Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.417
Filtrar
1.
PLoS Comput Biol ; 16(9): e1008179, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898132

RESUMO

Detection and segmentation of macrophage cells in fluorescence microscopy images is a challenging problem, mainly due to crowded cells, variation in shapes, and morphological complexity. We present a new deep learning approach for cell detection and segmentation that incorporates previously learned nucleus features. A novel fusion of feature pyramids for nucleus detection and segmentation with feature pyramids for cell detection and segmentation is used to improve performance on a microscopic image dataset created by us and provided for public use, containing both nucleus and cell signals. Our experimental results indicate that cell detection and segmentation performance significantly benefit from the fusion of previously learned nucleus features. The proposed feature pyramid fusion architecture clearly outperforms a state-of-the-art Mask R-CNN approach for cell detection and segmentation with relative mean average precision improvements of up to 23.88% and 23.17%, respectively.


Assuntos
Células Eucarióticas/citologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Redes Neurais de Computação , Biologia Computacional , Aprendizado Profundo , Humanos , Macrófagos/citologia , Células THP-1
2.
Nat Commun ; 11(1): 4271, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848153

RESUMO

Performing multi-color nanoscopy for extended times is challenging due to the rapid photobleaching rate of most fluorophores. Here we describe a new fluorophore (Yale-595) and a bio-orthogonal labeling strategy that enables two-color super-resolution (STED) and 3D confocal imaging of two organelles simultaneously for extended times using high-density environmentally sensitive (HIDE) probes. Because HIDE probes are small, cell-permeant molecules, they can visualize dual organelle dynamics in hard-to-transfect cell lines by super-resolution for over an order of magnitude longer than with tagged proteins. The extended time domain possible using these tools reveals dynamic nanoscale targeting between different organelles.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Organelas/metabolismo , Linhagem Celular , Corantes Fluorescentes/química , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Imageamento Tridimensional , Microscopia Confocal , Fotodegradação , Imagem com Lapso de Tempo
3.
Nat Commun ; 11(1): 3881, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753572

RESUMO

Cells typically respond to chemical or physical perturbations via complex signaling cascades which can simultaneously affect multiple physiological parameters, such as membrane voltage, calcium, pH, and redox potential. Protein-based fluorescent sensors can report many of these parameters, but spectral overlap prevents more than ~4 modalities from being recorded in parallel. Here we introduce the technique, MOSAIC, Multiplexed Optical Sensors in Arrayed Islands of Cells, where patterning of fluorescent sensor-encoding lentiviral vectors with a microarray printer enables parallel recording of multiple modalities. We demonstrate simultaneous recordings from 20 sensors in parallel in human embryonic kidney (HEK293) cells and in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and we describe responses to metabolic and pharmacological perturbations. Together, these results show that MOSAIC can provide rich multi-modal data on complex physiological responses in multiple cell types.


Assuntos
Técnicas Biossensoriais/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia de Fluorescência/métodos , Miócitos Cardíacos/metabolismo , Imagem Óptica/métodos , Potenciais de Ação/efeitos dos fármacos , Antagonistas Adrenérgicos beta/farmacologia , Técnicas Biossensoriais/instrumentação , Cálcio/química , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Imagem Óptica/instrumentação , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Propanolaminas/farmacologia
4.
Nat Commun ; 11(1): 3850, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737322

RESUMO

Resolving the distribution of specific proteins at the nanoscale in the ultrastructural context of the cell is a major challenge in fluorescence microscopy. We report the discovery of a new principle for an optical contrast equivalent to electron microscopy (EM) which reveals the ultrastructural context of the cells with a conventional confocal microscope. By decrowding the intracellular space through 13 to 21-fold physical expansion while simultaneously retaining the proteins, bulk (pan) labeling of the proteome resolves local protein densities and reveals the cellular nanoarchitecture by standard light microscopy.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Proteoma/análise , Coloração e Rotulagem/métodos , Acrilamidas/química , Reagentes para Ligações Cruzadas/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Hidrogéis/química , Espaço Intracelular/química , Succinimidas/química , Inclusão do Tecido/métodos
5.
Nat Commun ; 11(1): 4339, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859909

