Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.592
Filtrar
1.
Medicine (Baltimore) ; 99(40): e22544, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33019464

RESUMO

BACKGROUND: Clinical studies have shown that celecoxib can significantly inhibit the development of tumors, and basic experiments and in vitro experiments also provide a certain basis, but it is not clear how celecoxib inhibits tumor development in detail. METHODS: A literature search of all major academic databases was conducted (PubMed, China National Knowledge Internet (CNKI), Wan-fang, China Science and Technology Journal Database (VIP), including the main research on the mechanisms of celecoxib on tumors. RESULTS: Celecoxib can intervene in tumor development and reduce the formation of drug resistance through multiple molecular mechanisms. CONCLUSION: Celecoxib mainly regulates the proliferation, migration, and invasion of tumor cells by inhibiting the cyclooxygenases-2/prostaglandin E2 signal axis and thereby inhibiting the phosphorylation of nuclear factor-κ-gene binding, Akt, signal transducer and activator of transcription and the expression of matrix metalloproteinase 2 and matrix metalloproteinase 9. Meanwhile, it was found that celecoxib could promote the apoptosis of tumor cells by enhancing mitochondrial oxidation, activating mitochondrial apoptosis process, promoting endoplasmic reticulum stress process, and autophagy. Celecoxib can also reduce the occurrence of drug resistance by increasing the sensitivity of cancer cells to chemotherapy drugs.


Assuntos
Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Celecoxib/efeitos adversos , Celecoxib/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/efeitos adversos , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Dinoprostona/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Nat Commun ; 11(1): 4655, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938918

RESUMO

Purely organic room-temperature phosphorescence has attracted attention for bioimaging but can be quenched in aqueous systems. Here we report a water-soluble ultralong organic room-temperature phosphorescent supramolecular polymer by combining cucurbit[n]uril (CB[7], CB[8]) and hyaluronic acid (HA) as a tumor-targeting ligand conjugated to a 4-(4-bromophenyl)pyridin-1-ium bromide (BrBP) phosphor. The result shows that CB[7] mediated pseudorotaxane polymer CB[7]/HA-BrBP changes from small spherical aggregates to a linear array, whereas complexation with CB[8] results in biaxial pseudorotaxane polymer CB[8]/HA-BrBP which transforms to relatively large aggregates. Owing to the more stable 1:2 inclusion complex between CB[8] and BrBP and the multiple hydrogen bonds, this supramolecular polymer has ultralong purely organic RTP lifetime in water up to 4.33 ms with a quantum yield of 7.58%. Benefiting from the targeting property of HA, this supramolecular polymer is successfully applied for cancer cell targeted phosphorescence imaging of mitochondria.


Assuntos
Mitocôndrias/efeitos dos fármacos , Polímeros/química , Células A549 , Células HEK293 , Humanos , Ácido Hialurônico/química , Ligação de Hidrogênio , Medições Luminescentes , Microscopia Confocal , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Polímeros/metabolismo , Taxoides/química , Temperatura
3.
Ecotoxicol Environ Saf ; 203: 111025, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888593

RESUMO

We investigated individual and combined effects of environmentally representative concentrations of amoxicillin (AMX; 2 µg l-1), enrofloxacin (ENR; 2 µg l-1), and oxytetracycline (OXY; 1 µg l-1) on the aquatic macrophyte Lemna minor. While the concentrations of AMX and ENR tested were not toxic, OXY decreased plant growth and cell division. OXY induced hydrogen peroxide (H2O2) accumulation and related oxidative stress through its interference with the activities of mitochondria electron transport chain enzymes, although those deleterious effects could be ameliorated by the presence of AMX and/or ENR, which prevented the overaccumulation of ROS by increasing catalase enzyme activity. L. minor plants accumulated significant quantities of AMX, ENR and OXY from the media, although competitive uptakes were observed when plants were submitted to binary or tertiary mixtures of those antibiotics. Our results therefore indicate L. minor as a candidate for phytoremediation of service waters contaminated by AMX, ENR, and/or OXY.


