Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.037
Filtrar
1.
J Vis Exp ; (166)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33346195

RESUMO

Intravital microscopy of the gut using confocal imaging allows real time observation of epithelial cell shedding and barrier leakage in living animals. Therefore, the intestinal mucosa of anesthetized mice is topically stained with unspecific staining (acriflavine) and a fluorescent tracer (rhodamine-B dextran), mounted on a saline solution-rinsed plate and directly imaged using a confocal microscope. This technique can complement other non-invasive techniques to identify leakage of intestinal permeability, such as transmucosal passage of orally administered tracers. Besides this, the approach presented here allows the direct observation of cell shedding events at real-time. In combination with appropriate fluorescent reporter mice, this approach is suitable for shedding light into cellular and molecular mechanisms controlling intestinal epithelial cell extrusion, as well as to other biological processes. In the last decades, interesting studies using intravital microscopy have contributed to knowledge on endothelial permeability, immune cell gut homing, immune-epithelial communication and invasion of luminal components, among others. Together, the protocol presented here would not only help increase the understanding of mechanisms controlling epithelial cell extrusion, but could also be the basis for the developmental of other approaches to be used as instruments to visualize other highly dynamic cellular process, even in other tissues. Among technical limitations, optical properties of the specific tissue, as well as the selected imaging technology and microscope configuration, would in turn, determine the imaging working distance, and resolution of acquired images.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/fisiologia , Microscopia Intravital , Alquil e Aril Transferases/metabolismo , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Permeabilidade , Coloração e Rotulagem
2.
Nat Commun ; 11(1): 5163, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057020

RESUMO

Parkinson's disease-associated kinase LRRK2 has been linked to IFN type II (IFN-γ) response in infections and to dopaminergic neuronal loss. However, whether and how LRRK2 synergizes with IFN-γ remains unclear. In this study, we employed dopaminergic neurons and microglia differentiated from patient-derived induced pluripotent stem cells carrying LRRK2 G2019S, the most common Parkinson's disease-associated mutation. We show that IFN-γ enhances the LRRK2 G2019S-dependent negative regulation of AKT phosphorylation and NFAT activation, thereby increasing neuronal vulnerability to immune challenge. Mechanistically, LRRK2 G2019S suppresses NFAT translocation via calcium signaling and possibly through microtubule reorganization. In microglia, LRRK2 modulates cytokine production and the glycolytic switch in response to IFN-γ in an NFAT-independent manner. Activated LRRK2 G2019S microglia cause neurite shortening, indicating that LRRK2-driven immunological changes can be neurotoxic. We propose that synergistic LRRK2/IFN-γ activation serves as a potential link between inflammation and neurodegeneration in Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/imunologia , Interferon gama/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Microglia/imunologia , Doença de Parkinson/imunologia , Sinalização do Cálcio/genética , Diferenciação Celular , Citocinas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Técnicas de Inativação de Genes , Glicólise/genética , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Interferon gama/imunologia , Microscopia Intravital , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Microglia/metabolismo , Microtúbulos/metabolismo , Mutação , Fatores de Transcrição NFATC/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Cultura Primária de Células , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células THP-1
3.
Neuron ; 108(1): 33-43, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33058764

RESUMO

Optical imaging has revolutionized our ability to monitor brain activity, spanning spatial scales from synapses to cells to circuits. Here, we summarize the rapid development and application of mesoscopic imaging, a widefield fluorescence-based approach that balances high spatiotemporal resolution with extraordinarily large fields of view. By leveraging the continued expansion of fluorescent reporters for neuronal activity and novel strategies for indicator expression, mesoscopic analysis enables measurement and correlation of network dynamics with behavioral state and task performance. Moreover, the combination of widefield imaging with cellular resolution methods such as two-photon microscopy and electrophysiology is bridging boundaries between cellular and network analyses. Overall, mesoscopic imaging provides a powerful option in the optical toolbox for investigation of brain function.