RESUMO

DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) facilitates multiplexing in superresolution microscopy but is practically limited by slow imaging speed. To address this issue, we propose the additions of ethylene carbonate (EC) to the imaging buffer, sequence repeats to the docking strand, and a spacer between the docking strand and the affinity agent. Collectively termed DNA-PAINT-ERS (E = EC, R = Repeating sequence, and S = Spacer), these strategies can be easily integrated into current DNA-PAINT workflows for both accelerated imaging speed and improved image quality through optimized DNA hybridization kinetics and efficiency. We demonstrate the general applicability of DNA-PAINT-ERS for fast, multiplexed superresolution imaging using previously validated oligonucleotide constructs with slight modifications.


Assuntos
Técnicas Citológicas/métodos , DNA/química , Microscopia de Fluorescência/métodos , Simulação de Acoplamento Molecular/métodos , Linhagem Celular , Humanos , Processamento de Imagem Assistida por Computador/métodos , Oligonucleotídeos , Coloração e Rotulagem/métodos
6.
PLoS One ; 15(7): e0221241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32634153

RESUMO

Radioluminescence microscopy (RLM) is an imaging technique that allows quantitative analysis of clinical radiolabeled drugs and probes in single cells. However, the modality suffers from slow data acquisition (15-30 minutes), thus critically affecting experiments with short-lived radioactive drugs. To overcome this issue, we suggest an approach that significantly accelerates data collection. Instead of using a single scintillator to image the decay of radioactive molecules, we sandwiched the radiolabeled cells between two scintillators. As proof of concept, we imaged cells labeled with [18F]FDG, a radioactive glucose popularly used in oncology to image tumors. Results show that the double scintillator configuration increases the microscope sensitivity by two-fold, thus reducing the image acquisition time by half to achieve the same result as the single scintillator approach. The experimental results were also compared with Geant4 Monte Carlo simulation to confirm the two-fold increase in sensitivity with only minor degradation in spatial resolution. Overall, these findings suggest that the double scintillator configuration can be used to perform time-sensitive studies such as cell pharmacokinetics or cell uptake of short-lived radiotracers.


Assuntos
Microscopia de Fluorescência/métodos , Compostos Radiofarmacêuticos/química , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Fluordesoxiglucose F18/química , Humanos , Microscopia de Fluorescência/instrumentação , Método de Monte Carlo , Contagem de Cintilação
7.
Nat Commun ; 11(1): 3388, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636396

RESUMO

Expansion microscopy (ExM) enables super-resolution fluorescence imaging of physically expanded biological samples with conventional microscopes. By combining ExM with single-molecule localization microscopy (SMLM) it is potentially possible to approach the resolution of electron microscopy. However, current attempts to combine both methods remained challenging because of protein and fluorophore loss during digestion or denaturation, gelation, and the incompatibility of expanded polyelectrolyte hydrogels with photoswitching buffers. Here we show that re-embedding of expanded hydrogels enables dSTORM imaging of expanded samples and demonstrate that post-labeling ExM resolves the current limitations of super-resolution microscopy. Using microtubules as a reference structure and centrioles, we demonstrate that post-labeling Ex-SMLM preserves ultrastructural details, improves the labeling efficiency and reduces the positional error arising from linking fluorophores into the gel thus paving the way for super-resolution imaging of immunolabeled endogenous proteins with true molecular resolution.