Assuntos
Amoxicilina/toxicidade , Araceae/efeitos dos fármacos , Enrofloxacina/toxicidade , Oxitetraciclina/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Amoxicilina/análise , Amoxicilina/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Enrofloxacina/análise , Enrofloxacina/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxitetraciclina/análise , Oxitetraciclina/metabolismo , Poluentes Químicos da Água/análise
4.
Molecules ; 25(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992875

RESUMO

Fighting infectious diseases, particularly viral infections, is a demanding task for human health. Targeting the pathogens or targeting the host are different strategies, but with an identical purpose, i.e., to curb the pathogen's spreading and cure the illness. It appears that targeting a host to increase tolerance against pathogens can be of substantial advantage and is a strategy used in evolution. Practically, it has a broader protective spectrum than that of only targeting the specific pathogens, which differ in terms of susceptibility. Methods for host targeting applied in one pandemic can even be effective for upcoming pandemics with different pathogens. This is even more urgent if we consider the possible concomitance of two respiratory diseases with potential multi-organ afflictions such as Coronavirus disease 2019 (COVID-19) and seasonal flu. Melatonin is a molecule that can enhance the host's tolerance against pathogen invasions. Due to its antioxidant, anti-inflammatory, and immunoregulatory activities, melatonin has the capacity to reduce the severity and mortality of deadly virus infections including COVID-19. Melatonin is synthesized and functions in mitochondria, which play a critical role in viral infections. Not surprisingly, melatonin synthesis can become a target of viral strategies that manipulate the mitochondrial status. For example, a viral infection can switch energy metabolism from respiration to widely anaerobic glycolysis even if plenty of oxygen is available (the Warburg effect) when the host cell cannot generate acetyl-coenzyme A, a metabolite required for melatonin biosynthesis. Under some conditions, including aging, gender, predisposed health conditions, already compromised mitochondria, when exposed to further viral challenges, lose their capacity for producing sufficient amounts of melatonin. This leads to a reduced support of mitochondrial functions and makes these individuals more vulnerable to infectious diseases. Thus, the maintenance of mitochondrial function by melatonin supplementation can be expected to generate beneficial effects on the outcome of viral infectious diseases, particularly COVID-19.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Melatonina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Viroses/tratamento farmacológico , Viroses/imunologia , Infecções por Coronavirus/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Melatonina/metabolismo , Mitocôndrias/metabolismo , Pandemias , Pneumonia Viral/metabolismo , Viroses/metabolismo
5.
Ecotoxicol Environ Saf ; 205: 111326, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961495

RESUMO

Hexavalent chromium [Cr(VI)] is ubiquitous in the environment and is commonly used in various industrial processes. Clusterin (CLU) is an extracellular chaperone protein which exerts the anti-apoptotic function. In this study, we aimed to explore the effect of CLU on Cr(VI)-induced mitochondrial fission and apoptosis. We revealed that the apoptosis rate of L02 hepatocytes treated with Cr (VI) was increased. CLU over-expression could protect the hepatocytes from Cr(VI)-induced mitochondrial apoptosis. Furthermore, Cr(VI) triggered the intracellular calcium overload, resulting in the activation of xanthine oxidase (XO). Cr(VI) induced reactive oxygen species (ROS) overproduction, led to dynamin-related protein 1 (Drp1) translocation to mitochondria and the subsequent mitochondrial fission, contributing to the caspase-3-dependent mitochondrial apoptosis as evidenced by higher mitochondrial permeability transition pore (mPTP) opening rate, lower mitochondrial membrane potential (MMP), and more alanine transaminase (ALT)/aspartate transaminase (AST) leakage into the culture medium. However, CLU over-expression could trigger the AMP-activated protein kinase (AMPK) pathway, which was followed by the increase of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) expression. CLU-induced AMPK/SERCA2a activation attenuated calcium overload, caspase-3 activation, and ultimate mitochondrial apoptosis. All in all, the present study demonstrated that Cr(VI) induced hepatocytes apoptosis via Ca2+-ROS-Drp1-mitochondrial fission axis and CLU alleviated the mitochondrial apoptosis through activation of the AMPK/SERCA2a pathway.


Assuntos
Cromo/toxicidade , Clusterina/metabolismo , Poluentes Ambientais/toxicidade , Apoptose/efeitos dos fármacos , Caspase 3 , Dinaminas , Hepatócitos/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Anticancer Res ; 40(9): 5191-5200, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878807

RESUMO

BACKGROUND/AIM: Colorectal cancer is one of the most common malignancies worldwide. Small molecule-based chemotherapy is an attractive approach for the chemoprevention and treatment of colorectal cancer. Methylsulfonylmethane (MSM) is a natural organosulfur compound with anticancer properties, as revealed by studies on in vitro models of gingival, prostate, lung, hepatic, and breast cancer. However, the molecular mechanisms underlying the effects of MSM in colon cancer cells remain unclear. MATERIALS AND METHODS: Here, we investigated the effects of MSM, especially on the cell cycle arrest and apoptosis, in HT-29 cells. RESULTS: MSM suppressed the viability of HT-29 cells by inducing apoptosis and cell cycle arrest at the G0/G1 phase. MSM suppressed the sphere-forming ability and expression of stemness markers in HT-29 cells. CONCLUSION: MSM has anti-cancer effects on HT-29 cells, and induces cell cycle arrest and apoptosis, while suppressing the stemness potential.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Sulfonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Esferoides Celulares , Células Tumorais Cultivadas
7.
Adv Exp Med Biol ; 1274: 71-99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894508

RESUMO

Bioactive lipid mediators resulting from the metabolism of polyunsaturated fatty acids (PUFA) are controlled by many pathways that regulate the levels of these mediators and maintain homeostasis to prevent disease. PUFA metabolism is driven primarily through three pathways. Two pathways, the cyclooxygenase (COX) and lipoxygenase (LO) enzymatic pathways, form metabolites that are mostly inflammatory, while the third route of metabolism results from the oxidation by the cytochrome P450 enzymes to form hydroxylated PUFA and epoxide metabolites. These epoxygenated fatty acids (EpFA) demonstrate largely anti-inflammatory and beneficial properties, in contrast to the other metabolites formed from the degradation of PUFA. Dysregulation of these systems often leads to chronic disease. Pharmaceutical targets of disease focus on preventing the formation of inflammatory metabolites from the COX and LO pathways, while maintaining the EpFA and increasing their concentration in the body is seen as beneficial to treating and preventing disease. The soluble epoxide hydrolase (sEH) is the major route of metabolism of EpFA. Inhibiting its activity increases concentrations of beneficial EpFA, and often disease states correlate to mutations in the sEH enzyme that increase its activity and decrease the concentrations of EpFA in the body. Recent approaches to increasing EpFA include synthetic mimics that replicate biological activity of EpFA while preventing their metabolism, while other approaches focus on developing small molecule inhibitors to the sEH. Increasing EpFA concentrations in the body has demonstrated multiple beneficial effects in treating many diseases, including inflammatory and painful conditions, cardiovascular disease, neurological and disease of the central nervous system. Demonstration of efficacy in so many disease states can be explained by the fundamental mechanism that EpFA have of maintaining healthy microvasculature and preventing mitochondrial and endoplasmic reticulum stress. While there are no FDA approved methods that target the sEH or other enzymes responsible for metabolizing EpFA, current clinical efforts to test for efficacy by increasing EpFA that include inhibiting the sEH or administration of EpFA mimics that block metabolism are in progress.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Inflamação/tratamento farmacológico , Mitocôndrias/patologia , Terapia de Alvo Molecular , Manejo da Dor , Doenças Cardiovasculares/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Inflamação/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dor
8.
Ecotoxicol Environ Saf ; 203: 110934, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888599

RESUMO

Pharmaceuticals and personal care products are emerging contaminants that are increasingly detected in the environment worldwide. Certain classes of pharmaceuticals, such as selective serotonin reuptake inhibitors (SSRIs), are a major environmental concern due to their widespread use and the fact that these compounds are designed to have biological effects at low doses. A complication in predicting toxic effects of SSRIs in nontarget organisms is that their mechanism of action is not fully understood. To better understand the potential toxic effects of SSRIs, we employed an ultra-low input RNA-sequencing method to identify potential pathways that are affected by early exposure to two SSRIs (fluoxetine and paroxetine). We exposed wildtype zebrafish (Danio rerio) embryos to 100 µg/L of either fluoxetine or paroxetine for 6 days before extracting and sequencing mRNA from individual larval brains. Differential gene expression analysis identified 1550 genes that were significantly affected by SSRI exposure with a core set of 138 genes altered by both SSRIs. Weighted gene co-expression network analysis identified 7 modules of genes whose expression patterns were significantly correlated with SSRI exposure. Functional enrichment analysis of differentially expressed genes as well as network module genes repeatedly identified various terms associated with mitochondrial and neuronal structures, mitochondrial respiration, and neurodevelopmental processes. The enrichment of these terms indicates that toxic effects of SSRI exposure are likely caused by mitochondrial dysfunction and subsequent neurodevelopmental effects. To our knowledge, this is the first effort to study the tissue-specific transcriptomic effects of SSRIs in developing zebrafish, providing specific, high resolution molecular data regarding the sublethal effects of SSRI exposure.


Assuntos
Encéfalo/efeitos dos fármacos , Larva/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores de Captação de Serotonina/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Encéfalo/embriologia , Biologia Computacional , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Humanos , Larva/genética , Análise de Sequência de RNA , Peixe-Zebra/genética
9.
PLoS One ; 15(9): e0237981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903271

RESUMO

Serine hydroxymethyltransferase 2 (SHMT2) converts serine plus tetrahydrofolate (THF) into glycine plus methylene-THF and is upregulated at the protein level in lung and other cancers. In order to better understand the role of SHMT2 in cancer a model system of HeLa cells engineered for inducible over-expression or knock-down of SHMT2 was characterized for cell proliferation and changes in metabolites and proteome as a function of SHMT2. Ectopic over-expression of SHMT2 increased cell proliferation in vitro and tumor growth in vivo. Knockdown of SHMT2 expression in vitro caused a state of glycine auxotrophy and accumulation of phosphoribosylaminoimidazolecarboxamide (AICAR), an intermediate of folate/1-carbon-pathway-dependent de novo purine nucleotide synthesis. Decreased glycine in the HeLa cell-based xenograft tumors with knocked down SHMT2 was potentiated by administration of the anti-hyperglycinemia agent benzoate. However, tumor growth was not affected by SHMT2 knockdown with or without benzoate treatment. Benzoate inhibited cell proliferation in vitro, but this was independent of SHMT2 modulation. The abundance of proteins of mitochondrial respiration complexes 1 and 3 was inversely correlated with SHMT2 levels. Proximity biotinylation in vivo (BioID) identified 48 mostly mitochondrial proteins associated with SHMT2 including the mitochondrial enzymes Acyl-CoA thioesterase (ACOT2) and glutamate dehydrogenase (GLUD1) along with more than 20 proteins from mitochondrial respiration complexes 1 and 3. These data provide insights into possible mechanisms through which elevated SHMT2 in cancers may be linked to changes in metabolism and mitochondrial function.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicina Hidroximetiltransferase/metabolismo , Neoplasias Pulmonares/patologia , Metaboloma , Proteoma/análise , Serina/metabolismo , Animais , Antifúngicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina Hidroximetiltransferase/genética , Células HeLa , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Domínios e Motivos de Interação entre Proteínas , Benzoato de Sódio/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Ecotoxicol Environ Saf ; 205: 111340, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966934

RESUMO

The increase in pesticide use in response to agricultural demands poses a risk to non-target organisms, including fish. Integrated analysis of biochemical, histopathological and genetic parameters in fish exposed to Malathion insecticide provide information on the toxicity mechanisms of this pesticide, which is classified as a probable carcinogen for humans. The present study assessed the biological responses of Colossoma macropomum after exposure to Malathion. We started determining the lethal concentration, which is the concentration capable of killing 50% of the subjects in an acute toxicity test (LC50-96 h), which was 15.77 ± 3.30 mgL-1. The fish were, then, exposed to Malathion during 96 h at a sublethal concentration, 7.30 mgL-1. Overall, we observed an increased activity of biotransformation and antioxidant enzymes, which reduced production of mitochondrial reactive oxygen species after 96 h exposure, as well as kept constant the mitochondrial respiration, Acetylcholinesterase activity and DNA damage. However, fish exposed to insecticide presented severe gill histopathological damage and increased expression of proto-oncogene ras. Taken together, the results suggest that, after four days of exposure to the Malathion, C. macropomum efficiently activates its defense mechanisms, suggesting that the basal response mechanisms are responsive. On the other hand, histopathologic damages evidenced the adverse effects of Malathion on fish, since it promoted gill necrosis and increased the expression of ras oncogene that is directly related to tumorigenesis events.


Assuntos
Antioxidantes/metabolismo , Caraciformes/metabolismo , Dano ao DNA , Inseticidas/toxicidade , Malation/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Caraciformes/genética , Brânquias/efeitos dos fármacos , Brânquias/patologia , Dose Letal Mediana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade Aguda
11.
Int J Nanomedicine ; 15: 5803-5811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821102

