Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.073
Filtrar
1.
J Cardiovasc Magn Reson ; 23(1): 100, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479603

RESUMO

BACKGROUND: The prevalence of abnormal cardiovascular magnetic resonance (CMR) findings in recovered coronavirus disease 2019 (COVID-19) patients is unclear. This study aimed to investigate the prevalence of abnormal CMR findings in recovered COVID-19 patients. METHODS: A systematic literature search was performed to identify studies that report the prevalence of abnormal CMR findings in recovered COVID-19 patients. The number of patients with abnormal CMR findings and diagnosis of myocarditis on CMR (based on the Lake Louise criteria) and each abnormal CMR parameter were extracted. Subgroup analyses were performed according to patient characteristics (athletes vs. non-athletes and normal vs. undetermined cardiac enzyme levels). The pooled prevalence and 95% confidence interval (CI) of each CMR finding were calculated. Study heterogeneity was assessed, and meta-regression analysis was performed to investigate factors associated with heterogeneity. RESULTS: In total, 890 patients from 16 studies were included in the analysis. The pooled prevalence of one or more abnormal CMR findings in recovered COVID-19 patients was 46.4% (95% CI 43.2%-49.7%). The pooled prevalence of myocarditis and late gadolinium enhancement (LGE) was 14.0% (95% CI 11.6%-16.8%) and 20.5% (95% CI 17.7%-23.6%), respectively. Further, heterogeneity was observed (I2 > 50%, p < 0.1). In the subgroup analysis, the pooled prevalence of abnormal CMR findings and myocarditis was higher in non-athletes than in athletes (62.5% vs. 17.1% and 23.9% vs. 2.5%, respectively). Similarly, the pooled prevalence of abnormal CMR findings and LGE was higher in the undetermined than in the normal cardiac enzyme level subgroup (59.4% vs. 35.9% and 45.5% vs. 8.3%, respectively). Being an athlete was a significant independent factor related to heterogeneity in multivariate meta-regression analysis (p < 0.05). CONCLUSIONS: Nearly half of recovered COVID-19 patients exhibited one or more abnormal CMR findings. Athletes and patients with normal cardiac enzyme levels showed a lower prevalence of abnormal CMR findings than non-athletes and patients with undetermined cardiac enzyme levels. Trial registration The study protocol was registered in the PROSPERO database (registration number: CRD42020225234).


Assuntos
COVID-19/epidemiologia , Doenças Cardiovasculares/diagnóstico , Imagem Cinética por Ressonância Magnética/métodos , Miocárdio/patologia , COVID-19/diagnóstico , Doenças Cardiovasculares/epidemiologia , Comorbidade , Saúde Global , Humanos , Pandemias , Valor Preditivo dos Testes , Prevalência , SARS-CoV-2
2.
Cardiovasc Diabetol ; 20(1): 165, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384426

RESUMO

BACKGROUND: COVID-19 diabetic adults are at increased risk of severe forms irrespective of obesity. In patients with type-II diabetes, fat distribution is characterized by visceral and ectopic adipose tissues expansion, resulting in systemic inflammation, which may play a role in driving the COVID-19 cytokine storm. Our aim was to determine if cardiac adipose tissue, combined to interleukin-6 levels, could predict adverse short-term outcomes, death and ICU requirement, in COVID-19 diabetic patients during the 21 days after admission. METHODS: Eighty one consecutive patients with type-II diabetes admitted for COVID-19 were included. Interleukin-6 measurement and chest computed tomography with total cardiac adipose tissue index (CATi) measurement were performed at admission. The primary outcome was death during the 21 days following admission while intensive care requirement with or without early death (ICU-R) defined the secondary endpoint. Associations of CATi and IL-6 and threshold values to predict the primary and secondary endpoints were determined. RESULTS: Of the enrolled patients (median age 66 years [IQR: 59-74]), 73% male, median body mass index (BMI) 27 kg/m2 [IQR: 24-31]) 20 patients had died from COVID-19, 20 required intensive care and 41 were in conventional care at day 21 after admission. Increased CATi and IL-6 levels were both significantly related to increased early mortality (respectively OR = 6.15, p = 0.002; OR = 18.2, p < 0.0001) and ICU-R (respectively OR = 3.27, p = 0.01; OR = 4.86, p = 0.002). These associations remained significant independently of age, sex, BMI as well as troponin-T level and pulmonary lesion extension in CT. We combined CATi and IL-6 levels as a multiplicative interaction score (CATi*IL-6). The cut-point for this score was ≥ 6386 with a sensitivity of 0.90 and a specificity of 0.87 (AUC = 0.88) and an OR of 59.6 for early mortality (p < 0.0001). CONCLUSIONS: Cardiac adipose tissue index and IL-6 determination at admission could help physicians to better identify diabetic patients with a potentially severe and lethal short term course irrespective of obesity. Diabetic patients with high CATi at admission, a fortiori associated with high IL-6 levels could be a relevant target population to promptly initiate anti-inflammatory therapies.


Assuntos
Tecido Adiposo/patologia , COVID-19/sangue , Diabetes Mellitus Tipo 2/complicações , Interleucina-6/sangue , Miocárdio/patologia , Tecido Adiposo/diagnóstico por imagem , Idoso , COVID-19/complicações , COVID-19/diagnóstico por imagem , COVID-19/mortalidade , Feminino , Coração/diagnóstico por imagem , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Prognóstico , SARS-CoV-2 , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X
3.
J Korean Med Sci ; 36(32): e229, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34402228

RESUMO

Increasing rates of coronavirus disease 2019 (COVID-19) vaccination coverage will result in more vaccine-related side effects, including acute myocarditis. In Korea, we present a 24-year-old male with acute myocarditis following COVID-19 vaccination (BNT162b2). His chest pain developed the day after vaccination and cardiac biomarkers were elevated. Echocardiography showed minimal pericardial effusion but normal myocardial contractility. Electrocardiography revealed diffuse ST elevation in lead II, and V2-5. Cardiac magnetic resonance images showed the high signal intensity of T2- short tau inversion recovery image, the high value of T2 mapping sequence, and late gadolinium enhancement in basal inferior and inferolateral wall. It was presumed that COVID-19 mRNA vaccination was probably responsible for acute myocarditis. Clinical course of the patient was favorable and he was discharged without any adverse event.


Assuntos
Vacinas contra COVID-19/efeitos adversos , Coração/diagnóstico por imagem , Miocardite/diagnóstico por imagem , Miocardite/patologia , Miocárdio/patologia , COVID-19/imunologia , COVID-19/prevenção & controle , Dor no Peito/patologia , Ecocardiografia , Eletrocardiografia , Humanos , Imageamento por Ressonância Magnética , Masculino , República da Coreia , Vacinação/efeitos adversos , Adulto Jovem
4.
FASEB J ; 35(9): e21799, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339055

RESUMO

Cardiac fibroblasts (CFBs) support heart function by secreting extracellular matrix (ECM) and paracrine factors, respond to stress associated with injury and disease, and therefore are an increasingly important therapeutic target. We describe how developmental lineage of human pluripotent stem cell-derived CFBs, epicardial (EpiC-FB), and second heart field (SHF-FB) impacts transcriptional and functional properties. Both EpiC-FBs and SHF-FBs exhibited CFB transcriptional programs and improved calcium handling in human pluripotent stem cell-derived cardiac tissues. We identified differences including in composition of ECM synthesized, secretion of growth and differentiation factors, and myofibroblast activation potential, with EpiC-FBs exhibiting higher stress-induced activation potential akin to myofibroblasts and SHF-FBs demonstrating higher calcification and mineralization potential. These phenotypic differences suggest that EpiC-FBs have utility in modeling fibrotic diseases while SHF-FBs are a promising source of cells for regenerative therapies. This work directly contrasts regional and developmental specificity of CFBs and informs CFB in vitro model selection.


Assuntos
Linhagem da Célula/fisiologia , Miofibroblastos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Matriz Extracelular/fisiologia , Humanos , Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Fenótipo , Transcrição Genética/fisiologia
5.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360742

RESUMO

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are emerging as a new treatment strategy for heart failure with reduced ejection fraction (HFrEF) and-depending on the wistfully awaited results of two clinical trials (DELIVER and EMPEROR-Preserved)-may be the first drug class to improve cardiovascular outcomes in patients suffering from heart failure with preserved ejection fraction (HFpEF). Proposed mechanisms of action of this class of drugs are diverse and include metabolic and hemodynamic effects as well as effects on inflammation, neurohumoral activation, and intracellular ion homeostasis. In this review we focus on the growing body of evidence for SGLT2i-mediated effects on cardiac intracellular Na+ as an upstream mechanism. Therefore, we will first give a short overview of physiological cardiomyocyte Na+ handling and its deterioration in heart failure. On this basis we discuss the salutary effects of SGLT2i on Na+ homeostasis by influencing NHE1 activity, late INa as well as CaMKII activity. Finally, we highlight the potential relevance of these effects for systolic and diastolic dysfunction as well as arrhythmogenesis.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Cardiotônicos/uso terapêutico , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Humanos , Miocárdio/patologia , Miócitos Cardíacos/patologia
6.
Chem Biol Interact ; 347: 109599, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34343525

RESUMO

BACKGROUND: Geraniol, a natural monoterpene, is a component of many plant essential oils. It contains many medicinal and pharmacological properties. Doxorubicin is an anticancer drug; however, its clinical usage is limited due to its cumulative and dose-dependent cardiotoxicity. This study investigates geraniol as a protective agent against doxorubicin-induced cardiotoxicity and explores possible underlying mechanisms of action. METHODS: Male Sprague-Dawley rats were allocated into five groups. Groups 1 and 2 were administered saline and geraniol 200 mg/kg/day/orally, respectively, for 15 days. Group 3 was administered intraperitoneal doxorubicin (5 mg/kg/IP on the 5th, 10th and 15th days to achieve a cumulative dose of 15 mg/kg) to induce cardiotoxicity. The fourth and fifth groups were treated with either geraniol 100 mg/kg or 200 mg/kg orally and doxorubicin to equal the doxorubicin dose administered to Group 3. RESULTS: Treatment with geraniol significantly ameliorated cardiac damage and restored serum cardiac injury marker levels in doxorubicin treated animals. Geraniol upregulated Nrf2 and HO-1 expression, elevated total antioxidant capacity, decreased the nuclear accumulation of kappa-light-chain enhancer of activated B cells (NF-κB), decreased the phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), suppressed tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), and interleukin-18 (IL-18) levels, and restored the levels of Bax and caspase-3 and 9 in heart tissue. CONCLUSION: Geraniol may function as a potential activator of nuclear factor erythroid 2-related factor 2 (Nrf2), which subsequently improves Nrf2-dependent antioxidative signaling, diminishes apoptosis and subdues the inflammatory response. The downstream result is protection of the heart from doxorubicin-induced cardiotoxicity.


Assuntos
Monoterpenos Acíclicos/uso terapêutico , Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Cymbopogon/química , Doxorrubicina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Cardiotoxicidade/patologia , Eletrocardiografia/efeitos dos fármacos , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Miocárdio/patologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
7.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445337

RESUMO

In fibrotic diseases, myofibroblasts derive from a range of cell types including endothelial-to-mesenchymal transition (EndMT). Increasing evidence suggests that miRNAs are key regulators in biological processes but their profile is relatively understudied in EndMT. In human umbilical vein endothelial cells (HUVEC), EndMT was induced by treatment with TGFß2 and IL1ß. A significant decrease in endothelial markers such as VE-cadherin, CD31 and an increase in mesenchymal markers such as fibronectin were observed. In parallel, miRNA profiling showed that miR-126-3p was down-regulated in HUVECs undergoing EndMT and over-expression of miR-126-3p prevented EndMT, maintaining CD31 and repressing fibronectin expression. EndMT was investigated using lineage tracing with transgenic Cdh5-Cre-ERT2; Rosa26R-stop-YFP mice in two established models of fibrosis: cardiac ischaemic injury and kidney ureteric occlusion. In both cardiac and kidney fibrosis, lineage tracing showed a significant subpopulation of endothelial-derived cells expressed mesenchymal markers, indicating they had undergone EndMT. In addition, miR-126-3p was restricted to endothelial cells and down-regulated in murine fibrotic kidney and heart tissue. These findings were confirmed in patient kidney biopsies. MiR-126-3p expression is restricted to endothelial cells and is down-regulated during EndMT. Over-expression of miR-126-3p reduces EndMT, therefore, it could be considered for miRNA-based therapeutics in fibrotic organs.


Assuntos
Transdiferenciação Celular/genética , Rim/patologia , MicroRNAs/fisiologia , Miocárdio/patologia , Animais , Células Cultivadas , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Fibrose/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Rim/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia
8.
Eur Rev Med Pharmacol Sci ; 25(15): 5063-5069, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34355379

RESUMO

OBJECTIVE: Vaccine-induced immune thrombocytopenia (VITT) is a new syndrome occurring primarily in healthy young adults, with a female predominance, after receiving the first dose of ChAdOx1 nCoV-19 vaccine. We describe VITT syndrome characterized by severe thrombosis and thrombocytopenia found in our patient, with fatal outcome. CASE REPORT: A 58-year-old man, after 13 days from the first administration of ChAdOx1 nCoV-19 vaccine (AstraZeneca), presented with abdominal pain, diarrhea and vomitus. Laboratory tests revealed a severe thrombocytopenia, low fibrinogen serum levels and marked increase of D-dimer serum levels. The patient quickly developed a multiple organ failure, till death, three days after the hospital admission. RESULTS: At histology, in the lungs, interalveolar septa appeared thickened with microthrombi in the capillaries and veins. Interalveolar septa appeared thickened and showed vascular proliferation. Thrombi were detected in the capillaries of glomerular tufts. In the hearth, thrombi were observed in veins and capillaries. In the liver, voluminous fibrin thrombi were diffusely observed in the branches of the portal vein. Microthrombi were also found in the vasa vasorum of the wall of abdominal aorta. In the brain, microthrombi were observed in the capillaries of the choroid plexuses. Diffuse hemorrhagic necrosis was observed in the intestinal wall with marked congestion of the venous vessels. CONCLUSIONS: In our patient, the majority of data necessary for a VITT final diagnosis were present: thrombocytopenia and thrombosis in pulmonary, portal, hepatic, renal and mesenteric veins, associated with a marked increase of D-dimer serum levels. The finding of cerebral thrombosis in choroid plexuses, is a new finding in VITT. These features are suggestive for a very aggressive form of VITT.


Assuntos
Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Púrpura Trombocitopênica Idiopática/etiologia , Trombose/etiologia , Aorta/patologia , COVID-19/sangue , Vacinas contra COVID-19/administração & dosagem , Plexo Corióideo/patologia , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Humanos , Íleo/patologia , Rim/patologia , Fígado/patologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Púrpura Trombocitopênica Idiopática/sangue , Trombose/sangue
9.
Theranostics ; 11(16): 7755-7766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335962

RESUMO

Background: Myocardial infarction (MI) evokes an organized remodeling process characterized by the activation and transdifferentiation of quiescent cardiac fibroblasts to generate a stable collagen rich scar. Early fibroblast activation may be amenable to targeted therapy, but is challenging to identify in vivo. We aimed to non-invasively image active fibrosis by targeting the fibroblast activation protein (FAP) expressed by activated (myo)fibroblasts, using a novel positron emission tomography (PET) radioligand [68Ga]MHLL1 after acute MI. Methods: One-step chemical synthesis and manual as well as module-based radiolabeling yielded [68Ga]MHLL1. Binding characteristics were evaluated in murine and human FAP-transfected cells, and stability tested in human serum. Biodistribution in healthy animals was interrogated by dynamic PET imaging, and metabolites were measured in blood and urine. The temporal pattern of FAP expression was determined by serial PET imaging at 7 d and 21 d after coronary artery ligation in mice as percent injected dose per gram (%ID/g). PET measurements were validated by ex vivo autoradiography and immunostaining for FAP and inflammatory macrophages. Results: [68Ga]MHLL1 displayed specific uptake in murine and human FAP-positive cells (p = 0.0208). In healthy mice the tracer exhibited favorable imaging characteristics, with low blood pool retention and dominantly renal clearance. At 7 d after coronary artery ligation, [68Ga]MHLL1 uptake was elevated in the infarct relative to the non-infarcted remote myocardium (1.3 ± 0.3 vs. 1.0 ± 0.2 %ID/g, p < 0.001) which persisted to 21 d after MI (1.3 ± 0.4 vs. 1.1 ± 0.4 %ID/g, p = 0.013). Excess unlabeled compound blocked tracer accumulation in both infarct and non-infarct remote myocardium regions (p < 0.001). Autoradiography and histology confirmed the regional uptake of [68Ga]MHLL1 in the infarct and especially border zone regions, as identified by Masson trichrome collagen staining. Immunostaining further delineated persistent FAP expression at 7 d and 21 d post-MI in the border zone, consistent with tracer distribution in vivo. Conclusion: The simplified synthesis of [68Ga]MHLL1 bears promise for non-invasive characterization of fibroblast activation protein early in remodeling after MI.


Assuntos
Endopeptidases/metabolismo , Radioisótopos de Gálio/farmacologia , Proteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Autorradiografia/métodos , Linhagem Celular Tumoral , Endopeptidases/fisiologia , Fibroblastos/metabolismo , Fibrose/diagnóstico por imagem , Radioisótopos de Gálio/metabolismo , Humanos , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular/métodos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Distribuição Tecidual/fisiologia , Tomografia Computadorizada por Raios X/métodos
10.
Theranostics ; 11(16): 7879-7895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335970

RESUMO

Rationale: Previous studies have shown that human embryonic stem cell-derived cardiomyocytes improved myocardial recovery when administered to infarcted pig and non-human primate hearts. However, the engraftment of intramyocardially delivered cells is poor and the effectiveness of clinically relevant doses of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in large animal models of myocardial injury remains unknown. Here, we determined whether thymosin ß4 (Tb4) could improve the engraftment and reparative potency of transplanted hiPSC-CMs in a porcine model of myocardial infarction (MI). Methods: Tb4 was delivered from injected gelatin microspheres, which extended the duration of Tb4 administration for up to two weeks in vitro. After MI induction, pigs were randomly distributed into 4 treatment groups: the MI Group was injected with basal medium; the Tb4 Group received gelatin microspheres carrying Tb4; the CM Group was treated with 1.2 × 108 hiPSC-CMs; and the Tb4+CM Group received both the Tb4 microspheres and hiPSC-CMs. Myocardial recovery was assessed by cardiac magnetic resonance imaging (MRI), arrhythmogenesis was monitored with implanted loop recorders, and tumorigenesis was evaluated via whole-body MRI. Results: In vitro, 600 ng/mL of Tb4 protected cultured hiPSC-CMs from hypoxic damage by upregulating AKT activity and BcL-XL and promoted hiPSC-CM and hiPSC-EC proliferation. In infarcted pig hearts, hiPSC-CM transplantation alone had a minimal effect on myocardial recovery, but co-treatment with Tb4 significantly enhanced hiPSC-CM engraftment, induced vasculogenesis and the proliferation of cardiomyocytes and endothelial cells, improved left ventricular systolic function, and reduced infarct size. hiPSC-CM implantation did not increase incidence of ventricular arrhythmia and did not induce tumorigenesis in the immunosuppressed pigs. Conclusions: Co-treatment with Tb4-microspheres and hiPSC-CMs was safe and enhanced the reparative potency of hiPSC-CMs for myocardial repair in a large-animal model of MI.


Assuntos
Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Timosina/farmacologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , China , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Regeneração , Transplante de Células-Tronco/métodos , Suínos , Timosina/metabolismo , Timosina/fisiologia
11.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361762

RESUMO

Amyloidosis is a group of diseases that includes Alzheimer's disease, prion diseases, transthyretin (ATTR) amyloidosis, and immunoglobulin light chain (AL) amyloidosis. The mechanism of organ dysfunction resulting from amyloidosis has been a topic of debate. This review focuses on the ultrastructure of tissue damage resulting from amyloid deposition and therapeutic insights based on the pathophysiology of amyloidosis. Studies of nerve biopsy or cardiac autopsy specimens from patients with ATTR and AL amyloidoses show atrophy of cells near amyloid fibril aggregates. In addition to the stress or toxicity attributable to amyloid fibrils themselves, the toxicity of non-fibrillar states of amyloidogenic proteins, particularly oligomers, may also participate in the mechanisms of tissue damage. The obscuration of the basement and cytoplasmic membranes of cells near amyloid fibrils attributable to an affinity of components constituting these membranes to those of amyloid fibrils may also play an important role in tissue damage. Possible major therapeutic strategies based on pathophysiology of amyloidosis consist of the following: (1) reducing or preventing the production of causative proteins; (2) preventing the causative proteins from participating in the process of amyloid fibril formation; and/or (3) eliminating already-deposited amyloid fibrils. As the development of novel disease-modifying therapies such as short interfering RNA, antisense oligonucleotide, and monoclonal antibodies is remarkable, early diagnosis and appropriate selection of treatment is becoming more and more important for patients with amyloidosis.


Assuntos
Doença de Alzheimer/patologia , Neuropatias Amiloides Familiares/patologia , Amiloide/imunologia , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Miocárdio/patologia , Nervos Periféricos/patologia , Doenças Priônicas/patologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Amiloide/antagonistas & inibidores , Amiloide/genética , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/imunologia , Benzoxazóis/uso terapêutico , Diflunisal/uso terapêutico , Humanos , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/tratamento farmacológico , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Amiloidose de Cadeia Leve de Imunoglobulina/imunologia , Fatores Imunológicos/uso terapêutico , Miocárdio/imunologia , Fármacos Neuroprotetores/uso terapêutico , Oligonucleotídeos/uso terapêutico , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/imunologia , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/genética , Pré-Albumina/imunologia , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/genética , Doenças Priônicas/imunologia , RNA Interferente Pequeno/uso terapêutico
12.
Nat Biomed Eng ; 5(8): 880-896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34426676

RESUMO

Fibroblasts can be directly reprogrammed into cardiomyocytes, endothelial cells or smooth muscle cells. Here we report the reprogramming of mouse tail-tip fibroblasts simultaneously into cells resembling these three cell types using the microRNA mimic miR-208b-3p, ascorbic acid and bone morphogenetic protein 4, as well as the formation of tissue-like structures formed by the directly reprogrammed cells. Implantation of the formed cardiovascular tissue into the infarcted hearts of mice led to the migration of reprogrammed cells to the injured tissue, reducing regional cardiac strain and improving cardiac function. The migrated endothelial cells and smooth muscle cells contributed to vessel formation, and the migrated cardiomyocytes, which initially displayed immature characteristics, became mature over time and formed gap junctions with host cardiomyocytes. Direct reprogramming of somatic cells to make cardiac tissue may aid the development of applications in cell therapy, disease modelling and drug discovery for cardiovascular diseases.


Assuntos
Células Endoteliais/transplante , Coração/fisiologia , Infarto do Miocárdio/terapia , Miócitos de Músculo Liso/transplante , Regeneração , Animais , Ácido Ascórbico/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Reprogramação Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Junções Comunicantes/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neovascularização Fisiológica , Transcriptoma
13.
Life Sci ; 283: 119849, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343539

RESUMO

AIMS: Cardiotoxicity of doxorubicin frequently complicates treatment outcome. Aberrantly activated calcium/calmodulin pathway can eventually trigger signaling cascades that mediate cardiotoxicity. Therefore, we tested the hypothesis that trifluoperazine, a strong calmodulin antagonist, may alleviate this morbidity. MATERIALS AND METHODS: Heart failure and cardiotoxicity were assessed via echocardiography, PCR, immunohistochemistry, histopathology, Masson's trichrome staining and transmission electron microscopy. Whereas liver and kidney structural and functional alterations were evaluated histopathologically and biochemically. KEY FINDINGS: Results revealed that combination treatment with trifluoperazine could overcome doxorubicin-induced heart failure with reduced ejection fraction. Moreover, heart weight/body weight ratio and histopathological examination showed that trifluoperazine mitigated doxorubicin-induced cardiac atrophy, inflammation and myofibril degeneration. Transmission electron microscopy further confirmed the marked restoration of the left ventricular ultrastructures by trifluoperazine pretreatment. In addition, Masson's trichrome staining revealed that trifluoperazine could significantly inhibit doxorubicin-induced left ventricular remodeling by fibrosis. Of note, doxorubicin induced the expression of myocardial nuclear NF-κB-p65 and caspase-3 which were markedly inhibited by trifluoperazine, suggesting that cardioprotection conferred by trifluoperazine involved, at least in part, suppression of NF-κB and apoptosis. Furthermore, biochemical and histopathological examinations showed that trifluoperazine improved doxorubicin-induced renal and hepatic impairments both functionally and structurally. SIGNIFICANCE: In conclusion, the present in vivo study is the first to provide evidences underscoring the protective effects of trifluoperazine that may pave the way for repurposing this calmodulin antagonist in ameliorating organ toxicity by doxorubicin.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotoxicidade , Cardiotoxinas/efeitos adversos , Doxorrubicina/efeitos adversos , Miocárdio/metabolismo , Fator de Transcrição RelA/metabolismo , Trifluoperazina/farmacologia , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Cardiotoxinas/farmacologia , Caspase 3/metabolismo , Doxorrubicina/farmacologia , Masculino , Camundongos , Miocárdio/patologia
14.
Life Sci ; 283: 119866, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352257

RESUMO

AIMS: Morphine, a commonly used drug for anesthesia, affects lipid metabolism in different tissues, but the mechanism is currently unclear. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme responsible for the first step of triglyceride (TG) hydrolysis. Here we aim to investigate whether ATGL phosphorylation is involved in morphine-induced TG accumulation. MAIN METHODS: Oil red O staining and TG content analysis were used to detect the effect of morphine on lipid storage. A series of ATGL phosphoamino acid site mutant plasmids were constructed by gene synthesis and transfected to HL-1 cells to evaluate the phosphorylation levels of ATGL phosphoamino acid in morphine-treated HL-1 cells with immunoprecipitation and immunoblotting assay. KEY FINDINGS: Morphine acute treatment induced excessive accumulation of TG and decreased the phosphorylation level of ATGL Ser406 in HL-1 cells. Of note, the phosphorylation positive mutation of ATGL Ser406 to aspartic acid effectively reversed morphine-induced excessive accumulation of TG in HL-1 cells. SIGNIFICANCE: This discovery will help to fully understand the lipid regulation function of morphine in a new scope. In addition, it will expand the phosphorylation research of ATGL more comprehensively and provide powerful clues for lipid metabolism regulation.


Assuntos
Lipase/metabolismo , Morfina/farmacologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Triglicerídeos/biossíntese , Animais , Linhagem Celular , Masculino , Camundongos , Morfina/farmacocinética , Miocárdio/patologia , Miócitos Cardíacos/patologia , Fosforilação/efeitos dos fármacos
15.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360813

RESUMO

Proper cardiac function depends on the coordinated expression of multiple gene networks related to fuel utilization and mitochondrial ATP production, heart contraction, and ion transport. Key transcriptional regulators that regulate these gene networks have been identified. Among them, estrogen-related receptors (ERRs) have emerged as crucial modulators of cardiac function by regulating cellular metabolism and contraction machinery. Consistent with this role, lack of ERRα or ERRγ results in cardiac derangements that lead to functional maladaptation in response to increased workload. Interestingly, metabolic inflexibility associated with diabetic cardiomyopathy has been recently associated with increased mitochondrial fatty acid oxidation and expression of ERRγ, suggesting that sustained expression of this nuclear receptor could result in a cardiac pathogenic outcome. Here, we describe the generation of mice with cardiac-specific overexpression of ERRγ, which die at young ages due to heart failure. ERRγ transgenic mice show signs of dilated cardiomyopathy associated with cardiomyocyte hypertrophy, increased cell death, and fibrosis. Our results suggest that ERRγ could play a role in mediating cardiac pathogenic responses.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Estrogênio/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/patologia , Miócitos Cardíacos/patologia
16.
Int Heart J ; 62(4): 891-899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334583

RESUMO

Long-chain noncoding RNA (lncRNA) is a new class of molecular regulators in heart development and disease. However, the role of specific lncRNA in cardiac fibrosis remains to be fully explored. This study aimed to investigate the role and potential mechanism of lncRNA MHRT in myocardial fibrosis after myocardial infarction (MI).Cardiac fibroblasts (CFs) were isolated from a mouse model of MI. The expression levels of MHRT and miR-3185 in the hearts of MI and CFs mice treated with transforming growth factor beta 1 (TGF-ß1) were analyzed by qRT-PCR. The collagen expression was assessed using qRT-PCR and Western blot. Cell proliferation was assessed by performing MTT and EdU assays. The direct interaction between lncRNA and miRNA was analyzed by luciferase assay, RNA-binding protein immunoprecipitation (RIP) assay, and RNA pull-down assay.The expression levels of MHRT were raised in MI and CFs mice treated with TGF-ß1. Overexpression of MHRT promoted collagen production and CF proliferation, while silencing of MHRT showed the opposite effect. MiR-3185 was a target gene of MHRT. In addition, overexpression of MHRT reduced the expression levels of miR-3185, and siMHRT reversed the inhibitory effect of TGF-ß1 on the expression of miR-3185. Overexpression of miR-3185 inhibited the upregulation of Col I and Col III induced by TGF-ß1.MHRT promoted cardiac fibrosis after MI through miR-3185 and increased myocardial collagen deposition and promoted myocardial fibrosis.


Assuntos
Infarto do Miocárdio/metabolismo , Miocárdio/patologia , RNA Longo não Codificante/metabolismo , Animais , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Ratos Sprague-Dawley
17.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(7): 689-696, 2021 Jul 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34382584

RESUMO

OBJECTIVES: Tumor necrosis factor α stimulated gene 6 (TSG-6) protein is an inflammation-inducing protein. In recent years, TSG-6 protein has been found to play an anti-inflammatory and anti-fibrosis role in a variety of disease models. The level of TSG-6 protein in circulating blood is considered to be a biological indicator for the evaluation of acute coronary syndrome, severe infection, and other diseases, and it is closely related to the prognosis. The clinical correlation between TSG-6 protein and dilated cardiomyopathy (DCM) patients with heart failure has not been reported. This study aims to investigate the changes of plasma TSG-6 protein levels in cardiomyopathy patients with heart failure and its correlation with cardiac function, myocardial fibrosis, and prognosis. METHODS: Based on the prospective studies, a number of 90 DCM patients with heart failure were selected as a DCM heart failure group from Dec.1, 2019 to Sept.1, 2020. Thirty-nine healthy people were served as a control group. Plasma TSG-6, Collagen Ⅰ, Collagen III, and α-smooth muscle actin (α-SMA) were measured with ELISA test. Echocardiography was used to evaluate the structure and function of the heart. DCM patients with heart failure were followed up for 3 months. The patients were assigned into 2 groups according to whether they had major adverse cardiovascular events (MACE). The general clinical data, plasma TSG-6, Collagen Ⅰ, Collagen III, and α-SMA protein levels were compared between the control group and the DCM heart failure group. At the same time, the correlation between plasma TSG-6 protein level and cardiac function grade, myocardial fibrosis or prognosis of patients in the DCM heart failure group was analyzed. RESULTS: Compared with the control group, the heart rate, TSG-6, Collagen Ⅰ, Collage III, α-SMA, hemoglobin, atrial natriuretic peptide (NT-proBNP), hypersensitive C-reactive protein, aspartate aminotransferase, serum creatinine, lactate dehydrogenase, and left ventricular end diastolic diameter (LVEDD) increased significantly (all P<0.001). High-density lipoprotein, left ventricular short axis shortening rate (LVFS), and left ventricular ejection fraction (LVEF) decreased significantly in the DCM heart failure group (all P<0.001). Plasma levels of TSG-6 were positively correlated with NT-proBNP, Collagen Ⅰ, Collagen III, α-SMA, and LVEDD (all P<0.001), while they were negatively correlated with LVFS and LVEF (all P<0.001). With the increase of NYHA heart function classification, plasma levels of TSG-6, Collagen Ⅰ, Collagen III, and α-SMA increased significantly (all P<0.001). The increases in plasma levels of NT-proBNP and TSG-6 was associated with poor prognosis in DCM patients with heart failure (all P<0.05). The sensitivity and specificity of plasma NT-proBNP for evaluating the prognosis of DCM heart failure were 76.2% and 68.1%, respectively. The sensitivity and specificity of plasma TSG-6 for evaluating the prognosis of DCM heart failure were 95.2% and 66.7%, respectively. The sensitivity and specificity of plasma TSG-6 combined with NT-proBNP for prognostic evaluation of DCM heart failure were 85.7% and 81.2%, respectively. The specificity of plasma TSG-6 combined with NT-proBNP for the prognosis of heart failure was better than that of NT-proBNP or TSG-6 alone (P<0.001). CONCLUSIONS: The plasma levels TSG-6 in DCM patients with heart failure increase significantly, and the plasma levels TSG-6 could be used as a new predictor for cardiac function, myocardial fibrosis, and prognosis.


Assuntos
Cardiomiopatia Dilatada , Moléculas de Adesão Celular/sangue , Insuficiência Cardíaca , Miocárdio/patologia , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico , Fibrose , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico , Humanos , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Prognóstico , Estudos Prospectivos , Volume Sistólico , Função Ventricular Esquerda
18.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361060

RESUMO

Homeodomain-interacting protein kinase 2 (HIPK2) is a serine-threonine kinase that phosphorylates various transcriptional and chromatin regulators, thus modulating numerous important cellular processes, such as proliferation, apoptosis, DNA damage response, and oxidative stress. The role of HIPK2 in the pathogenesis of cancer and fibrosis is well established, and evidence of its involvement in the homeostasis of multiple organs has been recently emerging. We have previously demonstrated that Hipk2-null (Hipk2-KO) mice present cerebellar alterations associated with psychomotor abnormalities and that the double ablation of HIPK2 and its interactor HMGA1 causes perinatal death due to respiratory failure. To identify other alterations caused by the loss of HIPK2, we performed a systematic morphological analysis of Hipk2-KO mice. Post-mortem examinations and histological analysis revealed that Hipk2 ablation causes neuronal loss, neuronal morphological alterations, and satellitosis throughout the whole central nervous system (CNS); a myopathic phenotype characterized by variable fiber size, mitochondrial proliferation, sarcoplasmic inclusions, morphological alterations at neuromuscular junctions; and a cardiac phenotype characterized by fibrosis and cardiomyocyte hypertrophy. These data demonstrate the importance of HIPK2 in the physiology of skeletal and cardiac muscles and of different parts of the CNS, thus suggesting its potential relevance for different new aspects of human pathology.


Assuntos
Sistema Nervoso Central/patologia , Fibrose/patologia , Miocárdio/patologia , Neurônios/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Feminino , Fibrose/metabolismo , Proteínas HMGA/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Neurônios/metabolismo , Fenótipo , Fosforilação
19.
Chem Biol Interact ; 347: 109617, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34391751

RESUMO

PURPOSE: This study was designed to investigate the mechanism of Dapagliflozin (Dapa) cardioprotection against diabetic cardiomyopathy (DCM). Structural and functional changes in the heart as well as decrease of erythropoietin (EPO) levels were reported in DCM. EPO simultaneously activates three pathways: the Janus-activated kinase-signal transducer and activator of transcription (JAK2/STAT5), phosphatidylinositol-3-kinase-Akt (PI3K/Akt), and extracellular signal-related kinase (ERK/MAPK) cascades, that result in proliferation and differentiation of cardiac cells. METHODS AND RESULTS: DCM was induced by a high fat diet for 10 weeks followed by administration of streptozotocin. After confirmation of diabetes, rats were divided randomly to 5 groups: Group 1; normal control group, Group 2; untreated diabetic group and Groups (3-5); diabetic groups received Dapa daily (0.75 mg, 1.5 or 3 mg/Kg, p.o) respectively for a month. At the end of the experiment, full anaesthesia was induced in all rats using ether inhalation and ECG was recorded. Blood samples were collected then rats were sacrificed and their heart were dissected out and processed for biochemical and histopathological studies. Untreated diabetic rats showed abnormal ECG pattern, elevation of serum cardiac enzymes, decrease EPO levels, downregulation of P-Akt, P-JAK2 and pMAPK pathways, abnormal histological structure of the heart and increase immunostaining intensity of P53 and TNF α in the cardiomyocytes. Dapa in a dose dependent manner attenuated the alterations in the previously mentioned parameters. CONCLUSION: The cardioprotective effect of Dapa could be mediated by increasing EPO levels and activation of P-Akt, P-JAK2 and pMAPK signalling cascades which in turn decrease apoptosis.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Cardiotônicos/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Glucosídeos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Eletrocardiografia/efeitos dos fármacos , Eritropoetina/sangue , Eritropoetina/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Wistar , Estreptozocina
20.
PLoS Pathog ; 17(7): e1009705, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34265022

RESUMO

COVID-19 (coronavirus disease 2019) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is a disease affecting several organ systems. A model that captures all clinical symptoms of COVID-19 as well as long-haulers disease is needed. We investigated the host responses associated with infection in several major organ systems including the respiratory tract, the heart, and the kidneys after SARS-CoV-2 infection in Syrian hamsters. We found significant increases in inflammatory cytokines (IL-6, IL-1beta, and TNF) and type II interferons whereas type I interferons were inhibited. Examination of extrapulmonary tissue indicated inflammation in the kidney, liver, and heart which also lacked type I interferon upregulation. Histologically, the heart had evidence of myocarditis and microthrombi while the kidney had tubular inflammation. These results give insight into the multiorgan disease experienced by people with COVID-19 and possibly the prolonged disease in people with post-acute sequelae of SARS-CoV-2 (PASC).


Assuntos
COVID-19/imunologia , Regulação para Baixo/imunologia , Interferon Tipo I/imunologia , Rim/imunologia , Miocárdio/imunologia , Sistema Respiratório/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/patologia , Cricetinae , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Inflamação/patologia , Rim/patologia , Rim/virologia , Masculino , Mesocricetus , Miocárdio/patologia , Sistema Respiratório/patologia , Sistema Respiratório/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...