Assuntos
Corantes Fluorescentes/química , Hidrogéis/química , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Tampões (Química) , Células COS , Centríolos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlorocebus aethiops , Simulação por Computador , Eletrólitos , Epitopos , Imageamento Tridimensional , Microtúbulos/metabolismo , Distribuição Normal , Fotoquímica
8.
Nat Commun ; 11(1): 3699, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709877

RESUMO

Mitochondria play a critical role in generating energy to support the entire lifecycle of biological cells, yet it is still unclear how their morphological structures evolve to regulate their functionality. Conventional fluorescence microscopy can only provide ~300 nm resolution, which is insufficient to visualize mitochondrial cristae. Here, we developed an enhanced squaraine variant dye (MitoESq-635) to study the dynamic structures of mitochondrial cristae in live cells with a superresolution technique. The low saturation intensity and high photostability of MitoESq-635 make it ideal for long-term, high-resolution (stimulated emission depletion) STED nanoscopy. We performed time-lapse imaging of the mitochondrial inner membrane over 50 min (3.9 s per frame, with 71.5 s dark recovery) in living HeLa cells with a resolution of 35.2 nm. The forms of the cristae during mitochondrial fusion and fission can be clearly observed. Our study demonstrates the emerging capability of optical STED nanoscopy to investigate intracellular physiological processes with nanoscale resolution for an extended period of time.


Assuntos
Ciclobutanos , Membranas Mitocondriais/ultraestrutura , Nanotecnologia/métodos , Fenóis , Linhagem Celular , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia de Fluorescência/métodos , Mitocôndrias , Dinâmica Mitocondrial/fisiologia , Coloração e Rotulagem/métodos
9.
Proc Natl Acad Sci U S A ; 117(25): 13937-13944, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513734

RESUMO

Superresolution fluorescence microscopy and cryogenic electron tomography (CET) are powerful imaging methods for exploring the subcellular organization of biomolecules. Superresolution fluorescence microscopy based on covalent labeling highlights specific proteins and has sufficient sensitivity to observe single fluorescent molecules, but the reconstructions lack detailed cellular context. CET has molecular-scale resolution but lacks specific and nonperturbative intracellular labeling techniques. Here, we describe an imaging scheme that correlates cryogenic single-molecule fluorescence localizations with CET reconstructions. Our approach achieves single-molecule localizations with an average lateral precision of 9 nm, and a relative registration error between the set of localizations and CET reconstruction of ∼30 nm. We illustrate the workflow by annotating the positions of three proteins in the bacterium Caulobacter crescentus: McpA, PopZ, and SpmX. McpA, which forms a part of the chemoreceptor array, acts as a validation structure by being visible under both imaging modalities. In contrast, PopZ and SpmX cannot be directly identified in CET. While not directly discernable, PopZ fills a region at the cell poles that is devoid of electron-dense ribosomes. We annotate the position of PopZ with single-molecule localizations and confirm its position within the ribosome excluded region. We further use the locations of PopZ to provide context for localizations of SpmX, a low-copy integral membrane protein sequestered by PopZ as part of a signaling pathway that leads to an asymmetric cell division. Our correlative approach reveals that SpmX localizes along one side of the cell pole and its extent closely matches that of the PopZ region.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/ultraestrutura , Imagem Individual de Molécula/métodos , Proteínas de Bactérias/ultraestrutura , Caulobacter crescentus/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Transporte Proteico
10.
Nat Methods ; 17(7): 726-733, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572233

RESUMO

Super-resolution microscopies have become an established tool in biological research. However, imaging throughput remains a main bottleneck in acquiring large datasets required for quantitative biology. Here we describe multifocal flat illumination for field-independent imaging (mfFIFI). By integrating mfFIFI into an instant structured illumination microscope (iSIM), we extend the field of view (FOV) to >100 × 100 µm2 while maintaining high-speed, multicolor, volumetric imaging at double the diffraction-limited resolution. We further extend the effective FOV by stitching adjacent images for fast live-cell super-resolution imaging of dozens of cells. Finally, we combine our flat-fielded iSIM with ultrastructure expansion microscopy to collect three-dimensional (3D) images of hundreds of centrioles in human cells, or thousands of purified Chlamydomonas reinhardtii centrioles, per hour at an effective resolution of ~35 nm. Classification and particle averaging of these large datasets enables 3D mapping of posttranslational modifications of centriolar microtubules, revealing differences in their coverage and positioning.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Células COS , Centríolos/ultraestrutura , Chlorocebus aethiops , Humanos , Imageamento Tridimensional , Iluminação , Microtúbulos/ultraestrutura
11.
J Vis Exp ; (160)2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32568221