Assuntos
Encéfalo/patologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/patologia , Imagem Óptica/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiologia , Cálcio/metabolismo , Humanos , Microscopia Intravital , Neurônios/metabolismo , Neurônios/fisiologia
4.
Neurology ; 95(19): e2666-e2674, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913022

RESUMO

BACKGROUND: Several neurotransmitter receptors activate signaling pathways that alter processing of the amyloid precursor protein (APP) into ß-amyloid (Aß). Serotonin signaling through a subset of serotonin receptors suppresses Aß generation. We proposed that escitalopram, the most specific selective serotonin reuptake inhibitor (SSRI) that inhibits the serotonin transporter SERT, would suppress Aß levels in mice. OBJECTIVES: We hypothesized that acute treatment with escitalopram would reduce Aß generation, which would be reflected chronically with a significant reduction in Aß plaque load. METHODS: We performed in vivo microdialysis and in vivo 2-photon imaging to assess changes in brain interstitial fluid (ISF) Aß and Aß plaque size over time, respectively, in the APP/presenilin 1 mouse model of Alzheimer disease treated with vehicle or escitalopram. We also chronically treated mice with escitalopram to determine the effect on plaques histologically. RESULTS: Escitalopram acutely reduced ISF Aß by 25% by increasing α-secretase cleavage of APP. Chronic administration of escitalopram significantly reduced plaque load by 28% and 34% at 2.5 and 5 mg/d, respectively. Escitalopram at 5 mg/kg did not remove existing plaques, but completely arrested individual plaque growth over time. CONCLUSIONS: Escitalopram significantly reduced Aß in mice, similar to previous findings in humans treated with acute dosing of an SSRI.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Citalopram/farmacologia , Fragmentos de Peptídeos/efeitos dos fármacos , Placa Amiloide/patologia , Inibidores de Captação de Serotonina/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Líquido Extracelular , Microscopia Intravital , Camundongos , Microdiálise , Microscopia de Fluorescência por Excitação Multifotônica , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Presenilina-1/genética
5.
PLoS One ; 15(9): e0229475, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915783

RESUMO

The importance of glial cells in the modulation of neuronal processes is now generally accepted. In particular, enormous progress in our understanding of astrocytes and microglia physiology in the central nervous system (CNS) has been made in recent years, due to the development of genetic and molecular toolkits. However, the roles of satellite glial cells (SGCs) and macrophages-the peripheral counterparts of astrocytes and microglia-remain poorly studied despite their involvement in debilitating conditions, such as pain. Here, we characterized in dorsal root ganglia (DRGs), different genetically-modified mouse lines previously used for studying astrocytes and microglia, with the goal to implement them for investigating DRG SGC and macrophage functions. Although SGCs and astrocytes share some molecular properties, most tested transgenic lines were found to not be suitable for studying selectively a large number of SGCs within DRGs. Nevertheless, we identified and validated two mouse lines: (i) a CreERT2 recombinase-based mouse line allowing transgene expression almost exclusively in SGCs and in the vast majority of SGCs, and (ii) a GFP-expressing line allowing the selective visualization of macrophages. In conclusion, among the tools available for exploring astrocyte functions, a few can be used for studying selectively a great proportion of SGCs. Thus, efforts remain to be made to characterize other available mouse lines as well as to develop, rigorously characterize and validate new molecular tools to investigate the roles of DRG SGCs, but also macrophages, in health and disease.


Assuntos
Gânglios Espinais/fisiologia , Macrófagos/fisiologia , Modelos Animais , Células Satélites Perineuronais/fisiologia , Animais , Astrócitos , Técnicas Biossensoriais/métodos , Células Cultivadas , Gânglios Espinais/citologia , Imuno-Histoquímica , Microscopia Intravital/métodos , Camundongos , Camundongos Transgênicos , Sondas Moleculares/química , Sondas Moleculares/genética , Imagem Óptica , Fótons , Cultura Primária de Células
6.
Nat Commun ; 11(1): 4902, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994402

RESUMO

Living cells and tissues experience various complex modes of forces that are important in physiology and disease. However, how different force modes impact gene expression is elusive. Here we apply local forces of different modes via a magnetic bead bound to the integrins on a cell and quantified cell stiffness, chromatin deformation, and DHFR (dihydrofolate reductase) gene transcription. In-plane stresses result in lower cell stiffness than out-of-plane stresses that lead to bead rolling along the cell long axis (i.e., alignment of actin stress fibers) or at different angles (90° or 45°). However, chromatin stretching and ensuing DHFR gene upregulation by the in-plane mode are similar to those induced by the 45° stress mode. Disrupting stress fibers abolishes differences in cell stiffness, chromatin stretching, and DHFR gene upregulation under different force modes and inhibiting myosin II decreases cell stiffness, chromatin deformation, and gene upregulation. Theoretical modeling using discrete anisotropic stress fibers recapitulates experimental results and reveals underlying mechanisms of force-mode dependence. Our findings suggest that forces impact biological responses of living cells such as gene transcription via previously underappreciated means.


Assuntos
Cromatina/química , Fibras de Estresse/química , Tetra-Hidrofolato Desidrogenase/genética , Transcrição Genética/fisiologia , Regulação para Cima/fisiologia , Animais , Anisotropia , Fenômenos Biomecânicos/genética , Células CHO , Cromatina/metabolismo , Cricetulus , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Microscopia Intravital , Microscopia de Fluorescência , Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/metabolismo , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Estresse Mecânico , Transcrição Genética/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
Neuron ; 108(1): 209-224.e6, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32827456

RESUMO

The representation of odor in olfactory cortex (piriform) is distributive and unstructured and can only be afforded behavioral significance upon learning. We performed 2-photon imaging to examine the representation of odors in piriform and in two downstream areas, the orbitofrontal cortex (OFC) and the medial prefrontal cortex (mPFC), as mice learned olfactory associations. In piriform, we observed that odor responses were largely unchanged during learning. In OFC, 30% of the neurons acquired robust responses to conditioned stimuli (CS+) after learning, and these responses were gated by internal state and task context. Moreover, direct projections from piriform to OFC can be entrained to elicit learned olfactory behavior. CS+ responses in OFC diminished with continued training, whereas persistent representations of both CS+ and CS- odors emerged in mPFC. Optogenetic silencing indicates that these two brain structures function sequentially to consolidate the learning of appetitive associations.


Assuntos
Comportamento Apetitivo/fisiologia , Aprendizagem por Associação/fisiologia , Neurônios/fisiologia , Odorantes , Condutos Olfatórios/fisiologia , Córtex Piriforme/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico/fisiologia , Microscopia Intravital , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Optogenética , Córtex Piriforme/citologia , Córtex Pré-Frontal/citologia
8.
Toxicol Lett ; 333: 211-221, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32841740

RESUMO

Bothrops (lance-head pit vipers) venoms are rich in weaponised metalloprotease enzymes (SVMP). These toxic enzymes are structurally diverse and functionally versatile. Potent coagulotoxicity is particularly important for prey capture (via stroke-induction) and relevant to human clinical cases (due to consumption of clotting factors including the critical depletion of fibrinogen). In this study, three distinct isoforms of P-III class SVMPs (IC, IIB and IIC), isolated from Bothrops neuwiedi venom, were evaluated for their differential capacities to affect hemostasis of prey and human plasma. Furthermore, we tested the relative antivenom neutralisation of effects upon human plasma. The toxic enzymes displayed differential procoagulant potency between plasma types, and clinically relevant antivenom efficacy variations were observed. Of particular importance was the confirmation the antivenom performed better against prothrombin activating toxins than Factor X activating toxins, which is likely due to the greater prevalence of the former in the immunising venoms used for antivenom production. This is clinically relevant as the enzymes displayed differential potency in this regard, with one (IC) in particular being extremely potent in activating Factor X and thus was correspondingly poorly neutralised. This study broadens the current understanding about the adaptive role of the SVMPs, as well as highlights how the functional diversity of SVMP isoforms can influence clinical outcomes. Key Contribution: Our findings shed light upon the hemorrhagic and coagulotoxic effects of three SVMPs of the P-III class, as well as the coagulotoxic effects of SVMPs on human, avian and amphibian plasmas. Antivenom neutralised prothrombin-activating isoforms better than Factor X activating isoforms.


Assuntos
Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Hemorragia/prevenção & controle , Metaloproteases/toxicidade , Venenos de Serpentes/enzimologia , Animais , Bothrops , Feminino , Hemorragia/sangue , Hemorragia/induzido quimicamente , Hemorragia/fisiopatologia , Humanos , Microscopia Intravital , Masculino , Metaloproteases/química , Camundongos , Microcirculação/efeitos dos fármacos , Microvasos/diagnóstico por imagem , Microvasos/efeitos dos fármacos , Microvasos/patologia , Isoformas de Proteínas
9.
J Leukoc Biol ; 108(2): 447-449, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745328

RESUMO

Discussion of lattice light sheet microscopy used for high resolution 3D imaging of neutrophil behaviors in zebrafish larvae.


Assuntos
Microscopia , Peixe-Zebra , Animais , Microscopia Intravital , Larva , Neutrófilos
10.
PLoS One ; 15(8): e0236164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760085

RESUMO

Hyaluronan (HA) is a nonsulfated glycosaminoglycan that has been widely used for biomedical applications. Here, we have analyzed the effect of HA on the rescue of primary cells under stress as well as its potential to recover muscle atrophy and validated the developed model in vitro using primary muscle cells derived from rats. The potentials of different HAs were elucidated through comparative analyses using pharmaceutical grade a) high (HHA) and b) low molecular weight (LHA) hyaluronans, c) hybrid cooperative complexes (HCC) of HA in three experimental set-ups. The cells were characterized based on the expression of myogenin, a muscle-specific biomarker, and the proliferation was analyzed using Time-Lapse Video Microscopy (TLVM). Cell viability in response to H2O2 challenge was evaluated by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the expression of the superoxide dismutase enzyme (SOD-2) was assessed by western blotting. Additionally, in order to establish an in vitro model of atrophy, muscle cells were treated with tumor necrosis factor-alpha (TNF-α), along with hyaluronans. The expression of Atrogin, MuRF-1, nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB), and Forkhead-box-(Fox)-O-3 (FoxO3a) was evaluated by western blotting to elucidate the molecular mechanism of atrophy. The results showed that HCC and HHA increased cell proliferation by 1.15 and 2.3 folds in comparison to un-treated cells (control), respectively. Moreover, both pre- and post-treatments of HAs restored the cell viability, and the SOD-2 expression was found to be reduced by 1.5 fold in HA-treated cells as compared to the stressed condition. Specifically in atrophic stressed cells, HCC revealed a noteworthy beneficial effect on the myogenic biomarkers indicating that it could be used as a promising platform for tissue regeneration with specific attention to muscle cell protection against stressful agents.


Assuntos
Ácido Hialurônico/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/terapia , Medicina Regenerativa/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/metabolismo , Géis , Humanos , Ácido Hialurônico/química , Peróxido de Hidrogênio/toxicidade , Microscopia Intravital , Peso Molecular , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/patologia , Miogenina/análise , Miogenina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Ratos , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo , Imagem com Lapso de Tempo , Fator de Necrose Tumoral alfa/metabolismo
11.
PLoS One ; 15(8): e0237795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833989

RESUMO

Extracellular vesicles (EVs) are small membrane-limited structures derived from outward budding of the plasma membrane or endosomal system that participate in cellular communication processes through the transport of bioactive molecules to recipient cells. To date, there are no published methodological works showing step-by-step the isolation, characterization and internalization of small EVs secreted by human primary macrophages derived from circulating monocytes (MDM-derived sEVs). Thus, here we aimed to provide an alternative protocol based on differential ultracentrifugation (dUC) to describe small EVs (sEVs) from these cells. Monocyte-derived macrophages were cultured in EV-free medium during 24, 48 or 72 h and, then, EVs were isolated from culture supernatants by (dUC). Macrophages secreted a large amount of sEVs in the first 24 h, with size ranging from 40-150 nm, peaking at 105 nm, as evaluated by nanoparticle tracking analysis and scanning electron microscopy. The markers Alix, CD63 and CD81 were detected by immunoblotting in EV samples, and the co-localization of CD63 and CD81 after sucrose density gradient ultracentrifugation (S-DGUC) indicated the presence of sEVs from late endosomal origin. Confocal fluorescence revealed that the sEVs were internalized by primary macrophages after three hours of co-culture. The methodology here applied aims to contribute for enhancing reproducibility between the limited number of available protocols for the isolation and characterization of MDM-derived sEVs, thus providing basic knowledge in the area of EV methods that can be useful for those investigators working with sEVs released by human primary macrophages derived from circulating monocytes.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Buffy Coat/citologia , Diferenciação Celular , Fracionamento Celular/métodos , Centrifugação com Gradiente de Concentração/métodos , Técnicas de Cocultura , Voluntários Saudáveis , Humanos , Microscopia Intravital , Macrófagos/citologia , Macrófagos/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Monócitos/fisiologia , Cultura Primária de Células
12.
Arterioscler Thromb Vasc Biol ; 40(9): 2114-2126, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640902