RESUMO

Introduction: Photodynamic therapy (PDT), which induces tissue damage by exposing tissue to a specific wavelength of light in the presence of a photosensitizer and oxygen, is a promising alternative treatment that could be used as an adjunct to chemotherapy and surgery in oncology. Cell-penetrating peptides (CPPs) with high arginine content, such as protamine, have membrane translocation and lysosome localization activities. They have been used in an extensive range of drug delivery applications. Methods: We conjugated cell-penetrating peptides (CPPs) with methylene blue (MB) and then purification by FPLC. Synthesis structure was characterized by the absorbance spectrum, FPLC, Maldi-TOF, and then evaluated cell viability by cytotoxicity assay after photodynamic therapy (PDT) assay. An uptake imaging assay was used to determine the sites of MB and MB-Pro in subcellular compartments. Results: In vitro assays showed that MB-Pro has more efficient photodynamic activities than MB alone for the colon cancer cells, owing to lysosome rupture causing the rapid necrotic cell death. In this study, we coupled protamine with MB for high efficacy PDT. The conjugates localized in the lysosomes and enhanced the efficiency of PDT by inducing necrotic cell death, whereas PDT with non-coupled MB resulted in only apoptotic processes. Discussion: Our research aimed to enhance PDT by engineering the photosensitizers using CPPs coupled with methylene blue (MB). MB alone permeates through the cell membrane and distributes into the cytoplasm, whereas coupling of MB dye with CPPs localizes the MB through an endocytic mechanism to a specific organelle where the localized conjugates enhance the generation of reactive oxygen species (ROS) and induce cell damage.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Azul de Metileno/farmacologia , Fotoquimioterapia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Células HT29 , Humanos , Imageamento Tridimensional , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Azul de Metileno/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
12.
Nat Commun ; 11(1): 4337, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859897

RESUMO

Intracellular Na elevation in the heart is a hallmark of pathologies where both acute and chronic metabolic remodelling occurs. Here, we assess whether acute (75 µM ouabain 100 nM blebbistatin) or chronic myocardial Nai load (PLM3SA mouse) are causally linked to metabolic remodelling and whether the failing heart shares a common Na-mediated metabolic 'fingerprint'. Control (PLMWT), transgenic (PLM3SA), ouabain-treated and hypertrophied Langendorff-perfused mouse hearts are studied by 23Na, 31P, 13C NMR followed by 1H-NMR metabolomic profiling. Elevated Nai leads to common adaptive metabolic alterations preceding energetic impairment: a switch from fatty acid to carbohydrate metabolism and changes in steady-state metabolite concentrations (glycolytic, anaplerotic, Krebs cycle intermediates). Inhibition of mitochondrial Na/Ca exchanger by CGP37157 ameliorates the metabolic changes. In silico modelling indicates altered metabolic fluxes (Krebs cycle, fatty acid, carbohydrate, amino acid metabolism). Prevention of Nai overload or inhibition of Na/Camito may be a new approach to ameliorate metabolic dysregulation in heart failure.


Assuntos
Reprogramação Celular/fisiologia , Citoplasma/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Sódio/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético , Técnicas de Introdução de Genes , Coração , Hipertrofia , Preparação de Coração Isolado , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Sódio/sangue , Trocador de Sódio e Cálcio/efeitos dos fármacos , Tiazepinas/farmacologia
13.
Free Radic Res ; 54(7): 477-496, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32842814

RESUMO

Smokeless tobacco (SLT) or chewing tobacco has been a highly addictive practice in India across ages, posing major threat to the systemic health and possibly neurodegeneration. Earlier studies showed components of SLT could be harmful to neuronal health. However, mechanism of SLT in neurodegeneration remained unexplored. This study investigated the detrimental role of SLT on differentiated neuronal cell lines, PC12 and SH-SY5Y by using graded doses of water soluble lyophilised SLT. Reduced cell viability, compromised mitochondrial structure and functions were observed when neuronal cell lines were treated with SLT (6 mg/mL) for 24 h. There was reduction of oxidative phosphorylation and aerobic glycolysis as determined by diminution of ATP production (2.5X) and basal respiration (1.9X). Mitochondrial membrane potential was dropped by 3.5 times. Bid, a pro-apoptotic Bcl-2 family protein, has imperative role in regulating mitochondrial outer membrane permeabilization and subsequent cytochrome c release leading to apoptosis. This article for the first time indicated the involvement of Bid in SLT mediated neurotoxicity and possibly neurodegeneration. SLT treatment enhanced expression of cleaved-Bid in time dependent manner. The involvement of Bid was further confirmed by using Bid specific shRNA which reversed the effects of SLT and conferred significant protection from apoptosis up to 72 h. Thus, our results clearly indicated that SLT induced neuronal cell death occurred via production of ROS, alteration of mitochondrial morphology, membrane potential and oxidative phosphorylation, inactivation of survival pathway and activation of apoptotic markers mediated by Bid. Therefore, Bid could be a potential future therapeutic target for SLT induced neurodegeneration.


Assuntos
Neurônios/patologia , Tabaco sem Fumaça/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Citocromos c/metabolismo , Dano ao DNA , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação Oxidativa , Células PC12 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Proteína Supressora de Tumor p53/metabolismo
14.
Ecotoxicol Environ Saf ; 204: 111051, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32763565

RESUMO

The present study was performed to determine the effect of waterborne cadmium (Cd) exposure on oxidative stress, autophagy and mitochondrial dysfunction, and to explore the mechanism of Cd-induced liver damage in freshwater teleost Procypris merus. To this end, P. merus were exposed to waterborne 0, 0.25 and 0.5 mg/L Cd for 30 days (equal to 0, 2.22 and 4.45 µmol Cd/l). The waterborne Cd exposure significantly increased hepatic Cd accumulation and impaired histological structure of the liver of P. merus. both low and high-dose waterborne Cd exposure induced oxidative stress in the liver of P. merus, through increases Malondialdehyde (MDA) and reactive oxide species (ROS) accumulation in the liver. The Cd-induced oxidative stress in liver may result from reduction of enzyme activities (superoxide dismutases (SOD), catalases (CAT), GSH-S-transferases (GST)) and transcriptional expression of antioxidant related genes (gpx1, gpx2, cata, gsta1, sod1). Furthermore, the present study showed that waterborne Cd exposure decreased the transcriptional factor (nrf2) expression, which might lead to the down-regulation of antioxidant gene expression. Transmission electron microscopy (TEM) observations demonstrated that waterborne Cd exposure induced autophagy in the liver of P. merus. Gene expression analysis showed that waterborne Cd exposure also induced mRNA expression of a set of genes (beclin1, ulk1, atg5, lc3a, atg4b, atg9a, and p62) involved in the autophagy process, indicating that the influence of Cd on autophagy involved transcription regulation of autophagy gene expression. Waterborne Cd exposure induced a sharp decrease in ATP content in the liver of P. merus. In addition, the expression of mitochondrial function genes (sdha, cox4i1, cox1, atp5f1, and mt-cyb) are significantly decreased in the liver of P. merus in Cd treated groups, manifesting the suppression of Cd on mitochondrial energy metabolism. Taken together, our experiments demonstrate that waterborne Cd exposure induced oxidative stress, autophagy and mitochondrial dysfunction in the liver of P. merus. These results may contribute to the understanding of mechanisms that hepatotoxicity of Cd in teleost.


Assuntos
Antioxidantes/fisiologia , Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Cyprinidae/fisiologia , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Fígado/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Distribuição Aleatória
15.
Ecotoxicol Environ Saf ; 204: 111040, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798748

RESUMO

Tebuconazole (TEB) is a common triazole fungicide that is widely used throughout the world in agriculture applications. We previously reported that TEB induces cardiac toxicity in rats. The aim of this study was to investigate the underlying mechanism of the toxicity induced by TEB in cardiac cells. TEB induced dose-dependent cell death in H9c2 cardiomyoblasts and in adult rat ventricular myocytes (ARVM). The comet assay and western blot analysis showed a concentration-dependent increase in DNA damage and in p53 and p21 protein levels 24 h after TEB treatment. Our findings also showed that TEB triggered the mitochondrial pathway of apoptosis as evidenced by a loss of mitochondrial transmembrane potential (ΔΨm), an increase in Bax/Bcl-2 ratio, an activation of caspase-9 and caspase-3, a cleavage of poly (ADP-ribose) polymerase (PARP) and an increase in the proportion of cells in the sub-G1 phase. In addition, TEB promoted ROS production in cardiac cells and consequently increased the amounts of MDA, the end product of lipid peroxidation. Treatment of cardiomyocytes with the ROS scavenger N-acetylcysteine reduced TEB-induced DNA damage and activation of the mitochondrial pathway of apoptosis. These results indicate that the genotoxic and cytotoxic effects of TEB are mediated through a ROS-dependent pathway in cardiac cells.


Assuntos
Apoptose , Cardiotoxicidade/metabolismo , Dano ao DNA , Fungicidas Industriais/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Triazóis/toxicidade , Animais , Cardiotoxicidade/etiologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Ratos , Ratos Wistar
16.
Life Sci ; 258: 118195, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781073

RESUMO

AIMS: The estrogen-ERα axis participates in osteoblast maturation. This study was designed to further evaluated the roles of the estrogen-ERα axis in bone healing and the possible mechanisms. MAIN METHODS: Female ICR mice were created a metaphyseal bone defect in the left femurs and administered with methylpiperidinopyrazole (MPP), an inhibitor of ERα. Bone healing was evaluated using micro-computed tomography. Colocalization of ERα with alkaline phosphatase (ALP) and ERα translocation to mitochondria were determined. Levels of ERα, ERß, PECAM-1, VEGF, and ß-actin were immunodetected. Expression of chromosomal Runx2, ALP, and osteocalcin mRNAs and mitochondrial cytochrome c oxidase (COX) I and COXII mRNAs were quantified. Angiogenesis was measured with immunohistochemistry. KEY FINDINGS: Following surgery, the bone mass was time-dependently augmented in the bone-defect area. Simultaneously, levels of ERα were specifically upregulated and positively correlated with bone healing. Administration of MPP to mice consistently decreased levels of ERα and bone healing. As to the mechanisms, osteogenesis was enhanced in bone healing, but MPP attenuated osteoblast maturation. In parallel, expressions of osteogenesis-related ALP, Runx2, and osteocalcin mRNAs were induced in the injured zone. Treatment with MPP led to significant inhibition of the alp, runx2, and osteocalcin gene expressions. Remarkably, administration of MPP lessened translocation of ERα to mitochondria and expressions of mitochondrial energy production-related coxI and coxII genes. Furthermore, exposure to MPP decreased levels of PECAM-1 and VEGF in the bone-defect area. SIGNIFICANCE: The present study showed the contributions of the estrogen-ERα axis to bone healing through stimulation of energy production, osteoblast maturation, and angiogenesis.


Assuntos
Regeneração Óssea , Diferenciação Celular , Metabolismo Energético , Receptor alfa de Estrogênio/metabolismo , Neovascularização Fisiológica , Osteoblastos/citologia , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/patologia , Diferenciação Celular/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
17.
PLoS One ; 15(8): e0234492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790760

RESUMO

Endothelial injury is a common manifestation in IgA nephropathy (IgAN). After the previous identification of the upregulated soluble fms-like tyrosine kinase-1 (sFlt-1) correlated with endothelial injury in IgAN, in the present study, we further explored the role of sFlt-1 in endothelial injury in IgAN. We enrolled 72 patients with IgAN and detected the sFlt-1 levels. The polymeric IgA1 (pIgA1) complexes were isolated from the pooled plasma samples of another 10 patients with IgAN. Apoptosis proteins were detected in cultured human umbilical vein endothelial cells (HUVECs) with the stimulation of recombinant sFlt-1 or the caspase-9 inhibitor Z-LEHD-FMK. We identified there were positive correlations between sFlt-1 and IgA-IgG complex as well as vWF levels in patients with IgAN. The sFlt-1 levels in HUVECs were significantly upregulated by pIgA1 complex derived from IgAN patients in a concentration-dependent manner. The proliferation ability of HUVECs was damaged when stimulated with sFlt-1 protein in a time- and dose- dependent manner. And the apoptosis rate was up-regulated significantly as the stimulation concentrations of sFlt-1 increased. We found sFlt-1 challenge could significantly increase the expression of vWF. In addition, sFlt-1 increased the levels of caspase-9, caspase-3, Bax and mitochondrial membrane potential; facilitated the release of cytochrome C from mitochondria to cytoplasma. In contrast, Z-LEHD-FMK attenuated high sFlt-1-induced HUVECs apoptosis. In conclusion, our study demonstrated that sFlt-1 expression was up-regulated by the challenge of pIgA1 complex derived from patients with IgAN. Furthermore, increased sFlt-1 facilitated human umbilical vein endothelial cells apoptosis via the mitochondrial-dependent pathway.


Assuntos
Endotélio Vascular/fisiopatologia , Glomerulonefrite por IGA/fisiopatologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Adulto , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Caspase 9/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Feminino , Glomerulonefrite por IGA/sangue , Glomerulonefrite por IGA/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Oligopeptídeos/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Adulto Jovem
18.
Ecotoxicol Environ Saf ; 205: 111186, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853868

RESUMO

Exposure to ambient air particulate matter (PM) is associated with increased cardiorespiratory morbidity and mortality. In this context, alveolar macrophages exhibit proinflammatory and oxidative responses as a result of the clearance of particles, thus contributing to lung injury. However, the mechanisms linking these pathways are not completely clarified. Therefore, the oxinflammation phenomenon was studied in RAW 264.7 macrophages exposed to Residual Oil Fly Ash (ROFA), a PM surrogate rich in transition metals. While cell viability was not compromised under the experimental conditions, a proinflammatory phenotype was observed in cells incubated with ROFA 100 µg/mL, characterized by increased levels of TNF-α and NO production, together with PM uptake. This inflammatory response seems to precede alterations in redox metabolism, characterized by augmented levels of H2O2, diminished GSH/GSSG ratio, and increased SOD activity. This scenario resulted in increased oxidative damage to phospholipids. Moreover, alterations in mitochondrial respiration were observed following ROFA incubation, such as diminished coupling efficiency and spare respiratory capacity, together with augmented proton leak. These findings were accompanied by a decrease in mitochondrial membrane potential. Finally, NADPH oxidase (NOX) and mitochondria were identified as the main sources of superoxide anion () in our model. These results indicate that PM exposure induces direct activation of macrophages, leading to inflammation and increased reactive oxygen species production through NOX and mitochondria, which impairs antioxidant defense and may cause mitochondrial dysfunction.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Superóxidos/metabolismo , Poluentes Atmosféricos/toxicidade , Animais , Antioxidantes/metabolismo , Cinza de Carvão/toxicidade , Peróxido de Hidrogênio/metabolismo , Inflamação , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo/imunologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
19.
Nat Commun ; 11(1): 3347, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620768

RESUMO

A sharp increase in mitochondrial Ca2+ marks the activation of brown adipose tissue (BAT) thermogenesis, yet the mechanisms preventing Ca2+ deleterious effects are poorly understood. Here, we show that adrenergic stimulation of BAT activates a PKA-dependent mitochondrial Ca2+ extrusion via the mitochondrial Na+/Ca2+ exchanger, NCLX. Adrenergic stimulation of NCLX-null brown adipocytes (BA) induces a profound mitochondrial Ca2+ overload and impaired uncoupled respiration. Core body temperature, PET imaging of glucose uptake and VO2 measurements confirm a thermogenic defect in NCLX-null mice. We show that Ca2+ overload induced by adrenergic stimulation of NCLX-null BAT, triggers the mitochondrial permeability transition pore (mPTP) opening, leading to a remarkable mitochondrial swelling and cell death. Treatment with mPTP inhibitors rescue mitochondrial function and thermogenesis in NCLX-null BAT, while calcium overload persists. Our findings identify a key pathway through which BA evade apoptosis during adrenergic stimulation of uncoupling. NCLX deletion transforms the adrenergic pathway responsible for thermogenesis activation into a death pathway.


Assuntos
Adipócitos Marrons/patologia , Tecido Adiposo Marrom/metabolismo , Norepinefrina/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Termogênese/fisiologia , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo Marrom/citologia , Adrenérgicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Temperatura Baixa/efeitos adversos , Ciclosporina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Feminino , Microscopia Intravital , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Cultura Primária de Células , Transdução de Sinais , Trocador de Sódio e Cálcio/genética , Termogênese/efeitos dos fármacos
20.
Life Sci ; 256: 118009, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603819

RESUMO

AIMS: Abnormal mitochondrial metabolism is an essential factor for excessive proliferation of pulmonary artery smooth muscle cells (PASMCs), which drives the pathological process of pulmonary arterial hypertension (PAH). 3-Bromopyruvate (3-BrPA) is an effective glycolytic inhibitor that improves mitochondrial metabolism, thereby repressing anomalous cell proliferation. MAIN METHODS: An experimental PAH model was established by injection of monocrotaline (MCT) in male Sprague Dawley rats, following which rats were assigned to three groups: control, MCT, and 3-BrPA groups. Three days post injection of MCT, rats were treated with 3-BrPA or vehicle for 4 weeks. At the end of the study, hemodynamic data were measured to confirm PAH condition. Indicators of pulmonary arterial and right ventricular (RV) remodeling as well as the proliferative ability of PASMCs were assayed. Additionally, mitochondrial morphology and function, and antiglycolytic and antiproliferative pathways and genes were analyzed. KEY FINDINGS: Treatment with 3-BrPA effectively improved pulmonary vascular remodeling and right ventricular function, inhibited PASMC proliferation, and preserved mitochondrial morphology and function. Besides, 3-BrPA treatment inhibited the PI3K/AKT/mTOR pathway and regulated the expression of antiproliferative genes in PASMCs. However, bloody ascites, bloating, and cirrhosis of organs were observed in some 3-BrPA treated rats. SIGNIFICANCE: 3-BrPA acts as an important glycolytic inhibitor to improve energy metabolism and reverse the course of PAH. However, 3-BrPA is associated with side effects in MCT-induced rats, indicating that it should be caution in drug delivery dosage, and further studies are needed to evaluate this toxicological mechanism.


Assuntos
Mitocôndrias/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Piruvatos/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Mitocôndrias/metabolismo , Monocrotalina , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Piruvatos/toxicidade , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA