Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.826
Filtrar
1.
Food Chem ; 366: 130636, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314929

RESUMO

The study aimed to determine the efficiency of advanced chelate compounds-based trace minerals (OTM) in laying hens. Laying hens (240, 32 weeks old) were assigned to one of the following five groups: NOTM (no added trace minerals), CONTM (standard mineral salts), and three experimental groups in which chelates were used to replace 33, 66, and 100% of mineral salts (OTM33, OTM66, and OTM100, respectively). Each treatment had six replicates with eight hens per replicate. After 18 weeks, performance and physicochemical properties of eggs in all experimental groups was better than those in the NOTM group. Among the treatments, OTM66 and OTM100 produced the best results in terms of laying performance, yolk PUFA/SFA ratio, Zn and Se contents, and malondialdehyde concentration in both serum and yolk. In conclusion, up to 66% OTM supplementation was beneficial for performance, lipid and mineral composition of yolk, and oxidative status.


Assuntos
Galinhas , Ácidos Graxos , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais , Gema de Ovo/metabolismo , Ácidos Graxos/metabolismo , Feminino , Minerais/metabolismo , Estresse Oxidativo
2.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948210

RESUMO

This study investigated the effect of mineral-balanced deep-sea water (DSW) on kidney health using an animal model of kidney injury due to a high-sodium diet. High magnesium/low sodium (HMLS) and high magnesium/high calcium (HMHC) DSW samples with different mineral contents were prepared. Sprague-Dawley rats were fed an 8% sodium chloride (NaCl) diet for four weeks to induce kidney injury, and each group was supplied with purified water or mineral water. Kidney injury was observed in the NaCl group according to increased kidney injury markers and malondialdehydes, providing evidence of oxidative stress. However, the kidney injury was repaired by the intake of mineral-balanced DSW. It was confirmed that the HMLS and HMHC groups showed improved Na+ excretion through the urine. Kidney injury markers in urine decreased and upregulation of low-density lipoprotein receptor-related protein2 mRNA expression was observed in the HMLS and HMHC groups. In addition, superoxide dismutase activity was increased in the HMHC groups. The gene expression patterns of the RNA sequencing were similar between the CON and HMLS groups. These results suggest that DSW has beneficial effects on kidney health due to the balanced magnesium and calcium levels in models of kidney injury caused by excessive sodium intake.


Assuntos
Minerais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Pressão Sanguínea/fisiologia , Cálcio na Dieta/metabolismo , Dieta Hipossódica/métodos , Rim/metabolismo , Magnésio/metabolismo , Masculino , Águas Minerais , Ratos , Ratos Sprague-Dawley , Receptores de LDL/metabolismo , Água do Mar , Cloreto de Sódio na Dieta/metabolismo
3.
Nutrients ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34579124

RESUMO

This efficacy trial evaluated the effects of two polyphenolic stilbenes, resveratrol and pterostilbene, mostly found in grapes, on the brush border membrane functionality, morphology and gut microbiome. This study applied the validated Gallus gallus intra-amniotic approach to investigate the effects of stilbene administration versus the controls. Three treatment groups (5% resveratrol; 5% pterostilbene; and synergistic: 4.75% resveratrol and 0.25% pterostilbene) and three controls (18 MΩ H2O; no injection; 5% inulin) were employed. We observed beneficial morphological changes, specifically an increase in the villus length, diameter, depth of crypts and goblet cell diameter in the pterostilbene and synergistic groups, with concomitant increases in the serum iron and zinc concentrations. Further, the alterations in gene expression of the mineral metabolism proteins and pro-inflammatory cytokines indicate a potential improvement in gut health and mineral bioavailability. The cecal microbiota was analyzed using 16S rRNA sequencing. A lower α-diversity was observed in the synergistic group compared with the other treatment groups. However, beneficial compositional and functional alterations in the gut microbiome were detected. Several key microbial metabolic pathways were differentially enriched in the pterostilbene treatment group. These observations demonstrate a significant bacterial-host interaction that contributed to enhancements in intestinal functionality, morphology and physiological status. Our data demonstrate a novel understanding of the nutritional benefits of dietary stilbenes and their effects on intestinal functionality, morphology and gut microbiota in vivo.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/embriologia , Resveratrol/administração & dosagem , Estilbenos/administração & dosagem , Vitis/química , Âmnio/efeitos dos fármacos , Animais , Embrião de Galinha/efeitos dos fármacos , Galinhas , Citocinas/genética , Sinergismo Farmacológico , Frutas/química , Expressão Gênica/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/fisiologia , Microvilosidades/fisiologia , Minerais/metabolismo
4.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445112

RESUMO

Brassinosteroids (BRs) are steroid phytohormones that are known to regulate plant growth and nutrient uptake and distribution. However, how BRs regulate nutrient uptake and balance in legume species is not fully understood. Here, we show that optimal BR levels are required for soybean (Glycine max L.) seedling growth, as treatments with both 24-epicastasterone (24-epiCS) and the BR biosynthesis inhibitor propiconazole (PPZ) inhibit root growth, including primary root elongation and lateral root formation and elongation. Specifically, 24-epiCS and PPZ reduced the total phosphorus and potassium levels in the shoot and affected several minor nutrients, such as magnesium, iron, manganese, and molybdenum. A genome-wide transcriptome analysis identified 3774 and 4273 differentially expressed genes in the root tip after brassinolide and PPZ treatments, respectively. The gene ontology (GO) analysis suggested that genes related to "DNA-replication", "microtubule-based movement", and "plant-type cell wall organization" were highly responsive to the brassinolide and PPZ treatments. Furthermore, consistent with the effects on the nutrient concentrations, corresponding mineral transporters were found to be regulated by BR levels, including the GmPHT1s, GmKTs, GmVIT2, GmZIPs, and GmMOT1 genes. Our study demonstrates that optimal BR levels are important for growth and mineral nutrient homeostasis in soybean seedlings.


Assuntos
Brassinosteroides/metabolismo , Homeostase/fisiologia , Minerais/metabolismo , Nutrientes/metabolismo , Soja/crescimento & desenvolvimento , Soja/metabolismo , Colestanóis/metabolismo , Fabaceae/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/metabolismo , Esteroides Heterocíclicos/metabolismo
5.
Nutrients ; 13(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203167

RESUMO

Polycystic ovary syndrome (PCOS) is a common disease in women of childbearing age. It is characterized by excessive androgen production, ovulation disorders, and developing metabolic syndrome. The aim of the study was to check whether selected minerals were related to the pathophysiological mechanisms of PCOS. The concentrations of minerals were determined using an inductively coupled atomic plasma-emission spectrometer (ICP-AES Jobin Yvon JY-24). Blood samples from PCOS and control women were collected, processed, and digested with a microwave system in women with PCOS with and without insulin resistance and in the control group. It was found: zinc (Zn)-10.14 ± 2.11, 9.89 ± 1.44 and 10.30 ± 1.67; nickel (Ni) 0.001 ± 0.0009, 0.001 ± 0.0006 and 0.002 ± 0.00001; iron (Fe) 868.0 ± 155.8, 835.3 ± 156.4 and 833.0 ± 94.6; manganese (Mn) 0.017 ± 0.006, 0.017 ± 0.008 and 0.020 ± 0.009; copper (Cu) 0.714 ± 0.129, 0.713 ± 0.114 and 0.761 ± 0.146; magnesium (Mg) 48.4 ± 8.3, 50.0 ± 8.4 and 45.3 ± 10.7; sodium (Na) 374.3 ± 84.3, 396.3 ± 66.6 and 367.9 ± 88.9; potassium (K) 2541.8 ± 330.9, 2409.6 ± 347.1 and 2336.9 ± 211.4 (µg/g). Some micronutrient deficiencies may have a negative effect on the lipid profile in PCOS patients (Ni, Na). Further studies are needed to better understand dependencies.


Assuntos
Minerais/sangue , Minerais/metabolismo , Síndrome do Ovário Policístico/sangue , Adolescente , Adulto , Composição Corporal , Cobre/sangue , Eritrócitos , Feminino , Humanos , Resistência à Insulina , Ferro/sangue , Metabolismo dos Lipídeos , Magnésio/sangue , Manganês/sangue , Níquel/sangue , Potássio/sangue , Sódio/sangue , Oligoelementos/sangue , Adulto Jovem , Zinco/sangue
6.
J Hazard Mater ; 420: 126612, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265655

RESUMO

Arsenopyrite is widely distributed and weathers readily in the nature, releases As and pollutes the surrounding environment. Acid rain is acidic in nature as contains sulfur oxides (SOx) and nitrogen oxides (NOx), and is a typical hazardous material to human. When arsenopyrite encounters acid rain, their interaction effect may aggregate environmental degradation. In this work, the weathering behavior of arsenopyrite in simulated acid rain was studied using the electrochemical techniques and surface analysis. Cyclic voltammetry and Raman and XPS confirmed that FeAsS was oxidized to Fe2+, AsO33- and S0 at the initial phase, then, Fe2+ was converted to Fe3+, S0 transformed to SO32- and ultimately to SO42-, and AsO33- to AsO43- with the accumulation of H+. Polarization curve revealed higher temperature or higher acidity of acid rain increased the weathering trend and rate of arsenopyrite, and electrochemical impedance spectroscopic measurements showed the causes behind this to be smaller resistance and greater capacitance at the double layer and passivation film. Arsenopyrite weathering rate and temperature has a relationship: lnk = -3824.8/T + 10.305, via a transition state with activation enthalpy 29.37 kJ mol-1 and activation entropy - 167.40 J mol-1 K-1. This study provides a rapid and quantitative in-situ electrochemical method for arsenopyrite weathering and an improved understanding of arsenopyrite weathering in acid rain condition. The results have powerful implications for the remediation and management of As-bearing sites affected by mining activities in acid rain area.


Assuntos
Chuva Ácida , Arsênio , Arsenicais , Compostos de Ferro , Proteínas Adaptadoras de Transdução de Sinal , Arsenicais/metabolismo , Humanos , Compostos de Ferro/metabolismo , Minerais/metabolismo , Sulfetos/metabolismo
7.
Nat Commun ; 12(1): 4554, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315891

RESUMO

The planktonic synthesis of reduced organophosphorus molecules, such as alkylphosphonates and aminophosphonates, represents one half of a vast global oceanic phosphorus redox cycle. Whilst alkylphosphonates tend to accumulate in recalcitrant dissolved organic matter, aminophosphonates do not. Here, we identify three bacterial 2-aminoethylphosphonate (2AEP) transporters, named AepXVW, AepP and AepSTU, whose synthesis is independent of phosphate concentrations (phosphate-insensitive). AepXVW is found in diverse marine heterotrophs and is ubiquitously distributed in mesopelagic and epipelagic waters. Unlike the archetypal phosphonate binding protein, PhnD, AepX has high affinity and high specificity for 2AEP (Stappia stellulata AepX Kd 23 ± 4 nM; methylphosphonate Kd 3.4 ± 0.3 mM). In the global ocean, aepX is heavily transcribed (~100-fold>phnD) independently of phosphate and nitrogen concentrations. Collectively, our data identifies a mechanism responsible for a major oxidation process in the marine phosphorus redox cycle and suggests 2AEP may be an important source of regenerated phosphate and ammonium, which are required for oceanic primary production.


Assuntos
Ácido Aminoetilfosfônico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Minerais/metabolismo , Fósforo/metabolismo , Rhodobacteraceae/metabolismo , Água do Mar/microbiologia , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Cinética , Oceanos e Mares , Oxirredução , Filogenia , Proteômica , Pseudomonas putida/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhodobacteraceae/genética
8.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202712

RESUMO

Adequate amounts of a wide range of micronutrients are needed by body tissues to maintain health. Dietary intake must be sufficient to meet these micronutrient requirements. Mineral deficiency does not seem to be the result of a physically active life or of athletic training but is more likely to arise from disturbances in the quality and quantity of ingested food. The lack of some minerals in the body appears to be symbolic of the modern era reflecting either the excessive intake of empty calories or a negative energy balance from drastic weight-loss diets. Several animal studies provide convincing evidence for an association between dietary micronutrient availability and microbial composition in the gut. However, the influence of human gut microbiota on the bioaccessibility and bioavailability of trace elements in human food has rarely been studied. Bacteria play a role by effecting mineral bioavailability and bioaccessibility, which are further increased through the fermentation of cereals and the soaking and germination of crops. Moreover, probiotics have a positive effect on iron, calcium, selenium, and zinc in relation to gut microbiome composition and metabolism. The current literature reveals the beneficial effects of bacteria on mineral bioaccessibility and bioavailability in supporting both the human gut microbiome and overall health. This review focuses on interactions between the gut microbiota and several minerals in sport nutrition, as related to a physically active lifestyle.


Assuntos
Dieta , Microbioma Gastrointestinal , Micronutrientes/metabolismo , Minerais/metabolismo , Animais , Disponibilidade Biológica , Cálcio na Dieta , Absorção Gastrointestinal , Humanos , Probióticos , Oligoelementos/metabolismo
9.
Nat Commun ; 12(1): 4327, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267202

RESUMO

Trivalent rare earth elements (REEs) are widely used in agriculture. Aerially applied REEs enter leaf epidermal cells by endocytosis and act systemically to improve the growth of the whole plant. The mechanistic basis of their systemic activity is unclear. Here, we show that treatment of Arabidopsis leaves with trivalent lanthanum [La(III)], a representative of REEs, triggers systemic endocytosis from leaves to roots. La(III)-induced systemic endocytosis requires AtrbohD-mediated reactive oxygen species production and jasmonic acid. Systemic endocytosis impacts the accumulation of mineral elements and the development of roots consistent with the growth promoting effects induced by aerially applied REEs. These findings provide insights into the mechanistic basis of REE activity in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Lantânio/farmacologia , NADPH Oxidases/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Endocitose/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Minerais/metabolismo , NADPH Oxidases/genética , Oxilipinas/metabolismo , Células Vegetais/efeitos dos fármacos , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais
10.
Plant Mol Biol ; 106(6): 555-567, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34275101

RESUMO

KEY MESSAGE: Root-specific expression of a cytokinin-degrading CKX gene in maize roots causes formation of a larger root system leading to higher element content in shoot organs. The size and architecture of the root system is functionally relevant for the access to water and soil nutrients. A great number of mostly unknown genes are involved in regulating root architecture complicating targeted breeding of plants with a larger root system. Here, we have explored whether root-specific degradation of the hormone cytokinin, which is a negative regulator of root growth, can be used to genetically engineer maize (Zea mays L.) plants with a larger root system. Root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE (CKX) gene of Arabidopsis caused the formation of up to 46% more root dry weight while shoot growth of these transgenic lines was similar as in non-transgenic control plants. The concentration of several elements, in particular of those with low soil mobility (K, P, Mo, Zn), was increased in leaves of transgenic lines. In kernels, the changes in concentration of most elements were less pronounced, but the concentrations of Cu, Mn and Zn were significantly increased in at least one of the three independent lines. Our data illustrate the potential of an increased root system as part of efforts towards achieving biofortification. Taken together, this work has shown that root-specific expression of a CKX gene can be used to engineer the root system of maize and alter shoot element composition.


Assuntos
Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Proteínas de Membrana/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Folhas de Planta/genética , Raízes de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cobre/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Manganês/metabolismo , Proteínas de Membrana/metabolismo , Minerais/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zinco/metabolismo
11.
BMC Plant Biol ; 21(1): 311, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210282

RESUMO

BACKGROUND: Mineral elements are important for maintaining good human health besides heavy metals. Mining genes that control mineral elements are paramount for improving their accumulation in the wheat grain. Although previous studies have reported some loci for beneficial trace elements, they have mainly focused on Zn and Fe content. However, little information is available regarding the genetic loci differences in dissecting synchronous accumulation of multiple mineral elements in wheat grains, including beneficial and heavy elements. Therefore, a genome-wide association study (GWAS) was conducted on 205 wheat accessions with 24,355 single nucleotide polymorphisms (SNPs) to identify important loci and candidate genes for controlling Ca, Fe, Zn, Se, Cu, Mn, Cd, As, and Pb accumulation in wheat grains. RESULTS: A total of 101 marker-trait associations (MTAs) (P < 10-5) loci affecting the content of nine mineral elements was identified on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 3D, 4A, 4B, 5A, 5B, 5D, 6B, 7A, 7B, and 7D. Among these, 17 major MTAs loci for the nine mineral elements were located, and four MTAs loci (P < 10-5) were found on chromosomes 1B, 6B, 7B, and 7D. Eight multi-effect MTAs loci were detected that are responsible for the control of more than one trait, mainly distributed on chromosomes 3B, 7B, and 5A. Furthermore, sixteen candidate genes controlling Ca, Fe, Zn, Se, Cd, and Pb were predicted, whose functions were primarily related to ion binding, including metals, Fe, Ca, Cu, Mg, and Zn, ATP binding, ATPase activity, DNA binding, RNA binding, and protein kinase activity. CONCLUSIONS: Our study indicated the existence of gene interactions among mineral elements based on multi-effect MTAs loci and candidate genes. Meanwhile this study provided new insights into the genetic control of mineral element concentrations, and the important loci and genes identified may contribute to the rapid development of beneficial mineral elements and a reduced content of harmful heavy metals in wheat grain.


Assuntos
Genoma de Planta , Minerais/metabolismo , Estações do Ano , Sementes/genética , Triticum/genética , Alelos , Mapeamento Cromossômico , Loci Gênicos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Fenótipo
12.
Aging (Albany NY) ; 13(12): 16749-16762, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34170851

RESUMO

Our previous study showed that bone marrow mesenchymal stem cell derived exosomes (BMSC-Exos) suppress high phosphorus (Pi)-induced calcification of vascular smooth muscle cells (VSMCs). However, the mechanism had remained unclear. This study aimed to investigate the mechanism by which BMSC-Exos inhibit vascular calcification (VC). We found that BMSC-Exos reduced high Pi-induced Runx2, osteocalcin and BMP2 expression and inhibited the calcium deposition. Gene expression of human VSMCs stimulated by Pi or Pi plus BMSC-Exos (Pi + Exo) was systematically examined by microarray technology. NONHSAT 084969.2 and transcription factor p65 expression was significantly lower in the Pi + Exo group compared with the Pi group. This finding indicated that NONHSAT 084969.2 and the nuclear factor-κB pathway might play an important role in VC inhibition by BMSC-Exos. By silencing NONHSAT 084969.2 with small interfering RNA, Runx2, BMP2, and osteocalcin expression was decreased significantly. The calcified nodule content and alkaline phosphatase activity were reduced after NONHSAT 084969.2 inhibition and p65, p50, and IκB kinase-α expression was decreased significantly. These results indicated that BMSC-Exos inhibited Pi-induced transdifferentiation and calcification of VSMCs by regulating the NONHSAT 084969.2/nuclear factor-κB axis.


Assuntos
Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Fósforo/toxicidade , RNA Longo não Codificante/metabolismo , Calcificação Vascular/genética , Linhagem Celular , Transdiferenciação Celular/efeitos dos fármacos , Análise por Conglomerados , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Exossomos/ultraestrutura , Perfilação da Expressão Gênica , Humanos , Minerais/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Calcificação Vascular/patologia
13.
Sci Rep ; 11(1): 12329, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112842

RESUMO

Minerals play an important role in animal metabolism. Knowledge of mineral requirements allows well-formulated diets to be provided, which is the main factor that affects performance. To determine the macromineral and trace element requirements for growth and maintenance, thirty-eight 2-month-old Santa Ines lambs with initial body weight (BW) of 13.0 ± 1.49 kg were distributed in a factorial design with feeding levels (ad libitum, 30% and 60% feed restriction) and sex classes [castrated (CM) and intact males (IM)]. The net mineral requirements for gain were higher (P < 0.05) with increasing BW and average daily gain, except for Ca and Na, which remained constant as the empty BW (EBW) increased. The macromineral net requirement for maintenance (g/kg EBW0.75) and the true retention coefficient (k; %) were 0.0784 and 65.2 for Ca, 0.0926 and 80.0 for P, and 0.0379 and 59.0 for K, respectively. The k of Mg was higher (P < 0.05) for IM (11.3 for IM and 7.9 for CM). Sex did not affect (P > 0.05) the maintenance requirement of the trace elements Co, Cu, Zn and Cr which were 0.0015, 0.037, 0.698, and 0.0055 (mg/kg EBW0.75), respectively. Our study indicated that the Santa Ines net mineral requirements are different from the main nutritional requirements established by committees for sheep, which may result in unbalanced diets.


Assuntos
Ração Animal , Peso Corporal/efeitos dos fármacos , Minerais/metabolismo , Oligoelementos/metabolismo , Animais , Minerais/farmacologia , Ovinos/metabolismo , Ovinos/fisiologia , Oligoelementos/farmacologia
14.
J Food Sci ; 86(7): 3023-3032, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34146407

RESUMO

Kiwifruit contains abundant nutritive compounds and is highly favored by the consumers worldwide. Therefore, detailed metabolic profiling is important to provide theoretic basis for the improvement of kiwifruit quality. In this study, the levels of volatiles, carotenoids, and mineral elements in the flesh of 17 kiwifruit accessions were evaluated. Acids and esters were the main volatiles in kiwifruit. During these 17 kiwifruit accessions, "Chenhong," three "Jinyan," and two "Guichang" germplasms were specifically rich in aromatic esters, which might be associated with their special taste. The main carotenoids were lutein, ß-carotene, and zeaxanthin, and their levels were also genotype specific, with the green-fleshed "Guichang" having the highest level of carotenoids, and red-fleshed "Fuhong" and "Chenhong" being rich in zeaxanthin. Partial correlation analysis showed that the contents of some mineral elements were significantly correlated with those of specific volatiles and carotenoids, indicating the impacts of mineral elements on the accumulation of volatiles and carotenoids in the kiwifruit flesh. These results indicated that the contents of carotenoids and volatiles seemed to be affected by mineral elements and also provided a new potential method for improving fruit flavor quality in production.


Assuntos
Actinidia/metabolismo , Carotenoides/química , Frutas/química , Minerais/química , Actinidia/química , Actinidia/classificação , Actinidia/genética , Carotenoides/metabolismo , Frutas/classificação , Frutas/genética , Frutas/metabolismo , Genótipo , Minerais/metabolismo , Volatilização
15.
Ecotoxicol Environ Saf ; 221: 112436, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171689

RESUMO

Nanoparticles (NPs), as a novel source of industrial materials, have been extensively used in recent years which ultimately ends up in soils and may cause toxic effects on plants. Gibberellic acid (GA), phytohormone, has ability to minimize abiotic stresses in plants. The role of GA in minimizing titanium dioxide (TiO2) NPs stress in plants is still unknown. In current study, soil was spiked with TiO2 NPs (0, 100, 200, 400, 600 mg/kg) while GA was foliar-sprayed at different concentrations during wheat growth. The findings revealed that TiO2 NPs increased the growth, chlorophyll contents, and nutrient (P, K, Fe, Mn) concentrations in tissues till 400 mg/kg and then decrease was observed at 600 mg/kg level of NPs whereas the values of these parameters were higher compared to control irrespective of NPs levels. The NPs enhanced the antioxidant activities (SOD, POD, CAT, APX) and reduced the oxidative stress (EL, H2O2, MDA) in leaves over the control. Foliar GA further improved the growth, yield, nutrients and antioxidant activities while minimized the oxidative stress compared to respective sole NPs- treatments. The interactive effects of NPs and GA were dose dependent. The results proved that studied doses of TiO2 NPs were not toxic to wheat plants except the highest level (600 mg/kg) used and GA positively affected the yield of wheat under TiO2 NPs application. The GA can be used to improve crop growth in the presence of NPs which, however, needs further investigation at higher doses of TiO2 NPs in various crops.


Assuntos
Giberelinas/farmacologia , Nanopartículas/toxicidade , Titânio/toxicidade , Triticum/efeitos dos fármacos , Antioxidantes/farmacologia , Transporte Biológico/efeitos dos fármacos , Minerais/metabolismo , Nutrientes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/metabolismo , Poluentes do Solo/toxicidade
16.
Appl Environ Microbiol ; 87(17): e0034921, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160265

RESUMO

Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are critically impacted by fertilization in agricultural ecosystems. Understanding shifts in AMF communities in and around crop roots under different fertilization regimes can provide important lessons for improving agricultural production and sustainability. Here, we compared the responses of AMF communities in the rhizosphere (RS) and root endosphere (ES) of wheat (Triticum aestivum) to different fertilization treatments, nonfertilization (control), mineral fertilization only (NPK), mineral fertilization plus wheat straw (NPKS), and mineral fertilization plus cow manure (NPKM). We employed high-throughput amplicon sequencing and investigated the diversity, community composition, and network structure of AMF communities to assess their responses to fertilization. Our results elucidated that AMF communities in the RS and ES respond differently to fertilization schemes. Long-term NPK application decreased the RS AMF alpha diversity significantly, whereas additional organic amendments (straw or manure) had no effect. In contrast, NPK fertilization increased the ES AMF alpha diversity significantly, while additional organic amendments decreased it significantly. The effect of different fertilization schemes on AMF network complexity in the RS and ES were similar to their effects on alpha diversity. Changes to AMF communities in the RS and ES correlated mainly with the pH and phosphorus level of the rhizosphere soil under long-term inorganic and organic fertilization regimes. We suggest that the AMF community in the roots should be given more consideration when studying the effects of fertilization regimes on AMF in agroecosystems. IMPORTANCE Arbuscular mycorrhizal fungi are an integral component of rhizospheres, bridging the soil and plant systems and are highly sensitive to fertilization. However, surprisingly little is known about how the response differs between the roots and the surrounding soil. Decreasing arbuscular mycorrhizal fungal diversity under fertilization has been reported, implying a potential reduction in the mutualism between plants and arbuscular mycorrhizal fungi. However, we found opposing responses to long-term fertilization managements of arbuscular mycorrhizal fungi in the wheat roots and rhizosphere soil. These results suggested that changes in the arbuscular mycorrhizal fungal community in soils do not reflect those in the roots, highlighting that the root arbuscular mycorrhizal fungal community is pertinent to understand arbuscular mycorrhizal fungi and their crop hosts' responses to anthropogenic influences.


Assuntos
Fertilizantes/análise , Fungos/isolamento & purificação , Micobioma , Micorrizas/isolamento & purificação , Triticum/crescimento & desenvolvimento , Fungos/classificação , Fungos/genética , Esterco/análise , Minerais/análise , Minerais/metabolismo , Micorrizas/classificação , Micorrizas/genética , Fósforo/análise , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo , Triticum/metabolismo
17.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070241

RESUMO

Lipoic acid (LA) and melatonin (MT) are pleiotropic molecules participating in plant stress resistance by modulating cellular biochemical changes, ion homeostasis, and antioxidant enzyme activities. However, the combined role of these two molecules in counteracting the detrimental impacts of salinity stress is still unknown. In the present study, we determined the effects of exogenous LA (0.5 µM), MT (1 µM) and their combination (LA + MT) on growth performance and biomass accumulation, photosynthetic pigments, enzymatic and non-enzymatic antioxidant activities, and ions homeostatic in canola (Brassica napus L.) seedlings under salinity stress (0, 100 mM) for 40 days. The results indicate that exogenous application of LA + MT improved the phenotypic growth (by 25 to 45%), root thickness (by 68%), number of later lateral roots (by 52%), root viability (by 44%), and root length (by 50%) under salinity stress. Moreover, total soluble protein, chlorophyll pigments, the concentration of superoxide dismutase (SOD), catalase peroxidase (CAT), and ascorbic peroxidase (ASA) increased with the presence of salt concentration into the growth media and then decreased with the addition of LA + MT to saline solution. Leaf protein contents and the degradation of photosynthetic pigments were lower when LA + MT treatments were added into NaCl media. The proline and phenol contents decreased in the exogenous application of LA + MT treatments more than individual LA or MT treatments under the salinity stress. The incorporation of LA or MT or a combination of LA + MT to saline solution decreased salinity-induced malondialdehyde and electrolyte leakage. In conclusion, the alteration of metabolic pathways, redox modulation, and ions homeostasis in plant tissues by the combined LA and MT application are helpful towards the adaptation of Brassica napus L. seedlings in a saline environment. The results of this study provide, for the first time, conclusive evidence about the protective role of exogenous LA + MT in canola seedlings under salinity stress.


Assuntos
Brassica napus/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Estresse Salino , Ácido Tióctico/farmacologia , Antioxidantes/metabolismo , Biomassa , Brassica napus/metabolismo , Produtos Agrícolas/metabolismo , Homeostase , Malondialdeído/metabolismo , Minerais/metabolismo , Fenóis/metabolismo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
19.
Theor Appl Genet ; 134(9): 2795-2811, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34027567

RESUMO

KEY MESSAGE: QTNs significantly associated to nine mineral content in grains of common bean were identified. The accumulation of favorable alleles was associated with a gradually increasing nutrient content in the grain. Biofortification is one of the strategies developed to address malnutrition in developing countries, the aim of which is to improve the nutritional content of crops. The common bean (Phaseolus vulgaris L.), a staple food in several African and Latin American countries, has excellent nutritional attributes and is considered a strong candidate for biofortification. The objective of this study was to identify genomic regions associated with nutritional content in common bean grains using 178 Mesoamerican accessions belonging to a Brazilian Diversity Panel (BDP) and 25,011 good-quality single nucleotide polymorphisms. The BDP was phenotyped in three environments for nine nutrients (phosphorus, potassium, calcium, magnesium, copper, manganese, sulfur, zinc, and iron) using four genome-wide association multi-locus methods. To obtain more accurate results, only quantitative trait nucleotides (QTNs) that showed repeatability (i.e., those detected at least twice using different methods or environments) were considered. Forty-eight QTNs detected for the nine minerals showed repeatability and were considered reliable. Pleiotropic QTNs and overlapping genomic regions surrounding the QTNs were identified, demonstrating the possible association between the deposition mechanisms of different nutrients in grains. The accumulation of favorable alleles in the same accession was associated with a gradually increasing nutrient content in the grain. The BDP proved to be a valuable source for association studies. The investigation of different methods and environments showed the reliability of markers associated with minerals. The loci identified in this study will potentially contribute to the improvement of Mesoamerican common beans, particularly carioca and black beans, the main groups consumed in Brazil.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Minerais/metabolismo , Phaseolus/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Brasil , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla , Minerais/análise , Phaseolus/genética , Phaseolus/crescimento & desenvolvimento
20.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836596

RESUMO

Legume trees form an abundant and functionally important component of tropical forests worldwide with N2-fixing symbioses linked to enhanced growth and recruitment in early secondary succession. However, it remains unclear how N2-fixers meet the high demands for inorganic nutrients imposed by rapid biomass accumulation on nutrient-poor tropical soils. Here, we show that N2-fixing trees in secondary Neotropical forests triggered twofold higher in situ weathering of fresh primary silicates compared to non-N2-fixing trees and induced locally enhanced nutrient cycling by the soil microbiome community. Shotgun metagenomic data from weathered minerals support the role of enhanced nitrogen and carbon cycling in increasing acidity and weathering. Metagenomic and marker gene analyses further revealed increased microbial potential beneath N2-fixers for anaerobic iron reduction, a process regulating the pool of phosphorus bound to iron-bearing soil minerals. We find that the Fe(III)-reducing gene pool in soil is dominated by acidophilic Acidobacteria, including a highly abundant genus of previously undescribed bacteria, Candidatus Acidoferrum, genus novus. The resulting dependence of the Fe-cycling gene pool to pH determines the high iron-reducing potential encoded in the metagenome of the more acidic soils of N2-fixers and their nonfixing neighbors. We infer that by promoting the activities of a specialized local microbiome through changes in soil pH and C:N ratios, N2-fixing trees can influence the wider biogeochemical functioning of tropical forest ecosystems in a manner that enhances their ability to assimilate and store atmospheric carbon.


Assuntos
Fabaceae/microbiologia , Florestas , Microbiota/fisiologia , Minerais/metabolismo , Nutrientes/metabolismo , Clima Tropical , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/metabolismo , Biomassa , Carbono/análise , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Compostos Férricos/metabolismo , Concentração de Íons de Hidrogênio , Microbiota/genética , Minerais/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Fixação de Nitrogênio , Nutrientes/análise , Panamá , Fósforo/metabolismo , Silicatos/análise , Silicatos/metabolismo , Solo/química , Microbiologia do Solo , Simbiose , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Árvores/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...