RESUMO

OBJECTIVE: Quantitative relationships between the extent of injury and thrombus formation in vivo are not well understood. Moreover, it has not been investigated how increased injury severity translates to blood-flow modulation. Here, we investigated interconnections between injury length, clot growth, and blood flow in a mouse model of laser-induced thrombosis. Approach and Results: Using intravital microscopy, we analyzed 59 clotting events collected from the cremaster arteriole of 14 adult mice. We regarded injury length as a measure of injury severity. The injury caused transient constriction upstream and downstream of the injury site resulting in a 50% reduction in arteriole diameter. The amount of platelet accumulation and fibrin formation did not depend on arteriole diameter or deformation but displayed an exponentially increasing dependence on injury length. The height of the platelet clot depended linearly on injury length and the arteriole diameter. Upstream arteriolar constriction correlated with delayed upstream velocity increase, which, in turn, determined downstream velocity. Before clot formation, flow velocity positively correlated with the arteriole diameter. After the onset of thrombus growth, flow velocity at the injury site negatively correlated with the arteriole diameter and with the size of the above-clot lumen. CONCLUSIONS: Injury severity increased platelet accumulation and fibrin formation in a persistently steep fashion and, together with arteriole diameter, defined clot height. Arterial constriction and clot formation were characterized by a dynamic change in the blood flow, associated with increased flow velocity.


Assuntos
Músculos Abdominais/irrigação sanguínea , Arteríolas/patologia , Coagulação Sanguínea , Trombose/patologia , Lesões do Sistema Vascular/patologia , Animais , Arteríolas/lesões , Arteríolas/fisiopatologia , Velocidade do Fluxo Sanguíneo , Plaquetas/metabolismo , Constrição Patológica , Modelos Animais de Doenças , Fibrina/metabolismo , Microscopia Intravital , Masculino , Camundongos , Microscopia de Fluorescência , Índice de Gravidade de Doença , Trombose/sangue , Trombose/fisiopatologia , Fatores de Tempo , Lesões do Sistema Vascular/sangue , Lesões do Sistema Vascular/fisiopatologia
13.
Nat Commun ; 11(1): 3347, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620768

RESUMO

A sharp increase in mitochondrial Ca2+ marks the activation of brown adipose tissue (BAT) thermogenesis, yet the mechanisms preventing Ca2+ deleterious effects are poorly understood. Here, we show that adrenergic stimulation of BAT activates a PKA-dependent mitochondrial Ca2+ extrusion via the mitochondrial Na+/Ca2+ exchanger, NCLX. Adrenergic stimulation of NCLX-null brown adipocytes (BA) induces a profound mitochondrial Ca2+ overload and impaired uncoupled respiration. Core body temperature, PET imaging of glucose uptake and VO2 measurements confirm a thermogenic defect in NCLX-null mice. We show that Ca2+ overload induced by adrenergic stimulation of NCLX-null BAT, triggers the mitochondrial permeability transition pore (mPTP) opening, leading to a remarkable mitochondrial swelling and cell death. Treatment with mPTP inhibitors rescue mitochondrial function and thermogenesis in NCLX-null BAT, while calcium overload persists. Our findings identify a key pathway through which BA evade apoptosis during adrenergic stimulation of uncoupling. NCLX deletion transforms the adrenergic pathway responsible for thermogenesis activation into a death pathway.


Assuntos
Adipócitos Marrons/patologia , Tecido Adiposo Marrom/metabolismo , Norepinefrina/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Termogênese/fisiologia , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo Marrom/citologia , Adrenérgicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Temperatura Baixa/efeitos adversos , Ciclosporina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Feminino , Microscopia Intravital , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Cultura Primária de Células , Transdução de Sinais , Trocador de Sódio e Cálcio/genética , Termogênese/efeitos dos fármacos
14.
Nat Commun ; 11(1): 3111, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561725

RESUMO

Midbrain dopaminergic (DA) axons make long longitudinal projections towards the striatum. Despite the importance of DA striatal innervation, processes involved in establishment of DA axonal connectivity remain largely unknown. Here we demonstrate a striatal-specific requirement of transcriptional regulator Nolz1 in establishing DA circuitry formation. DA projections are misguided and fail to innervate the striatum in both constitutive and striatal-specific Nolz1 mutant embryos. The lack of striatal Nolz1 expression results in nigral to pallidal lineage conversion of striatal projection neuron subtypes. This lineage switch alters the composition of secreted factors influencing DA axonal tract formation and renders the striatum non-permissive for dopaminergic and other forebrain tracts. Furthermore, transcriptomic analysis of wild-type and Nolz1-/- mutant striatal tissue led to the identification of several secreted factors that underlie the observed guidance defects and proteins that promote DA axonal outgrowth. Together, our data demonstrate the involvement of the striatum in orchestrating dopaminergic circuitry formation.


Assuntos
Orientação de Axônios/fisiologia , Axônios/fisiologia , Corpo Estriado/crescimento & desenvolvimento , Neurônios Dopaminérgicos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Carbocianinas/administração & dosagem , Corpo Estriado/diagnóstico por imagem , Embrião de Mamíferos , Feminino , Corantes Fluorescentes/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microscopia Intravital , Camundongos Knockout , Técnicas Analíticas Microfluídicas , Microinjeções , Microscopia Confocal , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Tecidos
15.
Nat Immunol ; 21(7): 802-815, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541832

RESUMO

Microglia and central nervous system (CNS)-associated macrophages (CAMs), such as perivascular and meningeal macrophages, are implicated in virtually all diseases of the CNS. However, little is known about their cell-type-specific roles in the absence of suitable tools that would allow for functional discrimination between the ontogenetically closely related microglia and CAMs. To develop a new microglia gene targeting model, we first applied massively parallel single-cell analyses to compare microglia and CAM signatures during homeostasis and disease and identified hexosaminidase subunit beta (Hexb) as a stably expressed microglia core gene, whereas other microglia core genes were substantially downregulated during pathologies. Next, we generated HexbtdTomato mice to stably monitor microglia behavior in vivo. Finally, the Hexb locus was employed for tamoxifen-inducible Cre-mediated gene manipulation in microglia and for fate mapping of microglia but not CAMs. In sum, we provide valuable new genetic tools to specifically study microglia functions in the CNS.


Assuntos
Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Traumatismos do Nervo Facial/patologia , Microglia/metabolismo , Cadeia beta da beta-Hexosaminidase/metabolismo , Animais , Encéfalo/citologia , Encéfalo/imunologia , Sistemas CRISPR-Cas/genética , Encefalomielite Autoimune Experimental/imunologia , Traumatismos do Nervo Facial/imunologia , Técnicas de Introdução de Genes , Genes Reporter/genética , Loci Gênicos/genética , Humanos , Microscopia Intravital , Substâncias Luminescentes/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microglia/imunologia , Células NIH 3T3 , RNA-Seq , Análise de Célula Única , Transfecção , Cadeia beta da beta-Hexosaminidase/genética
16.
Proc Natl Acad Sci U S A ; 117(25): 14493-14502, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513685

RESUMO

A high rate of synaptic vesicle (SV) release is required at cerebellar mossy fiber terminals for rapid information processing. As the number of release sites is limited, fast SV reloading is necessary to achieve sustained release. However, rapid reloading has not been observed directly. Here, we visualize SV movements near presynaptic membrane using total internal reflection fluorescence (TIRF) microscopy. Upon stimulation, SVs appeared in the TIRF-field and became tethered to the presynaptic membrane with unexpectedly rapid time course, almost as fast as SVs disappeared due to release. However, such stimulus-induced tethering was abolished by inhibiting exocytosis, suggesting that the tethering is tightly coupled to preceding exocytosis. The newly tethered vesicles became fusion competent not immediately but only 300 ms to 400 ms after tethering. Together with model simulations, we propose that rapid tethering leads to an immediate filling of vacated spaces and release sites within <100 nm of the active zone by SVs, which serve as precursors of readily releasable vesicles, thereby shortening delays during sustained activity.


Assuntos
Cerebelo/fisiologia , Modelos Neurológicos , Fibras Nervosas/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Cerebelo/citologia , Exocitose/fisiologia , Feminino , Microscopia Intravital , Masculino , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismo , Ratos , Wisteria
17.
Proc Natl Acad Sci U S A ; 117(25): 14503-14511, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513712

RESUMO

The nanoscale co-organization of neurotransmitter receptors facing presynaptic release sites is a fundamental determinant of their coactivation and of synaptic physiology. At excitatory synapses, how endogenous AMPARs, NMDARs, and mGluRs are co-organized inside the synapse and their respective activation during glutamate release are still unclear. Combining single-molecule superresolution microscopy, electrophysiology, and modeling, we determined the average quantity of each glutamate receptor type, their nanoscale organization, and their respective activation. We observed that NMDARs form a unique cluster mainly at the center of the PSD, while AMPARs segregate in clusters surrounding the NMDARs. mGluR5 presents a different organization and is homogenously dispersed at the synaptic surface. From these results, we build a model predicting the synaptic transmission properties of a unitary synapse, allowing better understanding of synaptic physiology.


Assuntos
Modelos Neurológicos , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Microscopia Intravital , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Imagem Individual de Molécula
18.
Nat Methods ; 17(6): 560, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499621
19.
J Cancer Res Ther ; 16(2): 276-279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32474513

RESUMO

Purpose: To study the arterial distribution of embosphere microsphere (EM) and polyvinyl alcohol (PVA) particles in rabbit mesenteric artery using in vivo microscopy.To study the arterial distribution of embosphere microsphere (EM) and polyvinyl alcohol (PVA) particles in rabbit mesenteric artery using in vivo microscopy. Methods: Sixteen New Zealand rabbits were divided into four groups, namely large PVA (560-710 µm), small PVA (150-350 µm), large EM (500-700 µm), and small EM (100-300 µm). The mesenteric arteries of the experimental animals were embolized under fluoroscopic guidance and visualized using in vivo microscopy. The embolized vessel diameter and arterial distribution of embolic agents were compared. Results: The diameters of occluded vessels in large PVA, small PVA, large EM, and small EM groups were 430.60 ± 67.30, 200.95 ± 70.54, 387.79 ± 92.51, and 143.81 ± 39.65 µm, respectively. PVA occluded significantly larger vessels than EM when the particle size was similar (P < 0.001). The proportion of EM at the bifurcation of the artery was significantly higher than that of PVA particles (large PVA < large EM, χ2 = 4.325, P < 0.038; small PVA < small EM, χ2 = 6.68, P < 0.01). Conclusion: Both PVA and EM could occlude vessels smaller than the particle size, and EM resulted in deeper penetration. The location of embolic particles in the artery is mainly related to the shape of particles.


Assuntos
Angiografia/métodos , Embolização Terapêutica/métodos , Microscopia Intravital/métodos , Artérias Mesentéricas/metabolismo , Microesferas , Álcool de Polivinil/farmacocinética , Animais , Sistemas de Liberação de Medicamentos/métodos , Artérias Mesentéricas/diagnóstico por imagem , Modelos Animais , Tamanho da Partícula , Álcool de Polivinil/química , Coelhos
20.
Nat Immunol ; 21(7): 746-755, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32514064

RESUMO

Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy.


Assuntos
Infecções Bacterianas/imunologia , Toxinas Bacterianas/imunologia , Hidroxicolesteróis/metabolismo , Interferons/isolamento & purificação , Fagócitos/imunologia , Estreptolisinas/imunologia , Animais , Bactérias/imunologia , Bactérias/metabolismo , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Feminino , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Microscopia Intravital , Masculino , Camundongos , Camundongos Transgênicos , Fagócitos/citologia , Fagócitos/metabolismo , Cultura Primária de Células , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Estreptolisinas/administração & dosagem , Estreptolisinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA