RESUMO
Intravital microscopy is an invaluable tool to study in real time the dynamic behavior of leukocytes in vivo. We describe herein a simple protocol for time-lapse imaging of tissue-resident macrophages in intact kidney, liver, and spleen in live mice. This method can be used in any commercially available inverted confocal microscope, doesn't require expensive lasers or optics, exhibits minimal organ perturbation, photo bleaching, or phototoxicity, and, hence, it enables the study of tissue-resident macrophages in situ and in vivo under steady state and inflammation.
Assuntos
Ácido Hipocloroso , Microscopia Intravital , Animais , Camundongos , Monitorização Imunológica , Inflamação , MacrófagosRESUMO
Taste bud cells are constantly replaced in taste buds as old cells die and new cells migrate into the bud. The perception of taste relies on new taste bud cells integrating with existing neural circuitry, yet how these new cells connect with a taste ganglion neuron is unknown. Do taste ganglion neurons remodel to accommodate taste bud cell renewal? If so, how much of the structure of taste axons is fixed and how much remodels? Here, we measured the motility and branching of individual taste arbors (the portion of the axon innervating taste buds) in mice over time with two-photon in vivo microscopy. Terminal branches of taste arbors continuously and rapidly remodel within the taste bud. This remodeling is faster than predicted by taste bud cell renewal, with terminal branches added and lost concurrently. Surprisingly, blocking entry of new taste bud cells with chemotherapeutic agents revealed that remodeling of the terminal branches on taste arbors does not rely on the renewal of taste bud cells. Although terminal branch remodeling was fast and intrinsically controlled, no new arbors were added to taste buds, and few were lost over 100 days. Taste ganglion neurons maintain a stable number of arbors that are each capable of high-speed remodeling. We propose that terminal branch plasticity permits arbors to locate new taste bud cells, while stability of arbor number supports constancy in the degree of connectivity and function for each neuron over time.
Assuntos
Interneurônios , Paladar , Animais , Camundongos , Neurônios , Axônios , Microscopia IntravitalRESUMO
The healthy human cornea is a uniquely transparent sensory tissue where immune responses are tightly controlled to preserve vision. The cornea contains immune cells that are widely presumed to be intraepithelial dendritic cells (DCs). Corneal immune cells have diverse cellular morphologies and morphological alterations are used as a marker of inflammation and injury. Based on our imaging of corneal T cells in mice, we hypothesized that many human corneal immune cells commonly defined as DCs are intraepithelial lymphocytes (IELs). To investigate this, we developed functional in vivo confocal microscopy (Fun-IVCM) to investigate cell dynamics in the human corneal epithelium and stroma. We show that many immune cells resident in the healthy human cornea are T cells. These corneal IELs are characterized by rapid, persistent motility and interact with corneal DCs and sensory nerves. Imaging deeper into the corneal stroma, we show that crawling macrophages and rare motile T cells patrol the tissue. Furthermore, we identify altered immune cell behaviors in response to short-term contact lens wear (acute inflammatory stimulus), as well as in individuals with allergy (chronic inflammatory stimulus) that was modulated by therapeutic intervention. These findings redefine current understanding of immune cell subsets in the human cornea and reveal how resident corneal immune cells respond and adapt to chronic and acute stimuli.
Assuntos
Córnea , Epitélio Corneano , Animais , Humanos , Camundongos , Vias Aferentes , Inflamação , Microscopia IntravitalRESUMO
Understanding normal and aberrant in vivo cell behaviors is necessary to develop clinical interventions to thwart disease initiation and progression. It is therefore critical to optimize imaging approaches that facilitate the observation of cell dynamics in situ, where tissue structure and composition remain unperturbed. The epidermis is the body's outermost barrier, as well as the source of the most prevalent human cancers, namely cutaneous skin carcinomas. The accessibility of skin tissue presents a unique opportunity to monitor epithelial and dermal cell behaviors in intact animals using noninvasive intravital microscopy. Nevertheless, this sophisticated imaging approach has primarily been achieved using upright multiphoton microscopes, which represent a significant barrier for entry for most investigators. This study presents a custom-designed, 3D-printed microscope stage insert suitable for use with inverted confocal microscopes, streamlining the long-term intravital imaging of ear skin in live transgenic mice. We believe this versatile invention, which may be customized to fit the inverted microscope brand and model of choice and adapted to image additional organ systems, will prove invaluable to the greater scientific research community by significantly enhancing the accessibility of intravital microscopy. This technological advancement is critical for bolstering our understanding of live cell dynamics in normal and disease contexts.
Assuntos
Neoplasias Cutâneas , Pele , Camundongos , Animais , Humanos , Pele/diagnóstico por imagem , Microscopia Intravital/métodos , Epiderme , Camundongos TransgênicosRESUMO
Intravital microscopy in small animals growingly contributes to the visualization of short- and long-term mammalian biological processes. Miniaturized fluorescence microscopy has revolutionized the observation of live animals' neural circuits. The technology's ability to further miniaturize to improve freely moving experimental settings is limited by its standard lens-based layout. Typical miniature microscope designs contain a stack of heavy and bulky optical components adjusted at relatively long distances. Computational lensless microscopy can overcome this limitation by replacing the lenses with a simple thin mask. Among other critical applications, Flat Fluorescence Microscope (FFM) holds promise to allow for real-time brain circuits imaging in freely moving animals, but recent research reports show that the quality needs to be improved, compared with imaging in clear tissue, for instance. Although promising results were reported with mask-based fluorescence microscopes in clear tissues, the impact of light scattering in biological tissue remains a major challenge. The outstanding performance of deep learning (DL) networks in computational flat cameras and imaging through scattering media studies motivates the development of deep learning models for FFMs. Our holistic ray-tracing and Monte Carlo FFM computational model assisted us in evaluating deep scattering medium imaging with DL techniques. We demonstrate that physics-based DL models combined with the classical reconstruction technique of the alternating direction method of multipliers (ADMM) perform a fast and robust image reconstruction, particularly in the scattering medium. The structural similarity indexes of the reconstructed images in scattering media recordings were increased by up to 20% compared with the prevalent iterative models. We also introduce and discuss the challenges of DL approaches for FFMs under physics-informed supervised and unsupervised learning.
Assuntos
Aprendizado Profundo , Cristalino , Lentes , Animais , Microscopia de Fluorescência/métodos , Microscopia Intravital , Processamento de Imagem Assistida por Computador/métodos , MamíferosRESUMO
Regulatory T cells play key roles in skin homeostasis and inflammation and in regulating antitumor responses. Understanding of the biology of this cell type has been improved by the use of intravital microscopy for their visualization in various organs. Here we describe a multiphoton microscopy-based technique for intravital imaging of regulatory T cells in the skin. We provide a protocol for a model of antigen-dependent inflammation that induces robust regulatory T cell recruitment to the skin and describe the use of a regulatory T cell reporter mouse for visualization of these cells in inflamed skin.
Assuntos
Pele , Linfócitos T Reguladores , Animais , Camundongos , Linfócitos T Reguladores/patologia , Pele/patologia , Inflamação/patologia , Antígenos , Microscopia Intravital/métodosRESUMO
Investigating intestinal recovery in vivo is an exquisite technical challenge. A lack of longitudinal imaging protocols has prevented deeper insights into the cell and tissue scale dynamics that orchestrate intestinal regeneration. Here, we describe an intravital microscopy method that locally induces tissue damage at the single crypt scale and follows the regenerative response of the intestinal epithelium in living mice. Single crypts or larger intestinal fields were ablated by a high-intensity multiphoton infrared laser in a time- and space-controlled manner. Subsequent long-term repetitive intravital imaging enabled the tracking of the damaged areas over time and allowed for the monitoring of crypt dynamics during tissue recovery over a period of multiple weeks. Crypt remodeling events such as crypt fission, fusion, and disappearance were observed in the neighboring tissue upon laser-induced damage. This protocol enables the study of crypt dynamics both in homeostatic and pathophysiological settings, such as aging and tumor initiation.
Assuntos
Mucosa Intestinal , Terapia a Laser , Camundongos , Animais , Microscopia IntravitalRESUMO
Pancreatic cancer is a lethal disease with few successful treatment options. Recent evidence demonstrates that tumor hypoxia promotes pancreatic tumor invasion, metastasis, and therapy resistance. However, little is known about the complex relationship between hypoxia and the pancreatic tumor microenvironment (TME). In this study, we developed a novel intravital fluorescence microscopy platform with an orthotopic mouse model of pancreatic cancer to study tumor cell hypoxia within the TME in vivo, at cellular resolution, over time. Using a fluorescent BxPC3-DsRed tumor cell line with a hypoxia-response element (HRE)/green fluorescent protein (GFP) reporter, we showed that HRE/GFP is a reliable biomarker of pancreatic tumor hypoxia, responding dynamically and reversibly to changing oxygen concentrations within the TME. We also characterized the spatial relationships between tumor hypoxia, microvasculature, and tumor-associated collagen structures using in vivo second harmonic generation microscopy. This quantitative multimodal imaging platform enables the unprecedented study of hypoxia within the pancreatic TME in vivo.
Assuntos
Neoplasias Pancreáticas , Hipóxia Tumoral , Camundongos , Animais , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Proteínas de Fluorescência Verde/metabolismo , Linhagem Celular Tumoral , Hipóxia , Modelos Animais de Doenças , Microscopia Intravital , Microambiente TumoralRESUMO
High-resolution in vivo microscopy approaches can reveal subtle information and fine details inside the model animal Caenorhabditis elegans (C. elegans), but require strong animal immobilization to prevent motion blur in the images. Unfortunately, most current immobilization techniques require substantial manual effort, rendering high-resolution imaging low-throughput. Immobilization of C. elegans is greatly simplified by using a cooling approach that can easily immobilize entire populations directly on their cultivation plates. The cooling stage can establish and maintain a wide range of temperatures with a uniform distribution on the cultivation plate. In this article, the whole process of building the cooling stage is documented. The aim is that a typical researcher can build an operational cooling stage in their laboratory following this protocol without difficulty. Utilization of the cooling stage following three protocols is shown, and each protocol has advantages for different experiments. Also shown is an example cooling profile of the stage as it approaches its final temperature and some helpful tips in using cooling immobilization.
Assuntos
Caenorhabditis elegans , Diagnóstico por Imagem , Animais , Temperatura Baixa , Temperatura , Microscopia IntravitalRESUMO
The goal of this protocol is to demonstrate how to longitudinally visualize the expression and localization of a protein of interest within specific cell types of an animal's brain, upon exposure to exogenous stimuli. Here, the administration of a closed-skull traumatic brain injury (TBI) and simultaneous implantation of a cranial window for subsequent longitudinal intravital imaging in mice is shown. Mice are intracranially injected with an adeno-associated virus (AAV) expressing enhanced green fluorescent protein (EGFP) under a neuronal specific promoter. After 2 to 4 weeks, the mice are subjected to a repetitive TBI using a weight drop device over the AAV injection location. Within the same surgical session, the mice are implanted with a metal headpost and then a glass cranial window over the TBI impacting site. The expression and cellular localization of EGFP is examined using a two-photon microscope in the same brain region exposed to trauma over the course of months.
Assuntos
Lesões Encefálicas Traumáticas , Crânio , Camundongos , Animais , Crânio/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Cabeça , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Corantes , Microscopia Intravital/métodosRESUMO
The significance of performing large-depth dynamic microscopic imaging in vivo for life science research cannot be overstated. However, the optical throughput of the microscope limits the available information per unit of time, i.e., it is difficult to obtain both high spatial and temporal resolution at once. Here, a method is proposed to construct a kind of intravital microscopy with high optical throughput, by making near-infrared-II (NIR-II, 900-1880 nm) wide-field fluorescence microscopy learn from two-photon fluorescence microscopy based on a scale-recurrent network. Using this upgraded NIR-II fluorescence microscope, vessels in the opaque brain of a rodent are reconstructed three-dimensionally. Five-fold axial and thirteen-fold lateral resolution improvements are achieved without sacrificing temporal resolution and light utilization. Also, tiny cerebral vessel dilatations in early acute respiratory failure mice are observed, with this high optical throughput NIR-II microscope at an imaging speed of 30 fps.
Assuntos
Aprendizado Profundo , Animais , Camundongos , Microscopia de Fluorescência/métodos , Microscopia Intravital , Encéfalo/diagnóstico por imagem , Corantes FluorescentesRESUMO
Clinical and dermoscopic features of atypical fibroxanthoma (AFX) are mostly non-diagnostic, so other in vivo diagnostic tools may give additional clues for accurate clinical diagnosis, such as in vivo reflectance confocal microscopy (RCM). However, there has been scarce data on RCM features of AFX in the literature, in only clear cell type. Herein we present a case of epithelioid cell predominant type AFX with RCM findings.
Assuntos
Dermoscopia , Neoplasias Cutâneas , Humanos , Microscopia Confocal , Neoplasias Cutâneas/diagnóstico por imagem , Diagnóstico Diferencial , Microscopia IntravitalRESUMO
As an emerging imaging technology, near-infrared II (NIR-II, 1000-1700 nm) fluorescence imaging has significant potential in the biomedical field, owing to its high sensitivity, deep tissue penetration, and superior imaging with spatial and temporal resolution. However, the method to facilitate the implementation of NIR-II fluorescence imaging for some urgently needed fields, such as medical science and pharmacy, has puzzled relevant researchers. This protocol describes in detail the construction and bioimaging applications of a NIR-II fluorescence molecular probe, HLY1, with a D-A-D (donor-acceptor-donor) skeleton. HLY1 showed good optical properties and biocompatibility. Furthermore, NIR-II vascular and tumor imaging in mice was performed using a NIR-II optics imaging device. Real-time high-resolution NIR-II fluorescence images were acquired to guide the detection of tumors and vascular diseases. From probe preparation to data acquisition, the imaging quality is greatly improved, and the authenticity of the NIR-II molecular probes for data recording in intravital imaging is ensured.
Assuntos
Corantes Fluorescentes , Neoplasias , Animais , Camundongos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Microscopia IntravitalRESUMO
OBJECTIVE: The blood-brain barrier (BBB) is an obstacle for cerebral drug delivery. Controlled permeabilization of the barrier by external stimuli can facilitate the delivery of drugs to the brain. Acoustic Cluster Therapy (ACT®) is a promising strategy for transiently and locally increasing the permeability of the BBB to macromolecules and nanoparticles. However, the mechanism underlying the induced permeability change and subsequent enhanced accumulation of co-injected molecules requires further elucidation. METHODS: In this study, the behavior of ACT® bubbles in microcapillaries in the murine brain was observed using real-time intravital multiphoton microscopy. For this purpose, cranial windows aligned with a ring transducer centered around an objective were mounted to the skull of mice. Dextrans labeled with 2 MDa fluorescein isothiocyanate (FITC) were injected to delineate the blood vessels and to visualize extravasation. DISCUSSION: Activated ACT® bubbles were observed to alter the blood flow, inducing transient and local increases in the fluorescence intensity of 2 MDa FITC-dextran and subsequent extravasation in the form of vascular outpouchings. The observations indicate that ACT® induced a transient vascular leakage without causing substantial damage to the vessels in the brain. CONCLUSION: The study gave novel insights into the mechanism underlying ACT®-induced enhanced BBB permeability which will be important considering treatment optimization for a safe and efficient clinical translation of ACT®.
Assuntos
Barreira Hematoencefálica , Encéfalo , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Barreira Hematoencefálica/diagnóstico por imagem , Fluoresceína/farmacologia , Permeabilidade , Microscopia Intravital , Permeabilidade CapilarRESUMO
Organ decellularization creates cell-free, collagen-based extracellular matrices that can be used as scaffolds for tissue engineering applications. This technique has recently gained much attention, yet adequate scaffold repopulation and implantation remain a challenge. Specifically, there still needs to be a greater understanding of scaffold responses post-transplantation and ways we can improve scaffold durability to withstand the in vivo environment. Recent studies have outlined vascular events that limit organ decellularization/recellularization scaffold viability for long-term transplantation. However, these insights have relied on in vitro/in vivo approaches that need enhanced spatial and temporal resolutions to investigate such issues at the microvascular level. This study uses intravital microscopy to gain instant feedback on their structure, function, and deformation dynamics. Thus, the objective of this study was to capture the effects of in vivo blood flow on the decellularized glomerulus, peritubular capillaries, and tubules after autologous and allogeneic orthotopic transplantation into rats. Large molecular weight dextran molecules labeled the vasculature. They revealed substantial degrees of translocation from glomerular and peritubular capillary tracks to the decellularized tubular epithelium and lumen as early as 12 h after transplantation, providing real-time evidence of the increases in microvascular permeability. Macromolecular extravasation persisted for a week, during which the decellularized microarchitecture was significantly and comparably compromised and thrombosed in both autologous and allogeneic approaches. These results indicate that in vivo multiphoton microscopy is a powerful approach for studying scaffold viability and identifying ways to promote scaffold longevity and vasculogenesis in bioartificial organs.
Assuntos
Engenharia Tecidual , Tecidos Suporte , Ratos , Animais , Tecidos Suporte/química , Engenharia Tecidual/métodos , Matriz Extracelular , Néfrons , Microscopia IntravitalRESUMO
Bone tissue is exquisitely sensitive to differences in mechanical load magnitude. Osteocytes, dendritic cells that form a syncytium throughout the bone, are responsible for the mechanosensory function of bone tissue. Studies employing histology, mathematical modeling, cell culture, and ex vivo bone organ cultures have greatly advanced the understanding of osteocyte mechanobiology. However, the fundamental question of how osteocytes respond to and encode mechanical information at the molecular level in vivo is not well understood. Intracellular calcium concentration fluctuations in osteocytes offer a useful target for learning more about acute bone mechanotransduction mechanisms. Here, we report a method for studying osteocyte mechanobiology in vivo, combining a mouse strain with a fluorescently genetically encoded calcium indicator expressed in osteocytes with an in vivo loading and imaging system to directly detect osteocyte calcium levels during loading. This is achieved with a three-point bending device that can deliver well-defined mechanical loads to the third metatarsal of living mice while simultaneously monitoring fluorescently indicated calcium responses of osteocytes using two-photon microscopy. This technique allows for direct in vivo observation of osteocyte calcium signaling events in response to whole bone loading and is useful in the endeavor to reveal mechanisms in osteocyte mechanobiology.
Assuntos
Mecanotransdução Celular , Osteócitos , Animais , Camundongos , Mecanotransdução Celular/fisiologia , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Corantes , Microscopia Intravital , Estresse MecânicoRESUMO
Due to the limitations of current in vivo experimental designs, our comprehensive knowledge of vascular development and its implications for the development of large-scale engineered tissue constructs is very limited. Therefore, the purpose of this study was to develop unique in vivo imaging chambers that allow the live visualization of cellular processes in the arteriovenous (AV) loop model in rats. We have developed two different types of chambers. Chamber A is installed in the skin using the purse sting fixing method, while chamber B is installed subcutaneously under the skin. Both chambers are filled with modified gelatin hydrogel as a matrix. Intravital microscopy (IVM) was performed after the injection of fluorescein isothiocyanate (FITC)-labeled dextran and rhodamine 6G dye. The AV loop was functional for two weeks in chamber A and allowed visualization of the leukocyte trafficking. In chamber B, microvascular development in the AV loop could be examined for 21 days. Quantification of the microvascular outgrowth was performed using Fiji-ImageJ. Overall, by combining these two IVM chambers, we can comprehensively understand vascular development in the AV loop tissue engineering model¯.
Assuntos
Neovascularização Fisiológica , Engenharia Tecidual , Ratos , Animais , Engenharia Tecidual/métodos , Pele , Microscopia IntravitalRESUMO
Monocytes play essential roles in the inflammatory and anti-inflammatory processes that take place during an immune response, acting both within the vascular network and interstitially. Monocytes are activated, mobilized, and recruited in response to an inflammatory stimulus or different forms of tissue injury. The recruitment of circulating monocytes to the inflamed tissue is essential to resolving the injury.Monocyte recruitment is a multistep process that begins with a decrease in rolling velocity, is followed by adhesion to the endothelium and crawling over the luminal vessel surface, and culminates in monocyte transmigration into the surrounding tissue. Intravital microscopy is a powerful visualization tool for the study of leukocyte behavior and function, intercellular interactions, cell trafficking, and recruitment in pathological and physiological conditions. This modality is therefore widely used for the detailed analysis of the immune response to multiple insults and the molecular mechanisms underlying monocyte interactions within the vascular system in vivo. This chapter describes a protocol for the use of intravital microscopy to analyze monocyte recruitment from the blood vessel to the inflammatory site.
Assuntos
Leucócitos , Monócitos , Humanos , Adesão Celular/fisiologia , Microscopia Intravital , Inflamação , Endotélio Vascular/fisiologiaRESUMO
Cell migration is a very dynamic process involving several chemical as well as biological interactions with other cells and the environment. Several models exist to study cell migration ranging from simple 2D in vitro cultures to more demanding 3D multicellular assays, to complex evaluation in animals. High-resolution 4D (XYZ, spatial + T, time dimension) intravital imaging using transgenic animals with a fluorescent label in cells of interest is a powerful tool to study cell migration in the correct environment. Here we describe an advanced dorsal skinfold chamber model to study endothelial cell and pericyte migration and association.
Assuntos
Microscopia Intravital , Pericitos , Animais , Microscopia Intravital/métodos , Movimento CelularRESUMO
In this series of papers on light microscopy imaging, we have covered the fundamentals of microscopy, super-resolution microscopy, and lightsheet microscopy. This last review covers multi-photon microscopy with a brief reference to intravital imaging and Brainbow labeling. Multi-photon microscopy is often referred to as two-photon microscopy. Indeed, using two-photon microscopy is by far the most common way of imaging thick tissues; however, it is theoretically possible to use a higher number of photons, and three-photon microscopy is possible. Therefore, this review is titled "multi-photon microscopy." Another term for describing multi-photon microscopy is "non-linear" microscopy because fluorescence intensity at the focal spot depends upon the average squared intensity rather than the squared average intensity; hence, non-linear optics (NLO) is an alternative name for multi-photon microscopy. It is this non-linear relationship (or third exponential power in the case of three-photon excitation) that determines the axial optical sectioning capability of multi-photon imaging. In this paper, the necessity for two-photon or multi-photon imaging is explained, and the method of optical sectioning by multi-photon microscopy is described. Advice is also given on what fluorescent markers to use and other practical aspects of imaging thick tissues. The technique of Brainbow imaging is discussed. The review concludes with a description of intravital imaging of the mouse. © 2023 Wiley Periodicals LLC.