RESUMO

Single molecule localization microscopy (SMLM) techniques overcome the optical diffraction limit of conventional fluorescence microscopy and can resolve intracellular structures and the dynamics of biomolecules with ~20 nm precision. A prerequisite for SMLM are fluorophores that transition from a dark to a fluorescent state in order to avoid spatio-temporal overlap of their point spread functions in each of the thousands of data acquisition frames. BODIPYs are well-established dyes with numerous conjugates used in conventional microscopy. The transient formation of red-shifted BODIPY ground-state dimers (DII) results in bright single molecule emission enabling single molecule localization microscopy (SMLM). Here we present a simple but versatile protocol for SMLM with conventional BODIPY conjugates in living yeast and mammalian cells. This procedure can be used to acquire super-resolution images and to track single BODIPY-DII states to extract spatio-temporal information of BODIPY conjugates. We apply this procedure to resolve lipid droplets (LDs), fatty acids, and lysosomes in living yeast and mammalian cells at the nanoscopic length scale. Furthermore, we demonstrate the multi-color imaging capability with BODIPY dyes when used in conjunction with other fluorescent probes. Our representative results show the differential spatial distribution and mobility of BODIPY-fatty acids and neutral lipids in yeast under fed and fasted conditions. This optimized protocol for SMLM can be used with hundreds of commercially available BODIPY conjugates and is a useful resource to study biological processes at the nanoscale far beyond the applications of this work.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Compostos de Boro/metabolismo , Sobrevivência Celular , Cor , Ácidos Graxos/metabolismo , Corantes Fluorescentes/metabolismo , Gotículas Lipídicas/metabolismo , Lisossomos/metabolismo , Leveduras/citologia
12.
Nat Commun ; 11(1): 2460, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424138

RESUMO

Fluorescent barcoding is a pivotal technique for the investigation of the microscale world, from information storage to the monitoring of dynamic biochemical processes. Using fluorescence lifetime as the readout modality offers more reproducible and quantitative outputs compared to conventional fluorescent barcoding, being independent of sample concentration and measurement methods. However, the use of fluorescence lifetime in this area has been limited by the lack of strategies that provide spatiotemporal manipulation of the coding process. In this study, we design a two-component photo-switchable nanogel that exhibits variable fluorescence lifetime upon photoisomerization-induced energy transfer processes through light irradiation. This remotely manipulated fluorescence lifetime property could be visually mapped using fluorescence lifetime imaging microscopy (FLIM), allowing selective storage and display of information at the microscale. Most importantly, the reversibility of this system further provides a strategy for minimizing the background influence in fluorescence lifetime imaging of live cells and sub-cellular organelles.


Assuntos
Luz , Microscopia de Fluorescência/métodos , Células A549 , Sobrevivência Celular , Transferência de Energia , Fluorescência , Humanos , Isomerismo , Mitocôndrias/metabolismo , Nanogéis/química , Polietilenoglicóis/química , Polietilenoimina/química , Polímeros/química , Frações Subcelulares
13.
Nat Methods ; 17(5): 531-540, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371980

RESUMO

Single-molecule localization microscopy is a powerful tool for visualizing subcellular structures, interactions and protein functions in biological research. However, inhomogeneous refractive indices inside cells and tissues distort the fluorescent signal emitted from single-molecule probes, which rapidly degrades resolution with increasing depth. We propose a method that enables the construction of an in situ 3D response of single emitters directly from single-molecule blinking datasets, and therefore allows their locations to be pinpointed with precision that achieves the Cramér-Rao lower bound and uncompromised fidelity. We demonstrate this method, named in situ PSF retrieval (INSPR), across a range of cellular and tissue architectures, from mitochondrial networks and nuclear pores in mammalian cells to amyloid-ß plaques and dendrites in brain tissues and elastic fibers in developing cartilage of mice. This advancement expands the routine applicability of super-resolution microscopy from selected cellular targets near coverslips to intra- and extracellular targets deep inside tissues.


Assuntos
Encéfalo/metabolismo , Cartilagem/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Placa Amiloide/metabolismo , Imagem Individual de Molécula/métodos , Animais , Encéfalo/patologia , Cartilagem/patologia , Núcleo Celular/metabolismo , Células Cultivadas , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Camundongos , Mitocôndrias/metabolismo , Imagem Molecular/métodos , Poro Nuclear/metabolismo , Placa Amiloide/patologia
14.
Am J Trop Med Hyg ; 103(1): 421-427, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32458774

RESUMO

When considering methods of detecting Cryptosporidium in patient samples, clinical and public health laboratories have historically relied primarily on microscopy. However, microscopy is time intensive and requires trained personnel to accurately identify pathogens that are present. Even with skilled analysts, the parasitemia level has the potential to fall below the level of detection. In addition, public health laboratories do not always receive specimens in fixatives that are compatible with the desired microscopic method. Antigen-based and molecular methods have proven to be effective at identifying Cryptosporidium at low levels and require less training and hands-on time. Here, we have developed and validated a real-time polymerase chain reaction (RT-PCR) laboratory-developed test (LDT) that identifies Cryptosporidium hominis and Cryptosporidium parvum, and also includes detection at the genus level to identify additional species that occasionally cause disease in humans. Results of the molecular test were compared with those obtained from modified acid-fast microscopy, immunofluorescent microscopy, an antigen-based detection rapid test, and a commercial gastrointestinal panel (GI panel). Of 40 positive samples, microscopy and antigen-based methods were able to detect Cryptosporidium in only 20 and 21 samples, respectively. The GI panel detected 33 of the 40 positive samples, even though not all specimens were received in the recommended preservative. The LDT detected Cryptosporidium in all 40 positive samples. When comparing each method for the detection of Cryptosporidium, our results indicate the LDT is an accurate, reliable, and cost-effective method for a clinical public health reference laboratory.


Assuntos
Criptosporidiose/diagnóstico , Cryptosporidium/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Técnicas de Laboratório Clínico , Criptosporidiose/parasitologia , Cryptosporidium/imunologia , Cryptosporidium parvum/genética , Cryptosporidium parvum/imunologia , Fezes , Feminino , Humanos , Imunoensaio/métodos , Lactente , Masculino , Microscopia de Fluorescência/métodos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Coloração e Rotulagem , Adulto Jovem
15.
PLoS Genet ; 16(4): e1008729, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32352975

RESUMO

Evolutionarily conserved circadian clocks generate 24-hour rhythms in physiology and behaviour that adapt organisms to their daily and seasonal environments. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the principal co-ordinator of the cell-autonomous clocks distributed across all major tissues. The importance of robust daily rhythms is highlighted by experimental and epidemiological associations between circadian disruption and human diseases. BMAL1 (a bHLH-PAS domain-containing transcription factor) is the master positive regulator within the transcriptional-translational feedback loops (TTFLs) that cell-autonomously define circadian time. It drives transcription of the negative regulators Period and Cryptochrome alongside numerous clock output genes, and thereby powers circadian time-keeping. Because deletion of Bmal1 alone is sufficient to eliminate circadian rhythms in cells and the whole animal it has been widely used as a model for molecular disruption of circadian rhythms, revealing essential, tissue-specific roles of BMAL1 in, for example, the brain, liver and the musculoskeletal system. Moreover, BMAL1 has clock-independent functions that influence ageing and protein translation. Despite the essential role of BMAL1 in circadian time-keeping, direct measures of its intra-cellular behaviour are still lacking. To fill this knowledge-gap, we used CRISPR Cas9 to generate a mouse expressing a knock-in fluorescent fusion of endogenous BMAL1 protein (Venus::BMAL1) for quantitative live imaging in physiological settings. The Bmal1Venus mouse model enabled us to visualise and quantify the daily behaviour of this core clock factor in central (SCN) and peripheral clocks, with single-cell resolution that revealed its circadian expression, anti-phasic to negative regulators, nuclear-cytoplasmic mobility and molecular abundance.


Assuntos
Fatores de Transcrição ARNTL/genética , Envelhecimento/genética , Ritmo Circadiano , Fatores de Transcrição ARNTL/metabolismo , Envelhecimento/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Encéfalo/embriologia , Células Cultivadas , Retroalimentação Fisiológica , Fígado/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Célula Única/métodos
16.
Nat Commun ; 11(1): 2184, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366843

RESUMO

Roughly 10% of eukaryotic transmembrane proteins are found on the nuclear membrane, yet how such proteins target and translocate to the nucleus remains in dispute. Most models propose transport through the nuclear pore complexes, but a central outstanding question is whether transit occurs through their central or peripheral channels. Using live-cell high-speed super-resolution single-molecule microscopy we could distinguish protein translocation through the central and peripheral channels, finding that most inner nuclear membrane proteins use only the peripheral channels, but some apparently extend intrinsically disordered domains containing nuclear localization signals into the central channel for directed nuclear transport. These nucleoplasmic signals are critical for central channel transport as their mutation blocks use of the central channels; however, the mutated proteins can still complete their translocation using only the peripheral channels, albeit at a reduced rate. Such proteins can still translocate using only the peripheral channels when central channel is blocked, but blocking the peripheral channels blocks translocation through both channels. This suggests that peripheral channel transport is the default mechanism that was adapted in evolution to include aspects of receptor-mediated central channel transport for directed trafficking of certain membrane proteins.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte Proteico
17.
J Vis Exp ; (159)2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449729

RESUMO

Bdellovibrio bacteriovorus is a small gram-negative, obligate predatory bacterium that kills other gram-negative bacteria, including harmful pathogens. Therefore, it is considered a living antibiotic. To apply B. bacteriovorus as a living antibiotic, it is first necessary to understand the major stages of its complex life cycle, particularly its proliferation inside prey. So far, it has been challenging to monitor successive stages of the predatory life cycle in real-time. Presented here is a comprehensive protocol for real-time imaging of the complete life cycle of B. bacteriovorus, especially during its growth inside the host. For this purpose, a system consisting of an agarose pad is used in combination with cell-imaging dishes, in which the predatory cells can move freely beneath the agarose pad while immobilized prey cells are able to form bdelloplasts. The application of a strain producing a fluorescently tagged ß-subunit of DNA polymerase III further allows chromosome replication to be monitored during the reproduction phase of the B. bacteriovorus life cycle.


Assuntos
Bdellovibrio bacteriovorus/química , Estágios do Ciclo de Vida/genética , Microscopia de Fluorescência/métodos , Animais , Bdellovibrio bacteriovorus/genética
18.
Nucleic Acids Res ; 48(12): e67, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32421771

RESUMO

We designed and engineered a dye production cassette encoding a heterologous pathway, including human tyrosine hydroxylase and Amanita muscaria 4,5-DOPA dioxygenase, for the biosynthesis of the betaxanthin family of plant and fungal pigments in mammalian cells. The system does not impair cell viability, and can be used as a non-protein reporter system to directly visualize the dynamics of gene expression by profiling absorbance or fluorescence in the supernatant of cell cultures, as well as for fluorescence labeling of individual cells. Pigment profiling can also be multiplexed with reporter proteins such as mCherry or the human model glycoprotein SEAP (secreted alkaline phosphatase). Furthermore, absorbance measurement with a smartphone camera using standard application software enables inexpensive, low-tech reporter quantification.


Assuntos
Proteínas Fúngicas/metabolismo , Genes Reporter , Oxigenases/metabolismo , Ácidos Picolínicos/metabolismo , Análise de Célula Única/métodos , Absorção de Radiação , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Fúngicas/genética , Células HEK293 , Humanos , Microscopia de Fluorescência/métodos , Oxigenases/genética , Ácidos Picolínicos/efeitos da radiação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência/métodos , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Raios Ultravioleta
19.
Inorg Chem ; 59(8): 5728-5741, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242663

RESUMO

[44/47Sc]Sc3+, [68Ga]Ga3+, and [111In]In3+ are the three most attractive trivalent smaller radiometalnuclides, offering a wide range of distinct properties (emission energies and types) in the toolbox of nuclear medicine. In this study, all three of the metal ions are successfully chelated using a new oxine-based hexadentate ligand, H3glyox, which forms thermodynamically stable neutral complexes with exceptionally high pM values [pIn (34) > pSc (26) > pGa (24.9)]. X-ray diffraction single crystal structures with stable isotopes revealed that the ligand is highly preorganized and has a perfect fit to size cavity to form [Sc(glyox)(H2O)] and [In(glyox)(H2O)] complexes. Quantitative radiolabeling with gallium-68 (RCY > 95%, [L] = 10-5 M) and indium-111 (RCY > 99%, [L] = 10-8 M) was achieved under ambient conditions (RT, pH 7, and 15 min) with very high apparent molar activities of 750 MBq/µmol and 650 MBq/nmol, respectively. Preliminary quantitative radiolabeling of [44Sc]ScCl3 (RCY > 99%, [L] = 10-6 M) was fast at room temperature (pH 7 and 10 min). In vitro experiments revealed exceptional stability of both [68Ga]Ga(glyox) and [111In]In(glyox) complexes against human serum (transchelation <2%) and its suitability for biological applications. Additionally, on chelation with metal ions, H3glyox exhibits enhanced fluorescence, which was employed to determine the stability constants for Sc(glyox) in addition to the in-batch UV-vis spectrophotometric titrations; as a proof-of-concept these complexes were used to obtain fluorescence images of live HeLa cells using Sc(glyox) and Ga(glyox), confirming the viability of the cells. These initial investigations suggest H3glyox to be a valuable chelator for radiometal-based diagnosis (nuclear and optical imaging) and therapy.


Assuntos
Quelantes/farmacologia , Complexos de Coordenação/farmacologia , Corantes Fluorescentes/farmacologia , Oximas/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Quelantes/síntese química , Complexos de Coordenação/sangue , Complexos de Coordenação/química , Estabilidade de Medicamentos , Corantes Fluorescentes/química , Radioisótopos de Gálio/química , Células HeLa , Humanos , Radioisótopos de Índio/química , Marcação por Isótopo , Ligantes , Microscopia de Fluorescência/métodos , Oximas/síntese química , Estudo de Prova de Conceito , Radioisótopos/química , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/química , Escândio/química , Termodinâmica
20.
Nat Protoc ; 15(5): 1649-1672, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238952

RESUMO

In pathology, microscopy is an important tool for the analysis of human tissues, both for the scientific study of disease states and for diagnosis. However, the microscopes commonly used in pathology are limited in resolution by diffraction. Recently, we discovered that it was possible, through a chemical process, to isotropically expand preserved cells and tissues by 4-5× in linear dimension. We call this process expansion microscopy (ExM). ExM enables nanoscale resolution imaging on conventional microscopes. Here we describe protocols for the simple and effective physical expansion of a variety of human tissues and clinical specimens, including paraffin-embedded, fresh frozen and chemically stained human tissues. These protocols require only inexpensive, commercially available reagents and hardware commonly found in a routine pathology laboratory. Our protocols are written for researchers and pathologists experienced in conventional fluorescence microscopy. The conventional protocol, expansion pathology, can be completed in ~1 d with immunostained tissue sections and 2 d with unstained specimens. We also include a new, fast variant, rapid expansion pathology, that can be performed on <5-µm-thick tissue sections, taking <4 h with immunostained tissue sections and <8 h with unstained specimens.


Assuntos
Resinas Acrílicas , Hidrogéis/síntese química , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Patologia/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA