycol (PEG) and α-cyclodextrin (α-CD), IMI was sequestered in the pesticide system (denoted as HCMs/IMI/PEG/α-CD) as a result of the formation of a PEG/α-CD gel network. Upon the irradiation of infrared light, HCMs with high photothermal conversion efficiency (42.8%) raised the local temperature effectively, leading to the collapse of the gel network and the release of IMI. In comparison to the amount of pesticide release (29%) under sunlight, it could reach 77% driven by infrared light, which was an intriguing improvement. Consequently, HCMs/IMI/PEG/α-CD under infrared light showed significantly higher pest control efficacy on corn borers by 125% than itself alone. This work provides a promising method to intentionally regulate pesticide release and enhance utilization efficiency.


Assuntos
Praguicidas , alfa-Ciclodextrinas , Carbono , Preparações de Ação Retardada , Microesferas , Polietilenoglicóis
13.
Chemosphere ; 280: 130911, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162124

RESUMO

Developing single-atom Fenton-like catalysts with the maximum utilization of active sites present an attractive potential in environmental remediation. Herein, the single-atom Fe and N co-doped hollow carbon microsphere loaded g-C3N4 catalyst (HFeNC-g-C3N4) was prepared by an innovative cascade anchoring strategy using polystyrene as the hard template, iron phthalocyanine, polydopamine and urea as the Fe, N and C precursor, in which the in-situ generated g-C3N4 could not only effectively anchor Fe atom to create the well-dispersed Fe-Nx active sites, but also accelerate the electron transfer in peroxymonosulfate (PMS) activation. Taking advantages of such sequential protecting strategy, the as-synthesized HFeNC-g-C3N4 catalyst with single-atom Fe-Nx active sites, verified by XRD, XPS and HAADF-STEM, could work as an efficient Fenton-like catalyst for PMS activation, which achieved almost 100% removal of 4-chlorophenol (4-CP) in 5 min with the turnover frequency calculated to be 34.6 times higher than that of the homogeneous Fe2+ catalyst. The mechanism of O2•- dominated radical combined with nonradical 1O2 pathway was confirmed by quenching experiments and ESR analysis, which might be interrelated to the improvement of pH adaptability and interference immunity of HFeNC-g-C3N4/PMS system. Overall, the present findings provided an innovation strategy for the synthesis of excellent single-atom Fe based catalyst in wastewater purification.


Assuntos
Carbono , Ferro , Microesferas , Nitrogênio , Peróxidos
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120039, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34144332

RESUMO

The serum albumin level is inseparable associated with survival in patients with breast cancer, and simultaneously serve as a good indicator of prognosis of cancer. Here, we proposed a novel extraction-isolation analysis method of albumin for breast cancer detection utilizing hydroxyapatite particles (HAp) to targeted adsorb albumin from serum relying on its specific adsorption capacity. An ideal protein-release reagent was used for isolating albumin from the surface of HAp, and meanwhile ensuring that the structure and property of albumin was not suffered damage. The surface-enhanced Raman scattering (SERS) signal of extracted albumin was obtained, and partial least squares (PLS) and linear discriminant analysis (LDA) analysis approach were employed to analyze SERS spectra data, with the aim to assess the capability of HAp method for identifying breast cancer, yielding an ideal diagnostic accuracy of 98.6%, demonstrating promising potential as a non-invasive and sensitive nanotechnology for breast cancer screening.


Assuntos
Neoplasias da Mama , Nanopartículas , Adsorção , Feminino , Humanos , Microesferas , Albumina Sérica , Análise Espectral Raman
15.
Anal Methods ; 13(22): 2485-2494, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34002176

RESUMO

Bead-based multiplex serodiagnostics enables simultaneous analysis of antibodies against several antigens. Binding of the antigens onto the surface of the bead, preserving the antigenicity of the antigen is a pivotal step to ensure high sensitivity and selectivity of the assay. Here, a generic method for immobilization of lipopolysaccharide (LPS) antigens from different Gram-negative bacteria to microbeads using non-covalent conjugation has been developed and tested. The method involves coupling of N,N-diethylethylenediamine (DEDA) and derivatives to microbeads. This enhances non-covalent interactions so that LPS is easily immobilized. LPS antigens from the Gram-negative bacteria Actinobacillus pleuropneumoniae (APP) and Salmonella enterica serogroup B (Sal. B) were immobilized on the DEDA-coupled microbeads. In parallel, the same LPS antigens were coupled to beads using two previously reported methods. The performance of microbeads coupled with antigen using the different methods was compared by measuring antibodies in positive and negative serum samples from pigs. DEDA-beads coupled with LPS detected pathogen specific serum antibodies with equal or higher sensitivity and specificity compared to the other coupling methods used in this study. Furthermore, derivatives of DEDA, where the tertiary amine was alkylated with a methyl (m-DEDA) and ethyl group (e-DEDA) to give a positively charged tetraalkylammonium group, were compared with DEDA for the binding of LPS antigens. Here, it was concluded that the DEDA-modified bead was most efficient in the binding of LPS antigens from two Actinobacillus pleuropneumoniae serovars and Salmonella enterica serogroup B.


Assuntos
Actinobacillus pleuropneumoniae , Doenças dos Suínos , Animais , Anticorpos Antibacterianos , Lipopolissacarídeos , Microesferas , Suínos
16.
Environ Sci Technol ; 55(12): 7990-8000, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018718

RESUMO

The sea urchin Paracentrotus lividus (P. lividus) was exposed to either virgin or biofilm-covered polystyrene microbeads (micro-PS, 45 µm) in order to test the effect of microbial colonization on the uptake, biodistribution, and immune response. The biofilm was dominated by bacteria, as detected by scanning electron microscopy and 16S rRNA sequencing. A higher internalization rate of colonized micro-PS inside sea urchins compared to virgin ones was detected, suggesting a role of the plastisphere in the interaction. Colonized and virgin micro-PS showed the same biodistribution pattern by accumulating mainly in the digestive system with higher levels and faster egestion rates for the colonized. However, a significant increase of catalase and total antioxidant activity was observed only in the digestive system of colonized micro-PS-exposed individuals. Colonized micro-PS also induced a significant decrease in the number of coelomocytes with a significant increase in vibratile cells, compared to control and virgin micro-PS-exposed animals. Moreover, a general time-dependent increase in the red/white amoebocytes ratio and reactive oxygen species and a decrease in nitrogen ones were observed upon exposure to both colonized and virgin micro-PS. Overall, micro-PS colonization clearly affected the uptake and toxicological responses of the Mediterranean sea urchin P. lividus in comparison to virgin micro-PS.


Assuntos
Paracentrotus , Animais , Microesferas , Paracentrotus/genética , Poliestirenos , RNA Ribossômico 16S , Ouriços-do-Mar , Distribuição Tecidual
17.
Anal Bioanal Chem ; 413(18): 4645-4654, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057558

RESUMO

Nucleic acid detection technology based on polymerase chain reaction (PCR) and antibody detection based on immunochromatography still have many problems such as false negatives for the diagnosis of coronavirus disease 2019 (COVID-19). Therefore, it is of great importance to develop new techniques to improve the diagnostic accuracy of COVID-19. We herein developed an ultrasensitive, rapid, and duplex digital enzyme-linked immunosorbent assay (dELISA) for simultaneous detection of spike (S-RBD) and nucleocapsid (N) proteins of SARS-CoV-2 based on a single molecule array. This assay effectively combines magnetic bead encoding technology and the ultrasensitive detection capability of a single molecule array. The detection strategies of S-RBD protein and N-protein exhibited wide response ranges of 0.34-1065 pg/mL and 0.183-338 pg/mL with detection limits of 20.6 fg/mL and 69.8 fg/mL, respectively. It is a highly specific method for the simultaneous detection of S-RBD protein and N-protein and has minimal interference from other blood proteins. Moreover, the spike assay showed a satisfactory and reproducible recovery rate for the detection of S-RBD protein and N-protein in serum samples. Overall, this work provides a highly sensitive method for the simultaneous detection of S-RBD protein and N-protein, which shows ultrasensitivity and high signal-to-noise ratio and contributes to improve the diagnosis accuracy of COVID-19.


Assuntos
COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Imagem Individual de Molécula/métodos , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Proteínas do Nucleocapsídeo de Coronavírus/genética , Ensaio de Imunoadsorção Enzimática/normas , Humanos , Imunoensaio/métodos , Magnetismo , Microesferas , Fosfoproteínas/genética , Fosfoproteínas/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética
18.
Analyst ; 146(9): 2818-2824, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949385

RESUMO

This study presents a rapid and low-cost amplicon detection method in which amplicons are attached to magnetic microbeads, suspended in deionized water, and subjected to a magnetic field on a hydrophilic surface resulting in the circular agglomeration of amplicon-conjugated microbeads, visible to the naked eye.


Assuntos
Magnetismo , Técnicas de Amplificação de Ácido Nucleico , Fenômenos Magnéticos , Microesferas
19.
Xenobiotica ; 51(6): 703-715, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938387

RESUMO

The UPLC-MS/MS method was established with good precision, accuracy and stability to determine the concentrations of TPL in biological samples, such as heart, liver, spleen, lung, kidney, plasma and joint.After being made into microspheres, TPL can stay in the joint tissue for a long time, further reducing the number of times joint cavity administration, and its sustained release effect was significantly improved compared with the solution dosage form.The pharmacokinetic parameters, such as AUC(0-t), AUC(0-∞), T1/2, Tmax, MTR(0-t), and MTR(0-∞) of the TPL-PLGA-MS group were significantly increased compared with those of the solution group. The microsphere preparation could significantly slow the release rate of the drug from the joint cavity.TPL-PLGA-MS can significantly reduce the expression of inflammatory factors such as IL-1, IL-6, TNF-α and hs-CRP. TPL-PLGA-MS for articular cavity injection has potential as a new preparation for the treatment of RA.


Assuntos
Artrite Reumatoide , Espectrometria de Massas em Tandem , Animais , Artrite Reumatoide/tratamento farmacológico , Cromatografia Líquida , Diterpenos , Compostos de Epóxi , Injeções Intra-Articulares , Microesferas , Fenantrenos , Ratos
20.
J Environ Sci Health B ; 56(5): 458-466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999755

RESUMO

The main objective of this study is to develop polymeric encapsulated formulation for the water soluble broad-spectrum pesticides. Pesticides contaminate the environment in different ways but foremost hazards are linked with the contamination of water bodies. Water soluble pesticides are the major deleterious agents and go off into ground water and different water bodies through leaching or surface runoff from the applied places. Besides this some of the water soluble pesticides are broad-spectrum, but proper methods and techniques are not available for their effective and safe usage, all broad-spectrum pesticide are disappearing from the pesticide lists every year. Hence, the present study is based on development of encapsulated formulation for water soluble broad-spectrum pesticide i.e. Monocrotophos. In this study, water soluble pesticide was encapsulated in polyvinyl alcohol (PVA) polymer along with surfactants and cross linker. The developed microspheres were analyzed in HPLC for calculating loading capacity and encapsulation efficacy, these were calculated 0.75 and 90% respectively. The FT-IR data results confirmed that the monocrotophos successfully encapsulated in the PVA polymer with respective bands. The degradation studies show that in encapsulated formulation monocrotophos degradation was found only 10% after 94 hrs. Optical micrographs in aqeous solution indicate spherical shapes with size in the rage of 7-8 µm of encapsulated formulation. XRD data further crystalline nature of polymeric encapsulated formulation. The study may provide a new corridor to save the broad-spectrum water soluble pesticides which are on the verge to be banned.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Praguicidas/química , Poluentes Químicos da Água/química , Preparações de Ação Retardada , Composição de Medicamentos , Microesferas , Monocrotofós/química , Álcool de Polivinil/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...