Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.160
Filtrar
1.
J Agric Food Chem ; 67(37): 10448-10457, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31453693

RESUMO

Carabrone is isolated from Carpesium macrocephalum Franch. et Sav, which has good fungicidal activity, especially for Gaeumannomyces graminis (Get). According to previous studies, we speculated that carabrone targets the mitochondrial enzyme complex III of Get. To elucidate the mode of action, we used carabrone to induce oxidative stress and apoptosis in Get. Incubation with carabrone reduced the burst of reactive oxygen species (ROS) and mitochondrial membrane potential, as well as phosphatidylserine release. Carabrone caused ROS accumulation in mycelia by inhibiting the activity of antioxidase enzymes, among which inhibition of glutathione reductase (GR) activity was most obvious. The catalytic center of GR consists of l-cysteine residues that react with the α-methylene-γ-butyrolactone active site of carabrone. Additionally, a positive TUNEL reaction led to diffusion of the DNA electrophoresis band and upregulation of Ggmet1 and Ggmet2. We propose that carabrone inhibits antioxidant enzymes and promotes ROS overproduction, which causes membrane hyperpermeability, release of apoptotic factors, activation of the mitochondria-mediated apoptosis pathway, and fungal cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ascomicetos/citologia , Ascomicetos/metabolismo , Asteraceae/química , Proteínas Fúngicas/metabolismo , Glutationa Redutase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Adv Exp Med Biol ; 1145: 305-319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31364084

RESUMO

Polymyxin-induced nephrotoxicity is the major dose-limiting factor and can occur in up to 60% of patients after intravenous administration. This chapter reviews the latest literature on the mechanisms of polymyxin-induced nephrotoxicity and its amelioration. After filtration by glomeruli, polymyxins substantially accumulate in renal proximal tubules via receptor-mediated endocytosis mainly by megalin and PEPT2. It is believed that subsequently, a cascade of interconnected events occur, including the activation of death receptor and mitochondrial apoptotic pathways, mitochondrial damage, endoplasmic reticulum stress, oxidative stress and cell cycle arrest. The current literature shows that oxidative stress plays a key role in polymyxin-induced kidney damage. Use of antioxidants have a potential in the attenuation of polymyxin-induced nephrotoxicity, thereby widening the therapeutic window. Mechanistic findings on polymyxin-induced nephrotoxicity are critical for the optimization of their use in the clinic and the discovery of safer polymyxin-like antibiotics.


Assuntos
Antibacterianos/toxicidade , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Polimixinas/toxicidade , Apoptose , Estresse do Retículo Endoplasmático , Humanos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo
4.
Exp Parasitol ; 204: 107732, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31374184

RESUMO

In the present study, the cytotoxic effects of amitraz, an octopamine receptor agonist on the reproductive system of engorged adult females of Rhipicephalus (Boophilus) annulatus were assessed using histology, electron microscopy and octopamine beta (OCTß) receptor transcriptional expression analysis. Adult immersion test (AIT) was performed by immersing the fully engorged female ticks for 2 min in different concentrations of amitraz (200, 250, 300, 350 ppm). Amitraz at the dose of 300 ppm, caused an adult tick mortality of 16.66 ±â€¯6.80 per cent, inhibition of fecundity of 75.80 per cent and hatching of 50 per cent of ova laid by treated ticks. Histological changes in the ovaries of ticks collected after 24 h of treatment with amitraz (300 ppm), in comparison with controls (distilled water/methanol) were identified by microscopical examination of sections (4  µm) stained using haematoxylin and eosin. These changes included reduction in size and basophilia of stage I oocytes, presence of cytoplasmic vacuoles of various sizes around germinal vesicle of stage II oocytes, wavy basement membrane of stage III oocytes and reduction in size and number of mature stage IV and V oocytes. Electron microscopy was employed for understanding the structural changes in the ultrathin sections (60 nm) of ovaries. Ticks treated with amitraz showed major ultrastructural changes such as irregular nuclear membrane, crystolysis of mitochondria and detachment of external and internal layers of basal lamina of oocytes. The cDNA synthesized from the total RNA of whole ticks and ovaries of ticks treated with amitraz along with controls were used for relative quantification of Octopamine ß receptor (OCTß-R) expression based on the 2-ΔΔCT method by quantitative real time PCR (qRT PCR). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as endogenous control. Down regulation of expression of OCTß-R mRNA in the ovaries of amitraz treated ticks was observed compared to controls. Thus, the inhibition of fecundity observed in the ticks treated with amitraz can be attributed to the major structural changes and decreased expression of OCT ß receptor mRNA induced by it in the ovary.


Assuntos
Inseticidas/farmacologia , Rhipicephalus/efeitos dos fármacos , Toluidinas/farmacologia , Análise de Variância , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/ultraestrutura , Regulação para Baixo , Feminino , Fertilidade/efeitos dos fármacos , Expressão Gênica , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Oócitos/efeitos dos fármacos , Oócitos/ultraestrutura , Ovário/anatomia & histologia , Ovário/efeitos dos fármacos , Ovário/ultraestrutura , Oviposição/efeitos dos fármacos , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Amina Biogênica/agonistas , Receptores de Amina Biogênica/efeitos dos fármacos , Rhipicephalus/anatomia & histologia , Rhipicephalus/genética , Rhipicephalus/ultraestrutura , Espectrofotometria , Controle de Ácaros e Carrapatos/métodos , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura
5.
Biol Res ; 52(1): 45, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426853

RESUMO

BACKGROUND: Resveratrol was reported to trigger the apoptosis of fibroblast-like synoviocytes in adjuvant arthritis rats but the subcellular mechanism remains unclear. Since ER stress, mitochondrial dysfunction and oxidative stress were involved in the effects of resveratrol with imbalance of calcium bio-transmission, store operated calcium entry (SOCE), a novel intracellular calcium regulatory pathway, may also participate in this process. RESULTS: In the present study, Resveratrol was found to suppress ORAI1 expression of a dose dependent manner while have no evident effects on STIM1 expressive level. Besides, resveratrol had no effects on ATP or TG induced calcium depletion but present partly dose-dependent suppression of SOCE. On the one hand, microinjection of ORAI1 overexpressed vector in sick toe partly counteracted the therapeutic effects of resveratrol on adjuvant arthritis and serum inflammatory cytokine including IL-1, IL-6, IL-8, IL-10 and TNF-α. On the other hand, ORAI1 SiRNA injection provided slight relief to adjuvant arthritis in rats. In addition, ORAI1 overexpression partly diminished the alleviation of hemogram abnormality induced by adjuvant arthritis after resveratrol treatment while ORAI1 knockdown presented mild resveratrol-like effect on hemogram in rats model. CONCLUSION: These results indicated that resveratrol reduced store-operated Ca2+ entry and enhanced the apoptosis of fibroblast-like synoviocytes in adjuvant arthritis rats model via targeting ORAI1-STIM1 complex, providing a theoretical basis for ORAI1 targeted therapy in future treatment with resveratrol on rheumatoid arthritis.


Assuntos
Apoptose/efeitos dos fármacos , Artrite Experimental/fisiopatologia , Canais de Cálcio/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Proteína ORAI1/efeitos dos fármacos , Resveratrol/farmacologia , Molécula 1 de Interação Estromal/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Animais , Canais de Cálcio/fisiologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Resveratrol/administração & dosagem
6.
Chem Biol Interact ; 311: 108789, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31401089

RESUMO

The cytotoxicity of a dinuclear imine-copper (II) complex 2, and its analogous mononuclear complex 1, toward different melanoma cells, particularly human SKMEL-05 and SKMEL-147, was investigated. Complex 2, a tyrosinase mimic, showed much higher activity in comparison to complex 1, and its reactivity was verified to be remarkably activated by UVB-light, while the mononuclear compound showed a small or negligible effect. Further, a significant dependence on the melanin content in the tumor cells, both from intrinsic pigmentation or stimulated by irradiation, was observed in the case of complex 2. Similar tests with keratinocytes and melanocytes indicated a much lower sensitivity to both copper (II) complexes, even after exposition to UV light. Clonogenic assays attested that the fractions of melanoma cells survival were much lower under treatment with complex 2 compared to complex 1, both with or without previous irradiation of the cells. The process also involves generation of reactive oxygen species (ROS), as verified by EPR spectroscopy, and by using fluorescence indicators. Autophagic assays indicated a remarkable formation of cytoplasmic vacuoles in melanomas treated with complex 2, while this effect was not observed in similar treatment with complex 1. Monitoring of specific protein LC3 corroborated the simultaneous occurrence of autophagy. A balance interplay between different modes of cell death, apoptosis and autophagy, occurs when melanomas were treated with the dinuclear complex 2, in contrast to the mononuclear complex 1. These results pointed out to different mechanisms of action of such complexes, depending on its nuclearity.


Assuntos
Complexos de Coordenação/química , Cobre/química , Iminas/química , Monofenol Mono-Oxigenase/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos da radiação , Humanos , Melaninas/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tubulina (Proteína)/metabolismo , Raios Ultravioleta
7.
Int J Nanomedicine ; 14: 5033-5050, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371945

RESUMO

Background: Repairs to deep skin wounds continue to be a difficult issue in clinical practice. A promising approach is to fabricate full-thickness skin substitutes with functions closely similar to those of the natural tissue. For many years, a three-dimensional (3D) collagen hydrogel has been considered to provide a physiological 3D environment for co-cultivation of skin fibroblasts and keratinocytes. This collagen hydrogel is frequently used for fabricating tissue-engineered skin analogues with fibroblasts embedded inside the hydrogel and keratinocytes cultivated on its surface. Despite its unique biological properties, the collagen hydrogel has insufficient stiffness, with a tendency to collapse under the traction forces generated by the embedded cells. Methods: The aim of our study was to develop a two-layer skin construct consisting of a collagen hydrogel reinforced by a nanofibrous poly-L-lactide (PLLA) membrane pre-seeded with fibroblasts. The attractiveness of the membrane for dermal fibroblasts was enhanced by coating it with a thin nanofibrous fibrin mesh. Results: The fibrin mesh promoted the adhesion, proliferation and migration of the fibroblasts upwards into the collagen hydrogel. Moreover, the fibroblasts spontaneously migrating into the collagen hydrogel showed a lower tendency to contract and shrink the hydrogel by their traction forces. The surface of the collagen was seeded with human dermal keratinocytes. The keratinocytes were able to form a basal layer of highly mitotically-active cells, and a suprabasal layer. Conclusion: The two-layer skin construct based on collagen hydrogel with spontaneously immigrated fibroblasts and reinforced by a fibrin-coated nanofibrous membrane seems to be promising for the construction of full-thickness skin substitute.


Assuntos
Colágeno/farmacologia , Fibrina/farmacologia , Hidrogéis/farmacologia , Membranas Artificiais , Nanofibras/química , Poliésteres/farmacologia , Pele Artificial , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Derme/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Recém-Nascido , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos
8.
Int J Nanomedicine ; 14: 4991-5015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371943

RESUMO

Purpose: This study evaluates the cytotoxicity of AuNPs coated with polyallylamine (AuNPs-PAA) and conjugated or not to the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab (AuNPs-PAA-Ctxb) in normal human kidney (HK-2), liver (THLE-2) and microvascular endothelial (TIME) cells, and compares it with two cancer cell lines that are EGFR-overexpressing (A431) or EGFR-negative (MDA-MB-453). Results: Conjugation of Cetuximab to AuNPs-PAA increased the AuNPs-PAA-Ctxb interactions with cells, but reduced their cytotoxicity. TIME cells exhibited the strongest reduction in viability after exposure to AuNPs-PAA(±Ctxb), followed by THLE-2, MDA-MB-453, HK-2 and A431 cells. This cell type-dependent sensitivity was strongly correlated to the inhibition of thioredoxin reductase (TrxR) and glutathione reductase (GR), and to the depolarization of the mitochondrial membrane potential. Both are suggested to initiate apoptosis, which was indeed detected in a concentration- and time-dependent manner. The role of oxidative stress in AuNPs-PAA(±Ctxb)-induced cytotoxicity was demonstrated by co-incubation of the cells with N-acetyl L-cysteine (NAC), which significantly decreased apoptosis and mitochondrial membrane depolarization. Conclusion: This study helps to identify the cells and tissues that could be sensitive to AuNPs and deepens the understanding of the risks associated with the use of AuNPs in vivo.


Assuntos
Antioxidantes/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/farmacologia , Endocitose/efeitos dos fármacos , Glutationa Redutase/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Tamanho da Partícula , Poliaminas/química , Substâncias Protetoras/farmacologia , Eletricidade Estática , Tiorredoxina Dissulfeto Redutase/metabolismo
9.
Exp Parasitol ; 205: 107753, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31469986

RESUMO

Trypanosoma brucei causes human African trypanosomiasis and Nagana disease in cattle, imposing substantial medical and economic burden in sub-Saharan Africa. The current treatments have limitations, including the requirement for elaborated protocols, development of drug resistance, and they are prone to adverse side effects. In vitro screening of a library of 14 dinuclear-thiolato bridged arene ruthenium complexes, originally developed for treatment of cancer cells, resulted in the identification of 7 compounds with IC50 values ranging from 3 to 26 nM. Complex [(η6-p-MeC6H4Pri)2Ru2(µ2-SC6H4-o-Pri)3]Cl (2) (IC50 = 4 nM) and complex [(η6-p-MeC6H4Pri)2Ru2(µ2-SCH2C6H4-p-But)2(µ2-SC6H4-p-OH)]BF4(9) (IC50 = 26 nM) were chosen for further assessments. Application of complex 2 and 9 at 20 nM and 200 nM, respectively, for 4.5 h induced alterations in the trypanosome mitochondrion as evidenced by immunofluorescence employing an antibody against mitochondrial Hsp70 and Mitotracker labeling. Transmission electron microscopy of parasites taken at 2 and 4h of treatment demonstrated massive alterations in the mitochondrial ultrastructure, while other organelles and structural elements of the parasites remained unaffected. Complex 2 treated trypanosomes exhibited a distorted mitochondrial membrane, and the mitochondrial matrix was transformed into an amorphous mass with different degrees of electron densities. Complex 9 did not notably impair the integrity of the membrane, but the interior of the mitochondrion appeared either completely translucent, or was filled with filamentous structures of unknown nature. Dose- and time-dependent effects of these two compounds on the mitochondrial membrane potential were detected by tetramethylrhodamine ethyl ester assay. Thus, the mitochondrion and associated metabolic processes are an important target of dinuclear thiolato-bridged arene ruthenium complexes in T. brucei.


Assuntos
Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos de Rutênio/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/parasitologia , Animais , Relação Dose-Resposta a Droga , Imunofluorescência , Humanos , Concentração Inibidora 50 , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Compostos de Rutênio/química , Fatores de Tempo , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/sangue
10.
Ecotoxicol Environ Saf ; 182: 109391, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31272020

RESUMO

Methyl-triclosan (MTCS) is a dominant transformation product of triclosan (TCS), which has been widely used as an effective antimicrobial ingredient with increasing concentrations in the environment. MTCS shows higher persistence in environment than its parent chemical TCS. The toxic effects of MTCS and toxicological mechanism are not well understood up to now. This study investigated the cytotoxic effects of MTCS in HepG2 cells in terms of cell viability, apoptosis induction, ROS production, GSH/GSSG levels, Mitochondrial Membrane Potential (MMP) reduction, LDH release, glucose uptake and ATP production. Moreover, the related gene transcripts were measured with RT-qPCR assay. Cytotoxic experiments in HepG2 cells revealed that MTCS exposure at micromol per liter levels had toxic effects as evidenced by decreased cell survival, elevated cell apoptosis, reduced MMP and increased LDH release. These toxic effects were associated with increased ROS production and reduced GSH/GSSG ratio. Meanwhile, elevated glucose uptake and ATP production indicated that MTCS induced membrane damages resulted not from a typical mitochondrial uncoupler, but from oxidative stress. Analysis of gene transcripts showed that MTCS exposure induced mRNA expressions alterations associated with oxidative stress response, energy production, cell cycle regulation and cell apoptosis. In general, the caspase-dependent mitochondrial apoptosis pathway might play a role in MTCS induced cytotoxicity in HepG2 cells.


Assuntos
Anti-Infecciosos Locais/toxicidade , Testes de Toxicidade , Triclosan/análogos & derivados , Apoptose/efeitos dos fármacos , Caspases , Pontos de Checagem do Ciclo Celular , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triclosan/toxicidade
11.
J Agric Food Chem ; 67(32): 9060-9069, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31339696

RESUMO

Glutathione S-transferases (GSTs) play an active role in the development of drug resistance by numerous cancer cells, including melanoma cells, which is a major cause of chemotherapy failure. As part of our continuous effort to explore why dietary polyphenols bearing the catechol moiety (dietary catechols) show usually anticancer activity, catechol-type diphenylbutadiene (3,4-DHB) was selected as a model of dietary catechols to probe whether they work as pro-oxidative chemosensitizers via GST inhibition in melanoma cells. It was found that, in human melanoma A375 cells, 3,4-DHB is easily converted to its ortho-quinone via copper-containing tyrosinase-mediated two-electron oxidation along with generation of reactive oxygen species (ROS) derived from the oxidation; the resulting ortho-quinone and ROS are responsible for its ability to sensitize the cisplatin-resistant cells by inhibiting GST, followed by induction of apoptosis in an ASK1-JNK/p38 signaling cascade and mitochondria-dependent pathway. This work provides further evidence to support that dietary catechols exhibit antimelanoma activity by virtue of their tyrosinase-dependent pro-oxidative role and gives useful information for designing polyphenol-inspired GST inhibitors and sensitizers in chemotherapy against melanoma.


Assuntos
Antineoplásicos/farmacologia , Butadienos/farmacologia , Catecóis/farmacologia , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Melanoma/enzimologia , Monofenol Mono-Oxigenase/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose , Butadienos/química , Butadienos/metabolismo , Catecóis/química , Catecóis/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glutationa Transferase/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Químicos , Monofenol Mono-Oxigenase/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
12.
J Agric Food Chem ; 67(31): 8510-8519, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31294559

RESUMO

Acrylamide, mainly formed in Maillard browning reaction during food processing, causes defects in liver circadian clock and mitochondrial function by inducing oxidative stress. Resveratrol is a polyphenol that has powerful antioxidant and anti-inflammatory activity. However, the preventive effects of resveratrol on acrylamide-triggered oxidative damage and circadian rhythm disorders are unclear at the current stage. The present research revealed that resveratrol pretreatment prevented acrylamide-induced cell death, mitochondrial dysfunction, and inflammatory responses in HepG2 liver cells. Acrylamide significantly triggered disorders of circadian genes transcription and protein expressions including Bmal1 and Cry 1 in primary hepatocytes, which were prevented by resveratrol pretreatment. Moreover, we found that the beneficial effects of resveratrol on stimulating Nrf2/NQO-1 pathway and mitochondrial respiration complex expressions in acrylamide-treated cells were Bmal1-dependent. Similarly, the inhibitory effects of resveratrol on inflammation signaling NF-κB were Cry1-dependent. In conclusion, these results demonstrated resveratrol could be a promising compound in suppressing acrylamide-induced hepatotoxicity and balancing the circadian clock.


Assuntos
Fatores de Transcrição ARNTL/imunologia , Acrilamida/toxicidade , Transtornos Cronobiológicos/imunologia , Criptocromos/imunologia , Hepatócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Resveratrol/farmacologia , Fatores de Transcrição ARNTL/genética , Animais , Transtornos Cronobiológicos/tratamento farmacológico , Transtornos Cronobiológicos/genética , Transtornos Cronobiológicos/fisiopatologia , Ritmo Circadiano/efeitos dos fármacos , Criptocromos/genética , Células Hep G2 , Hepatócitos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/imunologia
13.
Chem Biol Interact ; 310: 108734, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276661

RESUMO

This work aimed to evaluate the mechanisms involved in the apoptosis induction of isorhamnetin-3-O-glucosyl-pentoside (IGP) in metastatic human colon cancer cells (HT-29). To achieve this, we assessed phosphatidylserine (PS) exposure, cell membrane disruption, chromatin condensation, cell cycle alterations, mitochondrial damage, ROS production, and caspase-dependence on cell death. Our results showed that IGP induced cell death on HT-29 cells through PS exposure (48%) and membrane permeabilization (30%) as well as nuclear condensation (54%) compared with control cells. Moreover, IGP treatment induced cell cycle arrest in G2/M phase. Bax/Bcl-2 ratio increased and the loss of mitochondrial membrane potential (63%) was observed in IGP-treated cells. Finally, as apoptosis is a caspase-dependent cell death mechanism, we used a pancaspase-inhibitor (Q-VD-OPh) to demonstrate that the cell death induced by IGP was caspase-dependent. Overall these results indicated that IGP induced apoptosis through caspase-dependent mitochondrial damage in HT-29 colon cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Glicosídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Opuntia/química , Quercetina/análogos & derivados , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Flavonóis , Glicosídeos/isolamento & purificação , Glicosídeos/uso terapêutico , Células HT29 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/patologia , Extratos Vegetais/farmacologia , Quercetina/isolamento & purificação , Quercetina/farmacologia , Quercetina/uso terapêutico
14.
Biol Res ; 52(1): 36, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300048

RESUMO

BACKGROUND: Recent evidences indicated that some local anaesthetic agents played a role in inhibiting the proliferation of cancer cells; Whether ropivacaine is able to promote apoptosis of hepatocellular carcinoma (HCC) cells is still unclear. The aim of this study was to investigate the effect of ropivacaine on the apoptosis of HCC cells. METHODS: In the present study, we treated the HCC cell lines, Bel7402 and HLE with ropivacaine. MTT, DAPI stain, trypan blue exclusion dye assay, flow cytometry, electron microscopy, computational simulation, laser confocal microscope, Western blotting, and enzyme activity analysis of caspase-3 were applied to detect the growth and apoptosis of HCC cells and to explore the role mechanism of ropivacaine. RESULTS: Ropivacaine was able to inhibit proliferation and promote apoptosis of HCC cells in a dose- and time-dependent manner. Ropivacaine also has a trait to inhibit the migration of HCC cells; ropivacaine damaged the mitochondria of HCC cells. The results also indicated that ropivacaine was able to interact with caspase-3, promote cytoplasmic caspase-3 migration into the nucleus, stimulate cleavage of caspase-3 and PARP-1, caspase-9 proteins, inhibit the expression of Bcl-2, promote expression of Apaf-1 and mitochondria release cytochrome C, and activate the activity of caspase-3. CONCLUSIONS: Ropivacaine has a novel role in promoting apoptosis of HCC cells; The role mechanism of ropivacaine maybe involve in damaging the function of mitochondria and activating the caspase-3 signalling pathway in HCC cells. Our findings provide novel insights into the local anaesthetic agents in the therapy of HCC patients.


Assuntos
Anestésicos Locais/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Neoplasias Hepáticas/patologia , Ropivacaina/farmacologia , Apoptose/fisiologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Neoplasias Hepáticas/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
Int J Nanomedicine ; 14: 4801-4816, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308659

RESUMO

Background: Silver nanoparticles (AgNPs) inhibit the proliferation of various fungi; however, their mechanisms of action remain poorly understood. To better understand the inhibitory mechanisms, we focused on the early events elicited by 5 nm AgNPs in pathogenic Candida albicans and non-pathogenic Saccharomyces cerevisiae. Methods: The effect of 5 nm and 100 nm AgNPs on fungus cell proliferation was analyzed by growth kinetics monitoring and spot assay. We examined cell cycle progression, reactive oxygen species (ROS) production, and cell death using flow cytometry. Glucose uptake was assessed using tritium-labeled 2-deoxyglucose. Results: The growth of both C. albicans and S. cerevisiae was suppressed by treatment with 5 nm AgNPs but not with 100 nm AgNPs. In addition, 5 nm AgNPs induced cell cycle arrest and a reduction in glucose uptake in both fungi after 30 minutes of culture in a dose-dependent manner (P<0.05). However, in C. albicans only, an increase in ROS production was detected after exposure to 5 nm AgNPs. Concordantly, an ROS scavenger blocked the effect of 5 nm AgNPs on the cell cycle and glucose uptake in C. albicans only. Furthermore, the growth-inhibition effect of 5 nm AgNPs was not greater in S. cerevisiae mutant strains deficient in oxidative stress response genes than it was in wild type. Finally, 5 nm AgNPs together with a glycolysis inhibitor, 3-bromopyruvate, synergistically enhanced cell death in C. albicans (P<0.05) but not in S. cerevisiae. Conclusion: AgNPs exhibit antifungal activity in a manner that may or may not be ROS dependent, according to the fungal species. The combination of AgNPs with 3-bromopyruvate may be more useful against infection with C. albicans.


Assuntos
Candida albicans/citologia , Ciclo Celular/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Piruvatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/citologia , Prata/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Depuradores de Radicais Livres/farmacologia , Fase G1/efeitos dos fármacos , Genes Fúngicos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
16.
Life Sci ; 232: 116618, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31265854

RESUMO

AIMS: Mitochondrial dysfunction has been regarded as one of the hallmarks of cerebral ischemia-reperfusion injury. In previous studies, we have provided evidence that the extracellular signaling pathway (ERK) 1/2 inhibitor PD98059 improved the neurological deficits by modulating antioxidant and anti-apoptotic activities in rats subjected to cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Since oxidative stress can activate mitochondria-dependent apoptosis and autophagy, we further explored the effects of PD98059 on mitochondria involved with apoptosis and autophagy in rat CA model. MATERIALS AND METHODS: We disposed PD98059 in CA/CPR rats, tested the mitochondrial-mediated apoptosis pathway in brain tissues at 24 h post-resuscitation by mitochondrial permeability transition pores (MPTP), cytochrome c (CytC), BCL-2, BAX, caspase-3, as well as autophagy by LC3, Beclin-1, and p62. Furthermore, we explored the relationship of dynamin-related protein 1 (Drp1) with apoptosis and autophagy. KEY FINDINGS: Our study showed that PD98059 decreased the openings of MPTP, CytC release, caspase3 activation, apoptotic indices, LC3-II, Beclin-1and increased P62. PD98059 also inhibited mitochondria-dependent apoptosis and the activity of autophagy in a dose-dependent manner in rat cerebral cortices at 24 h post-resuscitation. The generation of phosphorylated Drp1-616 was down-regulated accompanied by a decrease of TUNEL-positive cells and LC3 in dual immunostaining after PD98059 inhibited activation of ERK signaling pathway in a dose-dependent manner in rat cerebral cortices at 24 h post-resuscitation. SIGNIFICANCE: PD98059 protects the brain against mitochondrial-mediated apoptosis and autophagy at 24 h post-resuscitation in rats subjected to CA/CPR, which is linked with the downregulation of Drp1 expression.


Assuntos
Flavonoides/farmacologia , Parada Cardíaca/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Reanimação Cardiopulmonar , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Flavonoides/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
17.
Life Sci ; 232: 116508, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31278948

RESUMO

AIM: Fluoxetine, one of the first newer SSRI antidepressant, is an extremely popular treatment for depression that could improve mental health problems. Many recent studies have suggested that SSRI have potential beneficial effects on skeletal muscle tissue. MAIN METHOD: We evaluated the potential beneficial effects of oral fluoxetine (18 mg/kg/day for 6 weeks) on muscle performance, after 6 weeks of physical exercise on treadmill. Male mice were randomly assigned to four groups (n = 12 per group) for treatment. Each group received treatment with following specifications: 1) no exercise with vehicle treatment (SED-S); 2) no exercise with fluoxetine treatment (SED-F); 3) exercise with vehicle treatment (EX-S); and 4) exercise with fluoxetine treatment (EX-F). Exercise performances were assessed based on the exhaustive running time and forelimb grip strength, anxious behavior by elevated plus-maze and open-field tests. Mitochondrial enzymes activity and ROS production were measured in the gastrocnemius and soleus muscles. KEY FINDING: Fluoxetine treatment had a significant effect on maximal aerobic capacity in mice without exercise, but more significant effects on gripping strength and anxiety when combined with exercise training, e.g. increased strength and decreased anxiety. SIGNIFICANCE: Fluoxetine treatment and exercise stimulation also had synergistic effects on strength and increased mitochondrial activity, cellular oxidative and antioxidant capacity in two different muscles.


Assuntos
Fluoxetina/farmacologia , Esforço Físico/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Oxirredução , Estresse Oxidativo , Condicionamento Físico Animal/fisiologia , Resistência Física/efeitos dos fármacos
18.
Aquat Toxicol ; 213: 105229, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31255889

RESUMO

Although the global use of the 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p'-DDT) has been prohibited, its persistence in the environment has caused long-lasting exposure on marine mammals. Our previous studies revealed exceedingly high residue levels of DDTs in Indo-Pacific humpback dolphins (Sousa chinensis) from the Pearl River Estuary region, China. However, the molecular mechanisms of p,p'-DDT toxicity on the dolphin are largely unknown. This study conducted the first cytotoxicity effect exploration of p,p'-DDT on the dolphin skin fibroblasts (ScSFs) to enhance the understanding of the cellular and molecular regulation impacts. ScSF cells were exposed to p,p'-DDT (28∼168 µM) for 24, 48 and 72 h. The exposure remarkably decreased viability of ScSF cells, possibly due to the synergetic effects of cell cycle arrest and apoptosis via DNA damage and mitochondria dysfunction. The DNA damage and mitochondria dysfunction were likely triggered by an increase of cellular reactive oxygen species (ROS), alteration in mitochondrial membrane potential, reduction in the cellular ATP levels, decreased expression of the genes CDK1, CDK4, cyclin B1, cyclin D1 and apoptosis regulator Bcl-2, release of cytochrome c, and activation of caspase-3, caspase-8 and caspase-9. Moreover, caspase inhibitor displayed protective activity against p,p'-DDT-induced apoptosis, indicating that caspases played a central role in p,p'-DDT-triggered apoptosis in the ScSF cells. We hypothesize apoptosis likely plays a minor role in cytocidal effects induced by p,p'-DDT exposure, but the mechanisms remain unclear. Overall, this research provides new evidence of the cytotoxic mechanisms underlying p,p'-DDT exposure on humpback dolphin skin cells, and suggests that p,p'-DDT contamination is one of key health concern issues for the protection of this marine mammal.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , DDT/toxicidade , Golfinhos/metabolismo , Exposição Ambiental , Fibroblastos/citologia , Mitocôndrias/metabolismo , Pele/citologia , Animais , Caspases/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade
19.
Life Sci ; 233: 116684, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351083

RESUMO

Traumatic brain injury (TBI) is a devastating condition that often triggers a sequel of neurological disorders that can last throughout lifespan. From a metabolic viewpoint, the compromising of the energy metabolism of the brain has produced evidence linking the severity of brain injury to the extent of disturbances in the cerebral metabolism. The cerebral metabolic crisis, however, displays that regional heterogeneity varies temporally post-injury. It is important to note that energy generation and mitochondrial function are closely related and interconnected with delayed secondary manifestations of brain injury, including early neuromotor dysfunction, cognitive impairment, and post-traumatic epilepsy (PTE). Given the extent of post-traumatic changes in neuronal function and the possibility of amplifying secondary cascades, different therapies designed to minimize damage and retain/restore cellular function after TBI are currently being studied. One of the possible strategies may be the inclusion of ergogenic compounds, which is a class of supplements that typically includes ingredients used by athletes to enhance their performance. The combination of these compounds offers specific physiological advantages, which include enhanced energy availability/metabolism and improved buffering capacity. However, the literature on their effects in certain biological systems and neurological diseases, such as TBI, has yet to be determined. Thus, the present review aims to discuss the role of ergogenic compounds popularly used in secondary damage induced by this neurological injury. In this narrative review, we also discuss how the results from animal studies can be applied to TBI clinical settings.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/tratamento farmacológico , Epilepsia Pós-Traumática/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Doenças Neuromusculares/tratamento farmacológico , Animais , Arginina/farmacologia , Cafeína/farmacologia , Carnitina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Creatina/farmacologia , Metabolismo Energético , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/fisiopatologia , Glutamina/farmacologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Neuromusculares/etiologia , Doenças Neuromusculares/fisiopatologia , Taurina/farmacologia
20.
Life Sci ; 232: 116633, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31278947

RESUMO

AIMS: The compound 8-prenylnaringenin (8-PN) is a prenylflavonoid that can be isolated from hops and beer and has anti-cancer properties against breast cancer. The aim of this study is to investigate the anti-proliferative and apoptotic activities of 8-PN against human colon cancer HCT-116 cells. MAIN METHODS: Colon cancer HCT-116 cells were treated with 8-PN and subjected to MTT and acridine orange/propidium iodide (AO/PI) staining to investigate the cytotoxicity of 8-PN. Arrest of the cells at different phases of cell cycle was monitored in the presence of 8-PN. Moreover, the apoptotic effects of 8-PN was assessed via annexin V and caspase activity assays and compared to the untreated cells. KEY FINDINGS: The findings showed that 8-PN revealed strong inhibitory effect against HCT-116 cells with an IC50 value of 23.83 ±â€¯2.9 µg/ml after 48 h. However, at similar concentrations and experimental time-points, the compound did not show cytotoxic effect to non-cancerous colon cells (CCD-41). Annexin-V assay indicates that 38.5% and 14.4% of HCT-116 cells had entered early and late stages of apoptosis, respectively after exposure of the cells to 8-PN for 48 h. Caspase activity assay illustrates that apoptosis is activated through both intrinsic and extrinsic pathways. Moreover, flow cytometry cell cycle results indicate that treatment with 8-PN significantly arrested the HCT-116 cells at G0/G1 phase. SIGNIFICANCE: These findings reveal that 8-PN has anti-proliferative activity against HCT-116 colon cancer cells via induction of intrinsic and extrinsic pathway-mediated apoptosis. Further investigations should be carried out to unravel the mechanistic pathways underlying these activities.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Flavanonas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Células HCT116/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA